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Introduction

Metastasis is one of main causes of death of patients 
with breast cancer [1]. Tumor cells detach from the 
primary tumor through the blood or lymphatic route and 
colonize sites far from their place of origin [2]. Matrix 
metalloproteinases (MMPs) play a key role in the main 
stages of tumor progression. MMP-2 and MMP-9 degrade 
extracellular matrix (ECM) and basement membrane 
components, such as collagen I and IV, fibronectin and 
laminin, facilitating the spread of tumor cell [3]. In 
breast cancer, overexpression of MMP-2 and MMP-9 
is associated with metastasis and, consequently, a poor 
prognosis [4–6]. MMPs also perform a crucial role in 
the main stages of tumor progression such as growth, 
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survival, angiogenesis, invasion, migration, and regulation 
of the immune system [7, 8]. Therefore, studies aimed at 
inhibiting the activity of these proteinases are an important 
alternative approach for the treatment of tumors.

Chemotherapy is the main treatment option for 
advanced breast cancer; the most used regimens combine 
multiple drugs [9–11]. Even though patients respond well 
to chemotherapy, the recurrence and metastasis rates are 
quite high [12]. In addition, these treatments still have 
limitations due to resistance to cytotoxic agents and 
low selectivity, which causes numerous side effects [13, 
14] and reinforces the importance of searching for new 
anticancer drugs that minimize these side effects. 

Drug combinations provide a way to overcome tumor 
resistance and a lack of selectivity [15]. Paclitaxel (PTX) 
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is a taxane widely used in adjuvant and neoadjuvant 
treatment of various tumor types, including breast cancer 
[16]. Natural naphthoquinone and its derivatives have a 
variety of biological activities well described, including 
anticancer properties. The natural naphthoquinone 
lapachol ((2-hydroxy-3-(3-methyl-2-butenyl)-1,4-
naphthoquinone), isolated from Tabebuia impetiginosa, 
is used in the semisynthesis of new analogues that may 
have better anticancer activity and selectivity [17–19]. In 
this study, we evaluated the antitumor activity of a new 
synthetic analogue derived from lapachol (APO-3), alone 
and in combination with the chemotherapeutic agent PTX, 
on 4T1 cells.

Materials and Methods

Preparation of standard solutions
APO-3, PTX, and their combination (APO-3/PTX) 

were diluted at several concentrations (0, 5, 25, 50, 75, and 
100 µM). The nomenclature, identification codes, molar 
masses, and chemical structures of the compounds used 
in this study are shown in Table 1. Dimethyl sulfoxide 
(DMSO, 1%) was used to dilute the substances and 
was also used as a negative control. The APO-3/PTX 
combination was prepared in a 1:1 molar ratio.

Cell lines and reagents
4T1 cells were purchased from the Cell Bank of Rio de 

Janeiro (BCRJ code: 0022). The presence of mycoplasmas 
was assessed using PCR and Bioluminescence assays. The 
cells were cultured in Roswell Park Memorial Institute 
(RPMI)-1640 culture medium supplemented with 10% 
fetal bovine serum (FBS) and 1% streptomycin/penicillin 
(S/P) at 37°C and 5% CO2. Confluent monolayers were 
dissociated with 0.25% trypsin-ethylenediaminetetraacetic 
acid (EDTA). 

DMSO,  3- (4 ,5 -d imethy l th iazo l -2-y l ) -2 ,5 -
diphenyltetrazolium bromide (MTT), RPMI-1640, and 
S/P were purchased from Sigma-Aldrich (St. Louis, MO, 
USA). Trypsin and FBS were from Gibco (Carlsbad, 
CA, USA). PTX was purchased from Chiral Chemistry 
(Brazil). The Poly (ADP-ribose) polymerase (PARP), 
caspase-9, cleaved caspase-3, and RIP1 antibodies were 
purchased from Cell Signaling Technology (Danvers, MA, 
USA). The caspase-8 and β-actin antibodies were procured 
from Santa Cruz Biotechnology (Dallas, Texas, USA). 

Cell viability assay
The cytotoxicity of APO-3, PTX, and APO-3/PTX 

was assessed with the MTT assay. First, cells were seeded 
in 96-well plates (5 × 103 cells/well) and incubated 
overnight. Subsequently, the cells were treated with 
increasing concentrations of APO-3, PTX, and APO-3/
PTX in DMSO (1%) and RPMI (0% FBS and 1% S/P). 
After treatment for 24 h, 100 μL of MTT solution was 
added to each well, and the plates were incubated for 3 
h to allow the formation of formazan crystals. Formazan 
was dissolved in DMSO. The absorbance of the solution 
at 570 nm was measured with a microplate reader (Versa 
Max, Molecular Devices). The results are expressed as a 
percentage of the average viable cells in the treatments 

relative to the control [20]. 

Tumor specificity (TS) 
To assess TS, spleens from healthy BALB/c mice were 

collected under aseptic conditions. After maceration of the 
tissue, healthy splenocytes were obtained, plated in 96-
well plates (5 × 105 cells/well) and then incubated with 
the selected substances for 24 h. Then, the MTT viability 
test was performed [21, 22]. TS was calculated with the 
following equation: TS = (mean IC50 of normal splenocyte 
cells/mean IC50 of 4T1 tumoral cells), where IC50 is the 
half maximal inhibitory concentration [23]. 

Zymography
The proteolytic enzyme activity of MMP-9 in the 

cell supernatant was measured with gelatin zymography. 
Gelatinases were obtained from the cell supernatant. 
After lysing the cells, the lysate cell supernatant was 
centrifuged at 14000 g, for 15 minutes, at 4°C. The 
supernatant was removed, stored and kept at -80°C until 
the electrophoresis.  The total protein concentration was 
measured with the Bradford method. Equivalent amounts 
of cell supernatant (20 μg) were mixed with an equal 
volume of non-denaturing buffer (2% sodium dodecyl 
sulfate [SDS], 125 mM Tris-HCl, [pH 6.8], 10% glycerol, 
and 0.001% bromophenol blue). Electrophoresis mini gels 
(7% polyacrylamide and, 0.1% gelatin) were used run 
non-reducing conditions (0.025 M Tris(hydroxymethyl) 
aminomethane, 0.192 M glycine, and 0.1% sodium dodecyl 
sulfate (SDS) 0.1%, pH 8.5).  After electrophoresis, the 
gels were washed twice in 2.5% TritonX-100 for 60 min 
at room temperature and then incubated at 37 °C overnight 
in activation buffer (10 mM Tris- HCl buffer [(pH 8.0]), 
containing 5 mM (Tris-CaCl2). The gels were stained 
(0.25% Coomassie blue G-250, 30% ethanol, and 10% 
acetic acid) for 1 h and destained (30% ethanol and, 10% 
acetic acid), for 2 h. The gels were photographed; and 
MMP proteolytic activity was appeared as clear zone 
bands on a blue background. The gelatinolytic activity 
was quantified by densitometric quantification using the 
ImageJ (NIH) software (National Institutes of Health, 
Bethesda, MD, USA) [24]. 

Wound-healing assay
4T1 cells were seeded in a 24-well plate (3.5 × 

105 cells/well) and incubated until they reached 95% 
confluence. Then, two parallel wounds were made on 
the monolayer in each well. The cells were washed with 
phosphate-buffered saline (PBS) to remove cell debris and 
then treated with APO-3, PTX, or APO-3/PTX diluted in 
RPMI-1640 supplemented with 2% FBS. Images of the 
wounds were captured 0, 24, and 48 h after treatment, 
using an inverted fluorescence microscope (Axio Vert.
A1, Carl Zeiss, Jena Germany) at 100× magnification. The 
ZEN software (2012) was used to measure the wounds. 
The results were analyzed using GraphPad Prism 9.0 
(GraphPad Software, San Diego, CA, USA) [25].

Clonogenic assay
The clonogenic assay examined 4T1 cells in anchorage-

independent soft agar. The test was performed for 21 
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Statistical analyses 
All the assays were performed in triplicate. Statistical 

analyses were performed using GraphPad Prism 
7.0. Differences between the groups were compared 
with analysis of variance followed by the Tukey test, 
with p < 0.05 considered to be a significant difference. The 
IC50 was determined by using a non-linear regression test.

Results

APO-3, PTX, and APO-3/PTX were cytotoxic and selective 
for 4T1 tumor cells

APO-3 (IC50 = 0.86 μM) and APO-3/PTX (IC50 = 2.77 
μM) were more effective in reducing tumor cell viability 
than PTX alone (IC50 = 6.42 µM). APO-3, APO-3/PTX, 
and PTX were highly selective for 4T1 cells (Table 2), with 
an IC50 of 34.12, 1,617, and 577 µM, respectively. APO-3/
PTX and PTX had a much higher IC50 than the maximum 
concentration established in the curve (100 μM); even so, 
these values were used to calculate a probable TS. The TS 
for APO-3, APO-3/PTX, and PTX was 39.67, 583.75, and 
89.9, respectively. Besides being less toxic than APO-3 
alone, APO-3/PTX was almost 15 times more selective 
than APO-3 alone and about 6.5 times more selective 
than PTX alone.

APO-3/PTX inhibited MMP-9 activity
APO-3 alone was not able to reduce MMP-9 activity 

(Figure 1). However, APO-3/PTX (35% p = 0.0255) and 
PTX (53% p = 0.0020) inhibited MMP-9 activity.

APO-3, PTX, and APO-3/PTX inhibited 4T1 tumor cell 
migration

For the control group, the wounds had completely 
closed after treatment for 48 h. Treatment with APO-3, 
APO-3/PTX, and PTX inhibited 4T1 cell migration. After 
treatment for 48 h, the wound size was 56% for APO-3, 
54% for APO-3/PTX, and 68% for PTX, respectively 
(Figure 2).

APO-3/PT effectively decreased the number of colonies 
of 4T1 cells

APO-3/PTX inhibited almost 80% of the colonies 
formed compared with the control (p < 0.0001). 
PTX significantly reduced the number of colonies by 
approximately 60% (p < 0.0001). However, APO-3 was 
not able to decrease the number of colonies (Figure 3). 

APO-3, APO-3/PTX, and PTX caused morphological 
changes in 4T1 cells

AO/PI double staining (Figure 4A) revealed the 
occurrence of morphological changes. Figure 4B shows 
the quantification of viable and dead cells: The control 
group had significantly more viable cells than the treated 
groups (p < 0.0001). Moreover, all treatments significantly 
increased the morphological changes characteristic of cell 
death (p < 0.0001), including chromatin condensation 
(CC), nuclear fragmentation (NF), membrane bubbles 
(MB), changes in cell volume, and extravasation of the 
cytoplasmic content.

days according to a previous protocol [24], with some 
adaptations. An area corresponding to 80% of each well 
was photographed using the EVOS® FL Auto Imaging 
System (Invitrogen, Waltham, Massachusetts, USA) at 
100× magnification. The number of colonies content was 
quantified by using the OpenCFU software [26]. 

Acridine orange (AO)/propidium iodide (PI) double 
staining 

The morphological changes characteristic of cell death 
were analyzed with AO/PI double staining. The cells (5 
× 103 cells/well) were treated with the corresponding 
IC50 of each substance for 24 h. Afterward, the plate 
was centrifuged at 2,000 rpm for 5 min. In a light-free 
environment, the supernatant was discarded, the cells were 
resuspended in PBS, and then 10 μL of AO (10 µg/mL) 
and 10 μL of PI (10 µg/mL) were added. Twenty images 
per well were obtained at 200× magnification with an 
Axio Vert.A1 microscope. Morphological analysis was 
carried out according to a previous study [27]. Finally, 
the cells were quantified with the Zen software (Zeiss, 
Jena, Germany). The data were converted to the mean 
± standard deviation percentage and normalized against 
the control.

Western blotting
The 4T1 cells (5 × 105 cells/well) were treated with 

the IC50 of the compounds for 24 h. Then, they were lysed 
(50 mM Tris [pH 7.6–8], 150 mM NaCl, 5 mM EDTA, 1 
mM Na3VO4, 10 mM Na4P2O7, 1% NP-40, and protease 
inhibitors) and the protein concentration was determined 
[28]. Sodium Dodecyl Sulfate-PolyAcrylamide Gel 
Eletrophoresis (SDS-PAGE) was performed at 140 V 
for 4 h with 15% acrylamide gels. Then, the proteins 
were transferred to nitrocellulose membranes (GE 
Healthcare Life Sciences, Chicago, Illinois, USA) by 
semi-dry transfer (Cytiva Amersham, England, UK). 
The membranes were incubated in 5% nonfat milk in 
Tris-Buffered Saline, 0.1 tween (TBS-T) for 1 h at room 
temperature to block nonspecific protein binding. Then, 
the membranes were incubated with the appropriate 
primary antibody: total PARP (116 kDa), total caspase 
9 (51 kDa), cleaved caspase 3 (17 kDa) [Cell Signaling 
Technology], total caspase 8 (55 kDa) and β-actina (43 
kDa) [Santa Cruz Biotechnology], according to the 
manufacturers’ recommendations at room temperature. 
After incubation, the membranes were washed with 
TBS-T and incubated with the appropriate secondary 
antibody (anti-mouse ou anti-rabbit) diluted 1:1000. The 
proteins were visualized by chemiluminescence using two 
solutions (first solution: 100 mM Tris [pH 8.5], 2.5 mM 
luminol, and 0.396 mM coumaric acid; second solution 
100 mM Tris [pH 8.5], and 0.06% H2O). Digital images 
of the membranes were obtained with a L-Pix Chemi 
Molecular Imaging system (Loccus, Cotia, São Paulo, 
Brazil). The ImageJ software was used for densitometric 
quantification. β-actin was used to normalize the protein 
expression. The target protein expression is presented as 
the ratio of the target protein band for the treatment to the 
same target protein band for the control [24].
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Figure 1. MMP-9 Activity Present in the 4T1 Cell Supernatant after Treatment with (A) APO-3 or (B) APO-3/PTX or 
PTX. * p < 0.05 and ** p < 0.01. Control: 1% DMSO.

Table 1. The Compounds Tested in This Study and Their Nomenclature, Identification Codes, Molar Masses, and 
Chemical Structures.

Modulatory effects of APO-3, APO-3/PTX, and PTX on 
key proteins of cell death pathways

Based on western blotting, APO-3 significantly 
increased the expression of PARP (129%), caspase-9 
(143%), and RIP1 (145%), and decreased the expression 
of cleaved caspase-3 (51%). On the other hand, APO-3/
PTX significantly decreased the expression of PARP 
(50%), caspase-9 (53%), and RIP1 (48%), and increased 
the expression of caspase-8 (183%) and cleaved caspase-3 

(169%), similarly to PTX (Figure 5).

Discussion

Lapachol has been widely used as a starting point 
for the synthesis of new bioactive substances with 
antineoplastic effects against several tumor cells lines, 
including MDA-MB-231 human breast cancer cells [18, 
29, 30]. The chemotherapeutic agent PTX is commonly 
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Figure 2. Inhibition of 4T1 Cell Mobility by (A) APO-3, (B) APO-3/PTX, and (C) PTX. The representative images 
(100× magnification) show the wound at different treatment times. The graphs show the wound size compared with 
the control group. *** p < 0.001 and **** p < 0.0001. Control: 1% DMSO.

Table 2 APO-3, APO-3/PTX, and PTX IC50 and TS for 4T1 Cells and Normal Murine Splenocytes. 

used clinically, as monotherapy or in combination with 
other agents, for the treatment of refractory metastatic 
tumors, such as breast cancer [31]. However, the 
development of resistance to PTX is the main obstacle 

faced in treatment [32], requiring the discovery of a new 
more effective alternative therapy. Thus, we investigated 
the antitumor potential of a new synthetic substance 
derived from lapachol (APO-3), alone and in combination 
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Figure 3. Inhibition of the Colony-Forming Ability of 4T1 Cells after Treatment with APO-3, APO-3/PTX, or PTX. 
(A) Representative micrographs of the colonies formed. (B) The number of colonies formed as a percentage of the 
control. *** p < 0.001 and **** p < 0.0001. Control: 1% DMSO.

Figure 4. Morphological Changes Characteristic of Cell Ddeath in 4T1 Cells. (A) Morphological changes characteris-
tic of the death of 4T1 cells treated with APO-3, APO-3/PTX, or PTX. (B) Quantification of viable and dead cells. V: 
viable cells; CC: condensation of chromatin; NF: nuclear fragmentation; MB: membrane bubbles; N: necrotic cells. 
**** p < 0.0001. Control: 1% DMSO.
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Figure 5. The Expression of Proteins Involved in Cell Death Pathways in 4T1 Cells after Treatment with APO-3, APO-
3/PTX, or PTX. (A) Representative western blots showing the expression of PARP, caspase-8, caspase-9, cleaved 
caspase-3, and RIP1. (B) Quantification of the protein levels. *p < 0.05, **p < 0.01, and ***p < 0.001. Control: 1% 
DMSO.

with PTX, on a highly metastatic murine breast cancer cell 
line (4T1), which is widely used in studies investigating 
stage IV human breast cancer [33, 34]. 4T1 cells represent 
an excellent model to evaluate the potential of new 
substances as antitumor agents against human breast 
cancer. 

In this study, APO-3 (IC50 = 0.86 μM/ 0.49 μg/mL) 
and APO-3/PTX (IC50 = 2.77 μM / 1.97 μg/mL) were 
more effective in reducing the viability of 4T1 cells than 
PTX alone (IC50 = 6.42 μM / 5.48 μg/mL). According 
to the National Cancer Institute (NCI), for an isolated 
compound to be considered a promising antitumor, it must 
present IC50 values ≤ 4 μg/mL (DEHGHAN-NAYERI 
et al., 2019). Only APO-3 and APO-3/PTX shown IC50 
values ≤ 4 μg/mL [35]. Similar results were found in a 
study using the naphthoquinone thymoquinone and PTX 
in 4T1 cells: The combination of these compounds also 
induced stronger cytotoxicity compared with PTX alone 
[36]. The cytotoxicity results obtained in this work agree 
with a previous study that showed lapachol analogues 
had cytotoxic activity against the HBL100 (breast), 
SW1573 (lung), HeLa (cervical) and WiDr (colon) 
tumor cell lines [37, 38]. Other studies have also reported 
the positive effects of the combination of β-lapachone 
naphthoquinones and plumbagin with PTX on human 
retinoblastoma and breast tumor cells. They also correlated 
their results with the cytotoxic synergism between these 
substances [39, 40]. Because we did not determine the 
combinatorial index of APO-3 and PTX, we cannot state 
definitively whether the interaction we observed was 
synergistic or additive. Because APO-3/PTX had a lower 
IC50 than PTX or APO-3 alone, we speculate that APO-3 
adds to PTX cytotoxicity.

The search for new anticancer drugs that are more 
effective against tumor cells and not harmful to normal 
cells comprises one of the main challenges of cancer 
medicine [41]. Regarding selectivity, APO-3, APO-3/
PTX, and PTX were not cytotoxic to normal murine 
splenocytes. Thus, APO-3, APO-3/PTX, and PTX seem to 
be selective for 4T1 cells, as they presented a TS of 39.67, 
583.75, and 89.9, respectively. It is worth mentioning that 
APO-3/PTX was about 6.5 times more selective than PTX 
alone and almost 15 times more selective than APO-3 
alone. This lower cytotoxicity against normal cells and 
the TS we calculated are extremely relevant, especially 
considering that current antineoplastic agents trigger 
significant adverse effects in patients due to non-specific 
cytotoxicity [42].

In addition to cytotoxicity and selectivity, a substance 
must also be effective in preventing tumor cell migration, 
invasion, and establishment in other sites, a process 
called metastasis. This process requires degradation of 
ECM components [43]. MMP-9, a protease produced 
mainly by tumor cells, can degrade some components 
of the ECM, which leaves enough room for them to 
migrate. Consequently, it facilitates spread to distant 
organs through the circulatory and lymphatic systems 
[2, 44, 45]. However, the cell migration mechanism is 
quite complex and depends on the activation of a wide 
range of intracellular processes, in addition to the action 
of proteases. The migratory process is mainly associated 
with dysregulation of signaling pathways that can lead 
to membrane protrusion and retraction. Furthermore, it 
is related to regulatory factors associated with the actin 
cytoskeleton, which is closely linked to cell adhesion 
dynamics. These parameters can contribute to modify 
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cell–cell and cell–ECM adhesion necessary for cell 
invasiveness [46, 47]. We found that APO-3, APO-3/PTX, 
and PTX inhibited wound closure similarly. However, 
PTX and APO-3/PTX were more effective in inhibiting 
MMP-9 secreted by 4T1 cells. Considering that APO-3 
alone did not inhibit MMP-9, PTX may have conferred an 
additional effect when combined with APO-3. Researchers 
have correlated, among other processes, the migration 
of tumor cells treated with quinones with the proteolytic 
action of MMPs [48, 49]. Those studies showed that 
substances derived from quinone slowed down cell 
migration in human breast adenocarcinoma lines, and 
reduced MMP-9 activity. Therefore, we suggest that the 
inhibition of cell migration demonstrated by APO-3/
PTX and PTX alone may be mediated by the reduced 
MMP-9 proteolytic activity. However, it is important to 
emphasize that cell migration depends on more than just 
the activity of this protease, which may explain the fact 
that APO-3 inhibited cell migration but did not decrease 
MMP-9 activity.

The APO-3/PTX combination significantly inhibited 
the ability of 4T1 cells to establish metastases [50]. These 
results are similar to those reported by authors who also 
evaluated the action of a quinone derivative and a taxane, 
alone and in combination, on the clonogenic potential of 
MDA-MB-231 human breast cancer cells [51]. These 
authors observed that quinone was more effective in 
reducing the number of colonies formed by MDA-
MB-231 cell line when combined with chemotherapy 
and suggested that the cytotoxic action of the taxane may 
be time dependent, as they act specifically on the cell 
cycle. Taxanes act by stabilizing microtubules, blocking 
mitosis, and causing cell death. Microtubules are formed 
by several units of α- and β-tubulin, which make up the 
cell cytoskeleton and are essential in the development 
and maintenance of cell shape, as well as in cell division, 
motility, signaling, and intracellular transport [52]. 
Taxanes are able to bind specifically to β-tubulin, thus 
preventing microtubule depolymerization, causing cell 
cycle arrest in the G2/M phase and, consequently, cell 
death [53]. Due to the different mechanisms of action of 
quinones, they may not act in the long term on colony 
formation. However, when they are combined with 
taxanes, they can gain an additional effect and inhibit 4T1 
colony formation more effectively.

The redox property of naphthoquinone derivatives 
has also been well described. They increase the 
production of reactive oxygen species (ROS), due to their 
reduction of semiquinone, causing irreversible damage 
to macromolecules, which leads to cell death [54]. The 
apoptotic potential of this class of substances has been 
most associated with the production of ROS in several 
tumor cell lines [55, 56]. However, there has been a 
growing number of studies reporting that necroptotic cell 
death is also caused by the increase of ROS caused by 
naphthoquinones [57, 58]. 

Treatment with APO-3 alone reduced the expression of 
cleaved caspase-3, an essential effector protein that triggers 
apoptosis. Furthermore, it increased the expression of total 
caspase-9 but did not alter total caspase-8 compared 
with the control. In addition, we observed an increase 

in RIP1 protein expression. RIP1 may be involved in 
two cell death mechanisms investigated in this study, 
namely apoptosis and necroptosis [59]. The cleavage of 
caspases is an essential process that leads to their self-
activation or the sequential activation of other effectors 
that trigger apoptosis, and an increase in their total form 
may indicate a reduction in their active (cleaved) form 
[60-62]. Based on this, our results suggest that APO-3 
may induce necroptosis. Consistently, researchers have 
shown the induction of necroptosis in human glioma 
cell lines through upregulation of RIP1 expression and 
increased production of ROS by naphthoquinone [63, 64]. 
Furthermore, inhibition of RIP1 by Necrostatin-1 has been 
shown to prevent necroptosis in addition to significantly 
decreasing intracellular ROS levels. Moreover, the 
inhibition of ROS by N-acetyl-l-cysteine (NAC) led to 
a suppression of RIP1, suggesting that the production 
of ROS is a determining factor for the induction of 
necroptosis in glioma cells. 

We found that the expression of total PARP, one of the 
proteins involved in DNA damage repair, was increased, 
perhaps indicating a reduction in its cleaved form [65]. 
A limiting factor that can lead to tumor resistance to 
chemotherapy drugs that induce DNA damage is mainly 
correlated with increased expression of DNA repair 
enzymes [66, 67]. Therefore, the possible reduction of 
cleaved (active) PARP may decrease the probability of 
resistance to APO-3, because the mechanism of action of 
this naphthoquinone can lead to DNA damage, mediated 
by increasing ROS. In addition, cells treated with APO-
3 showed some morphological changes characteristic of 
apoptosis, such as chromatin condensation and nuclear 
fragmentation [68]. Moreover, we observed other 
morphological changes, such as increased cell volume, 
rupture of the plasma membrane, and extravasation of 
cytoplasmic content, which are typical characteristics 
of cells undergoing necroptosis [69, 70]. As mentioned 
previously, PTX acts on the stabilization of microtubules, 
causing cell cycle arrest in the G2/M phase, and leading 
to cell death [53]. Previous studies have shown that this 
mechanism of action induces cell death via apoptosis in 
several types of tumoral lineages [71, 72]. However, the 
molecular mechanism by which PTX induces apoptosis 
has not been fully elucidated [73-76].

In this study, we demonstrated that PTX possibly 
triggers cell death through the intrinsic apoptotic pathway, 
given that there were no changes in the expression of total 
caspase-8, a protein essential for the extrinsic apoptotic 
pathway. Furthermore, RIP1 expression was decreased, 
a phenomenon that may indicate that the necroptotic 
pathway is not activated. PARP, on the other hand, was 
reduced after treatment with PTX, which may indicate 
increased expression of its cleaved form. This change in 
PARP expression may be related to cell cycle arrest caused 
by PTX, because blocking cycle progression can lead to 
the induction and recruitment of DNA repair enzymes 
[77]. Furthermore, several cellular proteins, such as PARP, 
can be cleaved by active caspase-3, leading to cell death 
through apoptosis [78, 79]. Consistently, PTX induced 
apoptosis in human esophageal adenocarcinoma cells 
through activation of caspase-3 followed by degradation 
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of PARP [80]. Besides, researchers have demonstrated 
a decrease in the expression of total caspase-9 in 
retinoblastoma cells and acute promyelocytic leukemia 
cells treated with PTX [60, 81], and there was increased 
expression of cleaved caspase-3 [81]. Although we did 
not evaluate the expression of cleaved PARP, the increase 
in cleaved caspase-3 and the decrease in total PARP and 
caspase-9 may indicate that PTX induced 4T1 cell death 
via the apoptotic pathway.

Both PTX alone and the APO-3/PTX combination 
showed similar results. They increased the expression 
of cleaved caspase-3, decreased the expression of total 
caspase-9, and increased the expression of total caspase-8, 
which may be related to the decreased expression of its 
cleaved form [60, 61]. These results indicate possible 
activation of the intrinsic apoptotic pathway and not the 
extrinsic apoptosis pathway. In addition, the decrease in 
RIP1 expression demonstrated that there was possibly no 
activation of necroptosis. Furthermore, treatment with 
APO-3/PTX also reduced the expression of total PARP, 
which may indicate increased expression of its cleaved 
form. Various PTX and naphthoquinone combinations 
have produced similar results. The combination of shikonin 
with PTX induced apoptosis in human breast cancer cells 
[82]. In another study, combination of β-lapachone and 
PTX caused apoptosis in retinoblastoma cells, denoted by 
increased cleaved caspase-3 and reduced total caspase-9 
[39]. These results reinforce the evidence that the APO-
3/PTX trigger apoptosis through the intrinsic pathway. 
Furthermore, APO-3/PTX produced morphological 
changes characteristic of apoptosis, including chromatin 
condensation and nuclear fragmentation. Treatment with 
PTX alone led to other membrane changes, such as blister 
formation. Taken together, our results strongly suggest 
the pathway responsible for 4T1 cell death: APO-3 alone 
may trigger necroptosis, while PTX and APO-3/PTX may 
trigger apoptosis through the intrinsic pathway.

In conclusion, overall, the results of this study 
demonstrate that APO-3, a novel synthetic substance 
derived from lapachol, may have potent antitumor action 
on 4T1 cells and the combination of APO-3/PTX may be 
more effective than treatment with these substances alone, 
especially in controlling the metastatic activity of these 
cells. Besides that, it is important to highlight that more 
research is needed to fully understand the all mechanisms 
involved on the anticancer potential and efficacy observed 
for APO-3 and APO-3/PTX such as safety, biological 
activity, specificity and toxicity, especially on in vivo 
models. 
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