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Introduction

Glioblastoma multiforme (GBM) is the most 
common and aggressive form of brain cancer. It is a 
type of glioma originating from the brain’s glial cells. 
GBM typically affects adults between 45 and 70 [1, 2]. 
According to the American Cancer Society, the incidence 
rate of glioblastoma in the United States is estimated at 
approximately 3.2 cases per 100,000 people per year. 
According to the Central Brain Tumor Registry of the 
United States (CBTRUS), the 5-year survival rate for 
patients diagnosed with glioblastoma is around 5-10% or 
12-15 months [3-5]. GBM is a multifactorial disease, and 
it is associated with genetic mutations and chromosomal 
abnormalities. Environmental factors for developing 
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GBM are such as radiation exposure, specifically inherited 
syndromes, and a family history of brain tumors. GBM 
can cause various symptoms to vary depending on the 
location of cancer, but commonly include headaches, 
seizures, cognitive changes, weakness, and changes in 
vision or speech. Current treatment for GBM involves 
a combination of surgery, radiation therapy, and 
chemotherapy [6]. Biomarkers commonly studied in 
glioblastoma consist of mutations and dysregulation in 
various genes, including IDH1, Tp53, EGFR, Ki-67, and 
methylation of MGMT [7].

The discovery of new biomarkers can improve the 
study and understanding of the mechanisms underlying 
cancer. This has many advantages, including (1) Emerging 
new diagnostic tools and early detection. (2) Personalized 
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medicine can involve selecting the most effective 
treatment options and avoiding unnecessary or ineffective 
treatments, thus improving treatment response rates. (3) 
Prognostic information provides important prognostic 
information, helping to predict the likelihood of disease 
progression and response to treatment. (4) Monitoring 
treatment response can allow for real-time monitoring 
of treatment response. (5) Cost-effectiveness, in which 
healthcare providers can focus on targeted treatments, 
avoiding unnecessary or ineffective therapies. This can 
reduce costs associated with treatment, minimize side 
effects, and improve patient quality of life [8-10].

Machine learning (ML) is a subset of artificial 
intelligence (AI) that uses algorithms and statistical 
models to enable computers to learn and make predictions 
or decisions without being explicitly programmed [11]. 
These days, by leveraging ML, researchers can train 
algorithms on large datasets of RNA-seq data from healthy 
individuals and patients with a specific condition. These 
algorithms can then learn patterns and relationships 
between gene expression levels and disease outcomes 
to identify potential biomarkers. Furthermore, machine 
learning algorithms can also be used to develop predictive 
models that incorporate RNA-seq data and other clinical 
and demographic variables to make accurate predictions 
about disease prognosis or treatment response. These 
predictive models can aid in personalized medicine by 
enabling doctors to identify patients most likely to benefit 
from a particular treatment or identify potential adverse 
reactions to certain medications based on RNA-seq data 
[12, 13].

The main aim of the current study was to develop 
a Machine Learning-based integrated bioinformatics 
approach for the identification of novel biomarkers in 
glioblastoma. Previous research has predominantly relied 
on bioinformatics for biomarker discovery, a method 
that, while valuable, typically necessitates manual data 
interpretation, rendering it time-consuming and less 
effective for managing large datasets. In contrast, this 
study integrates bioinformatics with machine learning 
techniques to enhance the process of biomarker discovery. 
The application of machine learning algorithms enables 
a more efficient analysis of complex datasets, reveals 
patterns that traditional methods might overlook, and 
significantly improves the accuracy and reliability of the 
findings [14].

In the current study, we identified biomarkers of GBM 
by a Machine Learning-based integrated bioinformatics 
approach. The survival analysis used the Kaplan–Meier 
method to predict prognostic biomarkers. Furthermore, we 
evaluated disease ontology, molecular pathways, protein-
protein network, and correlations between candidate 
genes and glioblastoma with clinical data. Additionally, 
the diagnostic biomarker was detected by the machine 
learning technology and ROC curve (Figure 1A).

Materials and Methods

Data collection
RNA-seq data and associated clinicopathological 

data from patients diagnosed with glioblastoma (GBM) 

were downloaded from the GDAC database (http://
gdac.broadinstitute.org/ ). In this study, we included 537 
samples consisting of 532 tumor tissues and five normal 
samples and analyzed a dataset of 20,531 genes.

Data preprocessing and identification of differentially 
expressed genes 

Raw RNA-seq data were normalized using the  R 
software DESeq2 to remove samples with null expression 
and duplicates. Data preprocessing was used to show 
differentially expressed genes (DEG) based on specific 
criteria with a P value of <0.05 and |log2-fold change (FC)| 
> 1.5 were considered a significant threshold.

Genome, disease ontology, and pathway enrichment 
analysis 

Enrichment analysis and discovery of significant 
DEG pathways based on Gene Ontology (GO), GSEA, 
Reactome, and Human Disease Ontology (DO). Data 
were visualized with the respective packages in R with a 
p-value < 0.05.

Machine Learning Algorithm
A machine learning technique using deep learning 

algorithms was performed to analyze DEG values and 
identify prognostic markers of glioblastoma. Deep 
learning is a specialized field of machine learning that 
uses artificial neural networks to model and understand 
complex data patterns and extract advanced features from 
input data. A characteristic selection weight corresponding 
to the correlation is used when building the model. The 
correlation matrix shows the correlation coefficients 
between several variables. It helps to understand the 
relationships between variables and identify data 
patterns. The correlation coefficient, usually expressed as 
“randquot; to quantify, indicates the strength and direction 
of the linear relationship between two variables. It ranges 
from -1 to 1, indicating negative and positive associations, 
respectively. The closer the correlation coefficient is to -1 
or 1, the stronger the relationship.

Computer workflow 
The model was run in Python 3.7 with a learning rate 

of 0.01, the activation function chosen was Rectifier, 
and the model was trained for ten epochs. Generally, in 
deep learning, it is customary to partition the data into 
two categories, namely training and testing, as part of 
the standard workflow. The process involves modeling 
the training set, assessing performance on the test set, 
and repeating the model and data processing techniques 
to enhance overall performance and generalization 
capabilities. The dataset was split into a training set 
comprising 70% of the data and a testing set containing 
30% of the data. In the machine learning workflow, the 
models were trained on the training set by utilizing fixed 
optimal hyperparameter values for AUC (area under the 
curve), accuracy, MSE (mean squared error), and R2 
(R-squared). Accuracy can be calculated by determining 
the percentage of correctly predicted values from the 
total number of predictions made. This aids in obtaining 
a comprehensive model evaluation and ensures accurate 
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Validation by other Datasets
To further confirm the candidate genes, two microarray 

datasets (GSE4290 and GSE68848) from the gene 
expression omnibus (GEO) database (http://www.ncbi.
nlm.nih.gov/geo/) were evaluated. The GEO2R tool was 
used to identify DEGs between human GBM tissues and 
control samples. 

Results

Identification of DEGs and Pathway Enrichment Analysis
The data consists of 532 GBM samples and five 

controls. As shown in Table 1, the average age of patients 
was 58.13 years, most of whom were male. The data 
was downloaded and normalized, and then DEGs were 
obtained. 4940 DEGs were identified, of which 2302 
were upregulated, and 2638 were downregulated genes, 
respectively. Heat map and principal component analysis 
(PCA) provide additional information that can help better 
understand differences or similarities between patients and 
controls regarding traits and potential genes (Figures 1B 
and C). Enrichment analysis indicated that DEGs were 
remarkably enriched in GPCRs, class A rhodopsin−like, 
MAPK signaling pathway, and Calcium regulation in 
cardiac cells (Figures 2A, B, and C). Disease Ontology 
(DO) results showed that DEGs are associated with 
other diseases, such as unipolar depression, memory 
impairment, mental disorders, and inflammation 
(Figure 2D). The protein-protein interaction network 
illustrated that hub genes related to candidate genes 
GPR162, GPR61, GPR68, and GPR157 (Figure 3).

Machine Learning Data Analysis
The results of the machine learning analysis are shown 

in Table 2. The deep learning method achieved an AUC 
of 1, an accuracy of 98.24%, and an R2 0f of 0.999 in 
predicting cervical cancer. Twenty genes were candidates 
for further analysis to identify diagnostic and prognostic 
biomarkers (Table 2).

data classification. The calculation parameters for 
accuracy are TP (true positive), TN (true negative), FP 
(false positive), and FN (false negative). To calculate 
the accuracy, we can use the formula: Accuracy = (True 
Positives + True Negatives) / (True Positives + True 
Negatives + False Positives + False Negatives). 

The Mean Squared Error (MSE) is a calculation 
that determines the average squared difference between 
the predicted values and the actual values. The degree 
of concordance between the model and predictions 
is displayed, wherein lower values signify superior 
performance. R2, also known as R-squared, represents a 
statistical measurement that reveals the extent to which 
the independent variables can elucidate the variation in the 
dependent variable. The numeric scale spans from 0 to 1, 
wherein higher values signify a more optimal alignment 
between the model and the collected data. The AUC 
(Area Under the Curve) is a metric used to determine the 
effectiveness of a model in discerning between positive 
and negative classes in a binary classification task. In 
other words, The probability of a randomly selected 
positive case being ranked higher than a negative one 
is quantified. The model’s performance improves as the 
AUC value increases.

Protein-Protein Interaction (PPI) 
Researchers in biology widely use the STRING 

database, providing valuable insights into the complex 
interactions that occur within living organisms. Accessible 
through its website (https://string-db.com), the STRING 
database is a valuable tool for studying protein-protein 
interactions. We analyzed the protein-protein interaction 
network of DEGs to uncover their biological relationship. 
Functional genomes and cellular pathways rely heavily 
on these networks for a comprehensive understanding. 
These interactions greatly influence the understanding of 
cellular pathways and functional genomes. The minimum 
threshold we set for the effective inclusion score is 
considered more significant than 0.4. 

Identification of prognostic biomarkers 
Survival analysis methods, including Cox proportional 

hazards and Kaplan-Meier plot, were performed to 
obtain the best DEG values using R4.2.1 software to 
evaluate independent prognostic biomarkers. All data 
were screened based on criteria consisting of HR and 
borderline: 1 and P < 0.05.  

ROC curve 
A pooled receiver operating characteristic (ROC) 

curve was performed to identify diagnostic biomarkers. 
The ROC curve allows visualization of the trade-
off between sensitivity and specificity. The overall 
performance of the test can be determined by calculating 
the area under the ROC curve (AUC). AUC 1 indicates a 
perfect test that can completely distinguish disease from 
health. ROC curve analysis provides a comprehensive 
assessment of the diagnostic test’s accuracy and helps 
determine its clinical utility in distinguishing between 
diseased and healthy cases.  

Clinicopathological Variables No. of patients (%)
/mean ± SD

Patients 532
Mean age (Years, mean ± SD) 58.13 ± 14.07
Gender
     Male 328 (61.7)
     Female 204 (38.3)
Vital status
     Alive 148 (27.8)
     Dead 384 (72.2)
Race
     Asian 11 (2.1)
     White 455 (85.5)
     Black 46 (8.6)

Table 1. The Clinicopathological Characteristics of 
Glioblastoma Patients
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Figure 1. (A) The overall workflow, (B) Then heatmap of DEGs of GBM was drawn by R software, (C) Principal 
component analysis (PCA) plot.  

Identify prognostic markers
Kaplan-Meier survival was used to assess the impact 

of prognostic candidate genes in cervical cancer. The 
result revealed that three downregulated genes, CPLX3, 
GPR162, and LCNL1, reduced overall survival (OS) 
(Figures 3A, C, E, and G). Our survival analysis showed 
that the downregulation of GPR162 and GPR61 and 
upregulation of GPR68 and GPR157 are prognostic 
markers for GBM and decreased the OS of the patients.  In 
addition, univariate Cox proportional hazards regression 
was performed for DEGs to evaluate prognostic markers. 
The data showed that ten up-regulated genes and six down-
regulated genes impaired the OS of the patients (Table 3). 

Identification of diagnostic markers with the ROC curve 
Our study showed that A2BP1 reached the highest 

value with an AUC of 0.99 (95% CI, sensitivity 0.93 and 
specificity 1.00). In addition, the combination of A2BP1 
with other genes, including ABR, AIPL1, C1orf92, CPLX3, 
EPS8L1, GPR157, HCRTR1, IL1RL2, KCNAB1, OPRL1, 
PPIAL4C, and SLC5A5 showed potential as a diagnostic 
marker with AUC, sensitivity,  and specificity value of 

0.98, 1.00 and 0.99, respectively (Figure 4A).

Investigation of the correlations of Clinical/ Demographic 
with glioblastoma

The information showed a correlation between age and 
race (p-value= = 0.003). The results showed the average 
age of Asian patients was lower than that of white and 
African-American patients (Figure 4B).

External validation
The expression levels of candidate genes in GBM 

patients were verified using two GEO datasets (GSE4290 
including 77 GBM samples and 23 control samples based 
on GPL570 and GSE68848 including 228 GBM samples 
and 28 control samples based on GPL570) Figure 4C 
presents the heatmap of expression changes. 

Discussion

Glioblastoma is the most aggressive cancer in the 
central nervous system in glial cells. Finding novel 
biomarkers in GBM offers numerous advantages that 
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Candidate genes Coefficient Performance of Deep 
Learning approach

LRRTM2 1
OPRL1 0.989824
PPIAL4C 0.975116
DKFZp434J0226 0.96836 MSE: 4.324857E-8
FOXD4L2 0.966007
PPM1E 0.964098 RMSE: 2.079629E-4
RAPGEF5 0.963645
DIRAS1 0.96363 R2: 0.99999845
SYNGAP1 0.962822
LCNL1 0.961324 AUC: 1.0
ABR 0.671373
LOXHD1 0.669941 Accuracy: 98.24%
KIF5A 0.669211
CPLX3 0.667917
ADRBK2 0.667077
GPR162 0.665177
KCNAB1 0.662677
CMTM4 0.653963
OR13J1 0.651024
TP53TG5 0.650316

Table 2. The Candidate Gene Detected by Machine 
Learning Analysis

P-value log2FoldChange
Upregulated Genes
     MYBPH 0.011 4.732408
     C1orf92 0.041 3.884442
     CATSPER1 0.028 3.703642
     FCN3 0.022 3.431704
     IGFBP1 0.011 2.491103
     GPR157 0.013 2.242312
     CCDC19 0.006 2.893859
     FAIM3 0.0012 2.69397
     FAM70B 0.0012 1.981646
     EPS8L1 6e−04 1.629814
Downregulated Genes P-value log2FoldChange
     CPLX3 0.0038 -4.76083
     SLC5A5 0.028 -4.61565
     GPR61 0.0019 -4.75389
     GPR68 0.0093 -3.40969
     IL1RL2 0.027 -3.25222
     LCNL1 0.024 -2.91717
     HCRTR1 0.0081 -2.54194
     AIPL1 0.0046 -2.38213
     SYTL1 0.0046 -1.90601
     GPR162 0.049 -1.84766

Table 3. The Prognostic Biomarkers Identified by 
Kaplan–Meier Survival Analysis and Cox Proportional 
Hazards Regression

can contribute to early detection, personalized treatment, 
improved patient outcomes, and advancements in cancer 
research and drug development [9]. Recently, novel 
approaches, including machine learning, a branch of 
artificial intelligence, have been widely used in medicine 
to process and analyze large amounts of data, such as 
RNA sequencing (RNAseq). RNAseq is a technology 
used to measure gene expression levels by sequencing 
the RNA molecules in a biological sample. Integrating 
machine learning with RNAseq data in medicine holds 
significant potential for identifying novel biomarkers in 
various diseases, including cancer [15-18]. 

The DEGs’ ontology and pathways analysis results 
revealed that they were significantly enriched in GPCRs, 
class A rhodopsin−like, MAPK signaling pathway, and 
Calcium regulation in cardiac cells. Class A Rhodopsin-
like GPCRs are a specific G-protein coupled receptors 
(GPCRs) subclass. Class A Rhodopsin-like GPCRs have 
a similar structure to rhodopsin. The large family of cell 
surface receptors plays pivotal roles in various biological 
processes, including regulating neurotransmission, 
hormone signaling, and sensory perception. The previous 
studies indicated that the dysregulation of GPCR family 
members is associated with central nerve system tumors, 
and targeting GPCRs is considered a promising strategy 
for cancer treatment [19]. A bioinformatic analysis of 
GEO datasets on glioma transcriptomic data, including 
GSE43289,  GSE4290, and GSE19728, showed that 
fourteen GPCR genes, nine upregulated and four 
downregulated, are related to the high severity of glioma 
[20]. Feve et al. [21] evaluated the GPCRs expression in 

mRNA and protein levels by TaqMan Low-Density Arrays 
and mass spectrometry in different glioblastoma cell 
lines, including U-87, TG1, OB1, HA, and f-NSCs. The 
results showed that LPHN2, GPR56, F2R, FZD7, FZD3, 
GPRC5B, FZD1, and BDKRB2 genes overexpressed in 
cells. GnRH, Gonadotropin-releasing hormone receptor, a 
rhodopsin-like G-protein coupled receptor overexpressed 
in GBM cell line LN229. The data indicated that treating 
cells with GnRH agonists decreased cell proliferation. 
This is due to the interaction of GnRH and KNG1which, 
a cell proliferation regulation gene [22]. Our survival 
analysis showed that the downregulation of GPR162 
and GPR61 and upregulation of GPR68 and GPR157 
are prognostic markers for GBM and decreased the OS 
of the patients. GPR162 is a member of the rhodopsin-
like G protein-coupled receptor (GPCR) family, which 
plays a critical role in DNA damage. GPR162 interacts 
with STING, a regulator of beta-interferon, to activate 
the STING-signaling pathway, resulting in increases in 
the expression level of different chemokines. Long et al. 
reported that the overexpression of GPR162 increases 
radiosensitivity in mice models for lung cancer and 
causes tumor shrinkage. Furthermore, the results of in-
vitro indicated that the high expression level significantly 
decreases cell proliferation, invasion, and migration [23]. 
A study reported four members of GPCRs, including 
GPR62, GPR77, GPR61, and GPR63 in different parts 
of the brain. They showed that GPR61 expression in 
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Figure 2. GO Functional Annotation (A, B, and C) Bar Plot and Dot Plot of Molecular Pathway in GBM, and (D) 
Disease Ontology (DO). The P-value is less than 0.05 and is shown by the color.  

mRNA level in the thalamus, putamen, and caudate of 
humans, as well as, in the hippocampus, hypothalamus, 
thalamus, and cortex of rat brain [24]. Previous studies 
align with our results and reported that GPR68 and 
GPR157 are highly expressed in tumorigenesis; therefore, 
targeting them is a potential therapeutic strategy in cancer 
treatment [25-27]. An RNA-seq analysis showed that the 
GPR68 and GPRC5A overexpressed ten-fold higher in 
pancreatic cancer cells and Pancreatic Cancer-Associated 
Fibroblasts (CAFs)[25]. Ahmad et al. determined that 
O-6-Methylguanine-DNA Methyltransferase (MGMT) 
can cause Temozolomide resistance. Inhibiting GPR68 
decreases the MGMT expression and increases the 

sensitivity of glioblastoma cells to Temozolomide 
by NF-kB Pathway [28]. Another study showed that 
GPR68 inhibition by siRNA and CRISPR in pancreatin 
cell lines (Panc02 and A549) activates the Warburg 
effect and induces ferroptosis and radiosensitivity [29]. 
GPR157 has been identified as a modulator for neuronal 
differentiation of radial glial progenitor cells (RGPs) 
located at the primary cilium. Activation of GPR157 by 
CSF-derived signals promotes the differentiation of RGPs 
into mature neurons. Understanding the role of GPR157 
in neural development may provide insights into the 
mechanisms underlying neurogenesis and potentially lead 
to therapeutic strategies for neurodevelopmental disorders 
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Figure 3. (A and B) Kaplan–Meier and Protein–Protein Interaction (PPI) Network of GPR162, (C and D) Kaplan–
Meier and Protein–protein interaction (PPI) network of GPR157, and (E and F) Kaplan–Meier and Protein–protein 
interaction (PPI) network of GPR162, (G and H) Kaplan–Meier and Protein–protein interaction (PPI) network of 
GPR61 p-value< 0.05. 

[30]. The ROC curve analysis revealed that A2BP1 alone 
and combined with other genes, including GPR157, are 
diagnostic biomarkers in glioblastoma. Our results showed 
that the downregulation of A2BP1 is associated with 
developing glioblastoma. In agreement with our results, 
Dai et al. indicated that low expression level of A2BP1 in 

advanced glioma is related to poor OS in patients. They 
reported that the loss of A2BP1 causes tumor growth of 
GBM via neutralization terminal differentiation [31]. 
An investigation showed that using anti-A2BP1 and 
detecting it by Western blotting and IHC. Their results 
revealed A2BP1 is highly expressed in the cerebellum and 
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Figure 4. (A) The combineROC curve of A2BP1, and the combination of A2BP1 with with other genes,  including 
ABR, AIPL1, C1orf92, CPLX3, EPS8L1, GPR157, HCRTR1, IL1RL2, KCNAB1, OPRL1, PPIAL4C, and SLC5A5, (B) 
The correlation matrix shows a significant co-relationship between clinical/demographic features in GBM, blue and 
red circles present positive and negative correlations, respectively. The size of the circle and color intensity are the sign 
of correlation coefficients. (C) Expression changes of candidate genes using GEO datasets with adjusted p-value<0.05.

neocortex of rats [32]. The dysregulation was reported in 
different neurological disorders, such as autism spectrum 
disorders and schizophrenia [33, 34]. 

The machine learning analysis showed twenty genes 
with higher correlation coefficients, including LRRTM2 
and OPRL1. LRRTM2, also known as Leucine-Rich 
Repeat Transmembrane Neuronal 2, is a gene that codes 
for a protein involved in synaptic adhesion and neuronal 
development. It is primarily expressed in the brain and 

plays a role in the formation and function of synapses, 
which are the connections between neurons. Studies have 
shown that dysregulation of Lrrtm2 protein can affect 
synaptic connectivity and neurotransmission, leading to 
abnormal brain development and neurological phenotypes 
[35, 36]. De et al. [37] reported that LRRTM2 is located 
on the hippocampal neurons and interacts with Neurexin1 
to regulate excitatory synapses. Moreover, they indicated 
that the knockdown of LRRTM2 decreases presynaptic 
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differentiation. The OPRM1 gene, also known as the 
mu-opioid receptor gene, encodes the mu-opioid receptor 
protein. OPRM1 receptor plays a vital role in response to 
opioids, including pain relief and euphoria. A Genome-
wide association study (GWAS) reported different 
susceptibility novel markers for glioma, including 
OPRL1, GALNT6, HAR1A, PHLBD1, JAK1, etc [38]. 
Xu et al. revealed that methylation of two genes, OPRL1 
and OPRM1, is a diagnostic biomarker in Alzheimer’s 
and elevates disease risk [39]. Previous evidence showed 
OPRL1 as a marker in various types of cancers, including 
cervical cancer [40], oral cancer [41], and colorectal 
cancer [42]. 

In conclusion, our data suggest that genes belonging to 
G Protein-Coupled Receptors play a critical role in various 
aspects of glioblastoma progression and pathogenesis. Four 
members of GPCRs, including GPR162, GPR68, GPR61, 
and GPR157, can be considered prognostic biomarkers. 
Furthermore, the results showed that the combination of 
two genes, A2BP1 and GPR157, is a diagnostic marker 
for glioblastoma. Furthermore, investigating genetic 
variation in the G protein-coupled receptor-related gene 
and its expression across various cancer types may offer 
valuable insights for cancer therapy. Therefore, further 
investigations and clinical evaluation of these biomarkers 
are necessary to develop more accurate diagnostic and 
prognostic tools, refine treatment strategies, and improve 
patient care and outcomes. 
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