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Introduction

In the central nervous system (CNS), grade IV gliomas, 
or glioblastomas multiformes, are the most prevalent brain 
cancer, occurring in 5.36 new cases per 100,000 
people[1-3]. There has been some evidence to show that 
patients with a GBM treated with chemoradiotherapy and 
maximal surgical excision have a five-year overall survival 
(OS) between 0.01 and 29.1% [4, 5]. High heterogeneity 
in a subgroup of GBM is closely correlated with 
morphological features, molecular alterations, and 
immunotherapy [1]. Determining the molecular targets 
for diagnosis and reexamination is essential for both the 
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prognosis of GBM patients and the effectiveness of 
treatment. Significant molecular biomarkers for GBM are 
prognostic or therapeutic variables, according to several 
investigations. Thus, the signaling pathways that are 
involved in conjunction with bioinformatics research are 
quite significant. According to this theory, the first line of 
defense is constituted by Toll-like receptors (TLRs), which 
identify nonself-molecules and initiate inflammatory 
reactions [6]. TLRs have thus been regarded as viable 
targets for cancer treatments [7, 8]. Two classes of TLRs 
are characterized by the location of the proteins located 
within the cell and the corresponding molecules 
corresponding to pathogen-associated molecular patterns 
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(PAMPs). TLR1, TLR2, TLR4, TLR5, and TLR6 on the 
human cell surface form a single group that is primarily 
responsible for identifying lipids, lipoproteins, and 
proteins found in microbial membranes. The other 
category includes TLR3, TLR7, TLR8, and TLR9, which 
are only expressed in intracellular vesicles such as the 
endoplasmic reticulum (ER), endosomes, lysosomes, and 
endolysosomes. They are also capable of identifying 
nucleic acids from microorganisms. The TLR2 and TLR4 
receptors are also capable of detecting endogenous 
molecules in response to injury in tissues along with heat-
shock proteins such as HSP70, HSP60 Gp96, HSP22, and 
HSP72, and high-mobility group box-1 proteins. Aside 
from this, they also recognize additional molecules found 
in the extracellular matrix (ECM) such as biglycan, 
tenascin-C, versican, and fragments of extracellular matrix 
molecules (oligosaccharides of hyaluronic acid and 
heparan sulfate). Based on the structure of the receptors, 
TLRs can be considered integral membrane receptors. 
There are two transmembrane helices in their molecule, 
one at the N-terminus, which has a leucine-rich repeat 
motif for ligand recognition, and one at the C-terminus, 
which is homologous to the signaling domains of members 
of the IL-1R family of proteins and is known as the Toll 
IL-1 receptor (TIR). Different signaling routes, such as 
the plasmatic membrane’s canonical signaling pathway, 
may be presented by cell surface TLRs. During the 
response to TLRs, myeloid differentiation primary 
response 88 (MYD88) is recruited to the site, where it 
activates tumor necrosis factor receptor-associated factor 
6- (TRAF6) through a protein complex with nuclear 
factor-kappa B (NF-B) and recruits tumor necrosis factor 
receptor-associated factor 6. This process results in the 
production of proinflammatory cytokines, including 
interleukin-6 (IL-6), interleukin-1β (IL-1β) and α, tumor 
necrosis factor (TNF), interleukin-8 (IL-8), and 
interleukin-18 (IL-18). A cell survival profile is the 
pathway’s ultimate output [9]. The heterodimerization of 
p65 and p50 subunits constitutes NF-κB canonical 
activation upon TLR signaling. Following IκB kinase 
activation, IκB undergoes phosphorylation, ubiquitination, 
and proteasome degradation, allowing NF-κB translocation 
to the nucleus and subsequently initiating transcription 
[10]. A number of these activated transcripts result in the 
upregulation of positive cell cycle regulators, including 
c-Myc, which enhances the expression of genes linked to 
proliferation [11, 12], c-Jun [13], and serum response 
factor (SRF) [14]. Cyclin D1 is a key player in cellular 
division and DNA synthesis. route via TLR2 dimerization 
with either TLR1 or TLR6. When activated, TLR2 can 
combine with TLR1 and TLR6 to create a heterodimer 
complex. By forming heterodimers with TLR1 or TLR6, 
TLR2 broadens its ligand spectrum, which in turn helps 
the innate immune system identify distinct molecular 
patterns linked to pathogens [15]. In general, the discovery 
of new biomarkers could be beneficial in enhancing the 
clinical results of GBM patients and offering a multimodal 
strategy. To identify genes unique to tumors and 
biomarkers that are associated with prognosis, 
bioinformatics analysis is a well-coordinated tool that may 
aid in the creation of cancer treatments [16]. Currently, 

gene transcript expression levels may be determined using 
microarray and RNA-seq data obtained from the Gene 
Expression Omnibus (GEO) database. Additionally, 
technological assistance for tracking mRNA expression 
and cell function prediction can be obtained [17]. By 
examining lin7A-silenced data samples, it is verified that 
high levels of RPL36A and AP1S1 were linked to a poor 
prognosis and the pathophysiology of GBM [18]. 
According to Zhou et al., the expression of CEP55 and 
RRM2 determines the prognosis of GBM [19]. There have 
been various studies that have used bioinformatics to 
identify differentially expressed genes during GBM 
carcinogenesis, however in clinical practice, the prognostic 
significance of these genes has not yet been recognized 
for the majority of cases. A more thorough investigation 
into the identification of many prognostic genes would 
improve our comprehension of potential treatment targets 
for GBM, prognostic assessment, and disease surveillance. 
GBM is a dangerous malignant tumor with a highly 
aggressive nature, in addition to its infiltrative growth and 
high recurrence rate [17].Thus, there have been notable 
advancements in the study and treatment of cancer; 
nonetheless, the prognosis for individuals with GBM is 
still dismal, necessitating more investigation into the 
molecular pathways behind this grave and lethal illness. 
It is crucial to have an innate immune system because it 
is the body’s first line of defense against infections and 
cellular stress that can invade the body. As a result of their 
role in the innate immune system and signaling pathways, 
toll-like receptors (TLRs), among other components, are 
crucial for the identification of pathogen- and fecal 
molecular patterns (PAMPs), damage-induced apoptosis 
(DAMP), and subsequent inflammatory responses [20-22]. 
Toll-like receptor 2 (TLR2) is a member of the Toll-like 
receptor family and has drawn a lot of interest due to its 
versatility in ligand recognition and role in inflammatory 
reactions [23]. TLR2 may have a role in oncogenesis and 
tumor development, as evidenced by the growing body of 
research linking it to several malignancies [23-25]. It is 
yet unknown, nevertheless, exactly what roles TLR2 plays 
in glioblastoma and how important they could be for the 
biology of cancer. We have attempted to bridge this 
information gap by using publicly accessible gene 
expression datasets from the Gene Expression Omnibus 
(GEO) database and The Cancer Genome Atlas (TCGA), 
two databases that provide publicly accessible gene 
expression datasets [26, 27]. The findings of our analysis 
are presented in this scientific article, which also highlights 
the differential expression of TLR2-related genes in GBM. 
Moreover, we developed a network of protein-protein 
interactions (PPI) as a way to identify partners for TLR2 
and to explore its molecular potential, and a functional 
enrichment analysis was used to investigate the biological 
functions of TLR2, as well as how TLR2 expression is 
related to the infiltration of immune cells in the tumor 
microenvironment [28]. Gaining more insight into the 
relationship between TLR2 and glioblastoma and the 
possible implications for the biology of cancer may be 
crucial for the creation of targeted and interventional 
immune regulatory medicines. Comprehending TLR2’s 
function in GBM might eventually result in improved 
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Functional enrichment analysis 
To determine the extent to which functional and 

pathway information was enriched for mRNA targets 
in PPI, the clusterProfiler package [28] in R was used 
to analyze gene ontology information (GO) [26]. In 
the PPI network, ClusterProfiler detects enriched genes 
using hypergeometric distribution tests such as groupGo, 
enrichGO, and enrichKEGG, which are based on the 
hypergeometric distribution. Functional annotations had 
a p-value less than 0.05, and a p-value less than 0.05 was 
considered statistically significant.

Immune Infiltration Analysis
The connection between the expression levels of our 

final target genes and the quantity of six immune cell 
types—B cells, CD4+ T cells, CD8+ T cells, neutrophils, 
macrophages, and dendritic cells—was evaluated using 
TIMER [30] (version 2.0; https://cistrome.shinyapps.
io/timer). The TIMER method was used to assess GBM 
tumors for connections between immune infiltration and 
target gene expression. The Spearman’s rank correlation 
test was used to determine P-values < 0.05 and −1< R < 
1 as statistically significant thresholds.

Results

Investigation of TLR2
In this study, we used two microarray datasets from 

GEO on the same platform from GBM patients for 
analysis. It was first necessary to log2 transform the raw 
expression data using the R software. We could remove the 
hidden batch consequences after merging the two datasets 
using the ComBat function included in the R SVA package 
(Figure 1). Importantly, based on the microarray data 
that we collected, we employed differential expression 
investigation and analysis using the R Limma package, 
which returned 1966 variables (upregulated genes = 
832, downregulated genes = 1134) that had statistical 
significance based on the results (Figure 2, A).

The second step in the analysis of the expression of 
genes was the analysis of RNAseq data collected from 
the TCGA. With the help of the DESeq2 package in R, it 
was possible to identify DEGs between primary tumors 
and normal solid tissues from TCGA_GBM data. There 
were 3240 DEGs (upregulated genes were 1608 and 
downregulated genes were 1632). Based on the criteria 
|log2FoldChange| > 1.5 and FDR < 0.01 we determined 
the DEGs (Figure 2, B). Following this, the results of the 
expression analysis performed in GEO and TCGA were 
combined (Figure 3). Our next step was to investigate 
TLR2 further based on our results of the expression 
analysis of the GEO and TCGA_GBM data to learn more 
about this protein (Figure 4).

Construction of PPI network related to TLR2
TLR2 protein-protein interaction (PPI) networks were 

generated using the GeneMANIA plugin in Cytoscape. 
Each edge of the composite network is weighted according 
to its individual sources of data. The PPI network consisted 
of 21 nodes and 251 edges in total. According to the 
results of the protein-protein interaction analysis, the 

therapeutic approaches and improved clinical results for 
individuals suffering from this difficult illness. By 
applying bioinformatics techniques, we hope to investigate 
TLR2’s function in glioblastoma and determine its 
significance to this malignancy.

Materials and Methods

This research was accomplished according to the 
ethical number: IR.SEMUMS.REC.1402.035, Semnan 
University of Medical Sciences and Guilan University 
of Medical Sciences.

Patient Samples
To obtain information on mRNA expression in 

gliomas, we have used the Gene Expression Omnibus 
(GEO) database [17] and the TCGA-GDC portal [20] 
(as part of the Cancer Genome Atlas project). A total 
of 100 samples were collected for GSE4290 (platform 
= GPL570), including 77 glioblastoma and 23 control 
samples. GSE50161 (platform = GPL570) included 
34 glioblastoma samples and 13 samples from healthy 
individuals who did not develop glioblastoma. The TCGA 
database (https: //portal.gdc.cancer.gov/) contains 156 
samples from glioblastoma and 5 samples from normal 
tissues. The total number of glioblastoma samples was 
reduced to 154 after removing duplicate samples.

Identification of differentially expressed genes
We normalized and log2transformed all raw expression 

data from the GEO database. A hidden batch effect was 
also removed and two datasets were combined using the 
sva package [21] (V 3.45.0) in R software. By using the 
R limma package [22] (V 3.53.3), differentially expressed 
genes (DEGs) were screened using the cutoff criteria of 
|log2FoldChange|≥ 1.5 and adj. p-value < 0.01.

Data from the GDC portal RNA-Seq was normalized 
using TMM [26] and VOOM [29] algorithms in the R 
package GDCRNATools [23]. DESeq2 [25] (V 1.37.0), 
was used to analyze expression data for RNA between 
primary tumors and normal solid tissues.  Statistically 
significant DEGs were selected by the following 
thresholds: |log2FoldChange| >1.5 and FDR  0.01, 
respectively. In R, a volcano plot was generated based 
on the analysis of DESeq2 data using EnhancedVolcano. 
The volcano plot showed the relationship between fold 
change and the negative log of the FDR. 

Construction of protein-protein interaction (PPI) network
We created the PPI (Protein-Protein Interaction) 

network, which illustrates the connections between 
proteins, using GeneMANIA [30], a Cytoscape [31] 
plugin. We used GeneMANIA, a platform that predicts 
genetic interactions, protein-DNA interactions, and 
interactions between genes; additionally, it analyzes 
pathways, inspects gene and protein expression, analyzes 
protein domains, and provides phenotypic profiles to help 
us better understand gene-gene interactions. As a result 
of the network structure analysis, the linkages between 
proteins and their interacting partners may be determined 
with network structure visualization.
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Figure 1. It is the Box Plots that Indicate the Main 
Overall Expression Profiles of Two Affymetrix Gene 
Chips (A) after they have been normalized by the 
normalized quantiles method, and (B) after batch effects 
have been deleted by the ComBat method using the SVA 
package in R.

Figure 3. The Venn Diagram Shows the Result of Combining the Results from GOE and TCGA Expression Analyses 
in One Diagram.

Figure 2. (A) Volcano plots for differentially expressed genes in GEO, (B) differentially expressed genes in TCGA_GBM. 
The graph shows down expression and up expression as green and red points, respectively. "EnhancedVolcano" was 
used to generate volcano plots.

top 20 proteins that are related to TLR2 include CD14, 
TLR1, CXCR4, TLR6, EGFR, LY96, SAA1, TIRAP, TLR8, 
SIGIRR, TLR10, TLR5, CLEC7A, TLR7, IRAK3, IRAK4, 
MYD88, TOLLIP, SFTPA1 and TLR4 (Figure 5).

Functional enrichment analysis of TLR2 PPI network
To analyze and investigate the main biological 

performance and activity and also the signaling mechanism 
related to the TLR2 PPI network, a Gene Ontology (GO) 
enrichment analysis has been performed. There is also a 
cnetplot associated with each analysis separately showing 
the role that each gene plays in the different pathways.

To analyze TLR2 PPI network proteins, GO analysis 
was accomplished and applied. According to Figure 6, the 
top three GO findings in terms of biological process (BP) 
have a direct and impressive correlation with the “MyD88-
dependent TLR signaling pathway”, “pattern identification 
receptor signaling pathway”, and importantly, the  “TLR 
signaling pathway”.

Based on molecular performance (Molecular 
function(MF), the top three GO findings illustrate that 
these particular genes were enriched in the activities of 
“NAD+ nucleosidase”, “hydrolase activity, hydrolyzing 
N-glycosyl compounds”, and “Toll-like receptor binding” 
(Figure 7).

According to the top three GO findings for cellular 
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Figure 4. Variations in TLR2 Transcription Levels between Normal and Tumor Samples in the GEO and TCGA 
Databases.

Figure 5. This Picture Indicates the Protein-Protein Interaction(PPI) network of TLR2 in GBM.

Figure 6. The Results of Biological Process Related to Gene Ontology Analysis.
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Figure 7. The Results of Molecular Function Related to Gene Ontology Analysis.

Figure 8. The Results of Cellular Components Related to Gene Ontology Analysis.

Figure 9. The Immune Infiltration Analysis.

component (CC), most genes belong to “endocytic 
vesicle”, “phagocytic vesicle”, and “membrane raft” 
(Figure 8).

TLR2 Expression is strongly associated with and related 
to the Immune Infiltration

Immune reactions are one of the hallmarks of cancer. A 
solid tumor usually contains lymphocytes, macrophages, 
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neutrophils, dendritic cells (DCs), and other immune 
cells. Chronic inflammation is caused by cell infiltration. 
The accumulation of data has demonstrated that local 
inflammation plays a powerful role in the development of 
cancer. Medical researchers are currently exploring ways 
to use this knowledge to develop therapies that target 
the immune reaction in cancer patients. By targeting the 
immune reaction, scientists hope to reduce inflammation, 
improve immune response, and ultimately reduce cancer 
progression.

According to TIMER, TLR2 is associated with and 
correlated to immune cell infiltration levels. In Figure 9, 
the final results and data illustrate and describe that TLR2 
expression was strongly associated with T cell CD4+ 
(Rho = 0.298, p = 4.01e−04), Macrophage (Rho = 0.66, 
p = 1.64e−18), B cell (Rho = −0.442, p = 6.30e−08), 
Myeloid dendritic cell (Rho = −0.524, p = 5.03e−11) 
and Neutrophil (Rho = 0.655, p = 3.87e−18) infiltration. 
Conversely, no association and significance were 
observed between RCAN1 expression and CD8+ T cells 
(Rho = 0.057, p = 5.08e−01).

Discussion

Among the most aggressive and deadly brain cancers, 
glioblastoma (GBM) has limited treatment options. There 
is increasing evidence that Toll-like receptor 2 (TLR2), an 
important component of the innate immune system, may 
play a role in the development and progression of cancer.

TLR2 in Glioblastoma: We found that TLR2 genes 
were significantly differentially expressed in glioblastoma. 
There is an upregulation of 832 genes and a downregulation 
of 1134 genes in a complex network of molecular events 
that contribute to the aggressive nature of GBM. In the 
PPI network, CD14, TLR1, CXCR4, EGFR, MYD88, and 
TLR4 are the main genes that interact with TLR2. Various 
cellular processes can be affected by these interactions, 
including proliferation, invasion, immune evasion, 
and angiogenesis. Furthermore, functional enrichment 
analysis revealed that the TLR2-related network is 
involved in important biological processes, including 
MyD88-dependent toll-like receptor signaling pathways, 
protein recognition receptors, and signaling pathways of 
toll-like receptors. These pathways are known to regulate 
innate immune responses and are implicated in cancer 
development and progression. There is an enrichment 
of these pathways in the TLR2 network,  consistent with 
its potential immunomodulatory role in GBM, where 
the tumor microenvironment plays an important role in 
disease progression.

TLR2 in Other Cancers: Although this study focuses 
on GBM, TLR2 plays an important role in many types of 
cancer. Increasing evidence suggests that TLR2 is also 
involved in the pathogenesis of other cancers. Activation 
of TLR2 has been shown to promote proliferation, 
migration, and invasion of breast cancer cells by 
activating the NF-κB and MAPK signaling pathways. 
There is an association between TLR2 expression and 
tumor growth and metastasis in colorectal cancer. 
Additionally, TLR2-mediated signaling is implicated 
in tumor progression in cancers such as lung cancer 

and melanoma. As a result of these findings, it can be 
concluded that TLR2 plays multifaceted roles in cancer 
biology and has the potential to be a therapeutic target for 
different types of cancer.

Immunomodulatory Role of TLR2: Tumor growth 
and progression are strongly influenced by the immune 
microenvironment. TLR2 expression and immune cell 
infiltration were significantly correlated in our analysis 
of immune infiltrates in GBM. A positive correlation 
was found between TLR2 expression and immune cell 
subtypes such as CD4+ T cells, macrophages, and 
neutrophils, suggesting that TLR2 may regulate the 
recruitment and activity of these receptors. Immune cells 
in the tumor microenvironment. However, a negative 
correlation was observed between B cells and myeloid 
dendritic cells, suggesting that TLR2 may regulate the 
immune response in GBM in a complex manner.

Therapeutic Implications: It is confirmed that 
TLR2 has a significant association in the pathology of 
many different malignancies, comprising glioblastoma, 
proposing that it could be used as a therapeutic target. A 
strategy to inhibit tumor growth and enhance anti-tumor 
immune responses could be developed through the 
manipulation of TLR2 signaling. With limited treatment 
options available for GBM, targeting TLR2 in combination 
with existing therapies may provide a novel approach to 
improve patient clinical outcomes.

Limitations and Future Directions: Although our 
bioinformatics analysis provides valuable insights into 
the role of TLR2 in glioblastoma, we must acknowledge 
several limitations. Although this study is based on 
publicly available information, there may be some 
differences in the methods used to collect, process, and 
conduct experiments. It is important to note that the in 
silico nature of the analysis limits the ability to confirm 
a causal relationship between TLR2 and other genes or 
pathways identified in the study. Further validation of 
these bioinformatics analysis results using in vitro and in 
vivo glioblastoma models is required in the future. To gain 
a more complete understanding of how TLR2 functions 
in cancer biology, functional studies can be conducted to 
study the effects of modulating TLR2 expression or activity 
in tumor cells and tumor microenvironment. Additionally, 
further research into the interactions between TLR2 and 
other receptors and immune pathways may uncover 
new targets for the development of combination cancer 
therapies.

In conclusion, the results of our bioinformatic analysis 
indicate that TLR2 may play an important role in the 
pathogenesis of glioblastoma, influencing many biological 
processes and interacting with key proteins in the tumor 
microenvironment. The findings of our study also suggest 
that TLR2 may be important in other forms of cancer, thus 
expanding its potential use as a therapeutic target. It may 
be possible to develop novel strategies for improving 
clinical outcomes in GBM and other malignancies by 
understanding the multifaceted roles of TLR2.
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