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Introduction

When it comes to hepatocellular carcinoma, the most 
common form of liver cancer, the importance of timely 
identification and accurate prognosis to improve patient 
outcomes cannot be overemphasized. Hepatocellular 
carcinoma, also known as primary liver cancer, develops 
in the hepatocytes, the main liver cell type. Risk factors 
such as persistent hepatitis B or C infection, liver cirrhosis, 
excessive alcohol consumption, and certain inherited liver 
disorders increase the likelihood of developing HCC [1]. 
Early detection of HCC is essential to improving patient 
outcomes. Traditional diagnostic methods, such as imaging 
and biopsy, are often unable to detect HCC in its early 
stages. Biomarkers are measurable biological entities that 
offer a non-invasive alternative that can identify the disease 
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at an earlier, more treatable stage. As symptoms often go 
unnoticed until later stages, HCC prognosis becomes even 
more crucial in determining appropriate interventions. 
The stage of the tumor upon diagnosis is correlated 
with the reception of curative treatment and the overall 
survival rate. This includes a 5-year survival rate below 
5% in patients with advanced-stage disease, in contrast 
to a rate exceeding 70% for those with early-stage [2]. In 
recent years, the identification of prognostic biomarkers 
has emerged as a promising avenue for predicting 
HCC progression and tailoring personalized treatment 
strategies. In the context of hepatocellular carcinoma, 
researchers have identified several biomarkers that can 
assist in predicting tumor behavior, treatment response, 
and overall survival rates. Alpha-fetoprotein (AFP) has 
long been considered the gold standard biomarker for 
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HCC [3]. However, its effectiveness is limited, as AFP 
levels can also be elevated in other liver conditions, such 
as cirrhosis, which leads to false positive results [4]. AFP 
lacks the necessary accuracy and specificity to be used 
as a standalone diagnostic tool. Therefore, combining 
AFP with other biomarkers enhances its predictive value 
[5]. AFP-L3, also known as lens culinaris agglutinin-
reactive AFP, is a glycoform variant of AFP that has been 
extensively investigated for its utility as a biomarker in 
identifying early-stage hepatocellular carcinoma [6]. 
Although AFP-L3 exhibits a superior level of specificity 
in comparison to AFP, its sensitivity is considerably lower 
(about 50%–60%) in the context of early HCC detection 
[7]. Further validation of AFP-L3 in phase III biomarker 
evaluation is required in order to ascertain if it possesses 
additional value when compared to or used in conjunction 
with AFP. Des-gamma-carboxy prothrombin (DCP), also 
known as PIVKA-II or protein induced by vitamin K 
absence or antagonist-II, shows promise as a prognostic 
biomarker for HCC [8]. Studies have shown that elevated 
DCP levels are strongly associated with HCC, particularly 
in patients with normal AFP levels. It is also indicated 
that elevated levels of DCP are associated with the 
aggressiveness of tumors and an unfavorable prognosis. 
Combining AFP and DCP tests can significantly improve 
the sensitivity and specificity of HCC diagnosis [9]. There 
are also some other biomarkers such as osteopontin, 
midkine, glypican-3, dikkopf-1, alpha-1 fucosidase, 
golgi protein-73, and Squamous cell carcinoma antigen 
that exhibit promising outcomes during the phase II 
assessment; however, they still necessitate phase III 
authentication [10, 11]. Another category of biomarkers 
being developed for HCC are genetic markers. This 
includes non-coding RNAs, DNA methylation, and other 
epigenetic modifications [12]. Several investigations have 
assessed the potential of circulating miRs as diagnostic 
biomarkers for hepatocellular carcinoma due to their 
inherent stability and involvement in tumor proliferation 
[13-15]. While the aforementioned biomarkers have 
shown promise in predicting HCC prognosis, ongoing 
research aims to identify additional markers with 
enhanced accuracy and reliability. By harnessing the 
power of the validated biomarkers in the future, healthcare 
professionals can make informed decisions, leading to 
improved patient care and better outcomes in the fight 
against hepatocellular carcinoma. The utilization of 
multi-omics strategies and systems biology in generating 
complex datasets has become critical to accelerate the 
identification and validation of diagnostic, prognostic, 
or therapeutic biomarker panels. Genes/proteins or 
miRs, apart from their presence in various samples such 
as tissues, blood samples, and urine, can be identified 
by novel methods within the tumor microenvironment 
(TME). One of the novel highthroughput strategies for 
identifying biomarkers involves exploring them within the 
TME at the level of individual cells using the single-cell 
RNA sequencing (scRNA-seq) technique, which also takes 
into account the interactions between cells in the TME. 
In this investigation, high-throughput transcriptomic data 
of HCC patients were obtained from the GEO database. 
Combining the datasets with protein-protein and mRNA-

miRNA interaction networks revealed several proteins and 
microRNAs that may be useful as potential diagnostic 
and prognostic biomarkers for hepatocellular carcinoma.

Materials and Methods

Microarray datasets and data analysis
After performing a search on the NCBI/GEO series 

platform [16], using the specified keywords [“mRNA” 
OR “gene” OR “transcript”] AND [“liver cancer” OR 
“hepatocellular carcinoma”], a total of 812 data series 
results were acquired. The obtained results were then 
narrowed down to include only “human” and “tissue”, 
leaving 546 datasets. Among them, 7 datasets with a 
large number of participants were selected and analyzed 
using the GEO2R platform. Finally, three datasets with 
the largest number of significant DEGs were selected. 
The three gene transcriptome datasets used in this study 
were GSE57957, GSE76427, and GSE84402 [17-19]. 
The expression datasets were normalized using the 
GEO2R tool. Differentially expressed genes (DEGs) were 
identified based on the cutoff criteria, adj.p-value<0.05 
and │Fold-change│>2. For more details on each dataset, 
including sample number and microarray platform type, 
see Table 1. Volcano plots of significant genes and 
normalized datasets are also shown in Figure 1.

Integration of datasets results
Differentially expressed genes were analyzed using 

the Venny online platform [20] to identify the overlapping 
genes among the datasets. Consequently, a collection of 
143 genes that were shared between the three microarrays 
were acquired.

Construction of protein-protein and mRNA-miRNA 
interaction networks

The common genes were searched in the String 
database [21] to find all the possible interactions of the 
DEGs and construct the protein-protein interaction (PPI) 
network. The resulting network was further analyzed 
using Cytoscape software [22]. The common genes were 
searched in “mirnet” [23] by selecting the “miRDB” 
and “Tarbase” databases to find all possible interactions 
between DEGs and miRs associated with liver tissue.

Gene ontology (GO) enrichment and Pathway analysis
The ClueGO plugin [24] in Cytoscape was used to 

find the significantly enriched biological processes (BP), 
molecular functions (MF), cellular components (CC), 
and KEGG pathways in the PPI network. Bonferroni-
corrected p-values less than 0.05 were considered as the 
threshold for statistical significance. KEGG pathway 
enrichment analysis was also performed on the key miRs 
of the mRNA-miRNA network using the NcPath database 
(http://ncpath.pianlab.cn/), a tool for visualization and 
enrichment analysis of non-coding RNAs and KEGG 
signaling pathways in humans.

Hub selection
The networks created in Cytoscape were analyzed and 

the nodes with the highest interaction levels were identified 
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as the hub genes and hub miRs. Hub nodes usually perform 
important functions of monitoring the paths connected in 
the network. Furthermore, these nodes could potentially 
serve as biomarkers for various diseases. A total of 20 top 
hub nodes were selected for additional investigation from 
both the PPI and mRNA-miRNA networks.

ROC analysis
After identifying hub genes that play a role in the 

diagnosis and survival of liver cancer patients, Graphpad 
prism 8.0 (GraphPad Software, Boston, Massachusetts 
USA, www.graphpad.com) was used to construct the 
ROC curves of the DEGs based on the nodes normalized 
expression data. To determine potential biomarkers, a 
p-value of less than 0.05 and an area under the curve 
(AUC) greater than 0.80 were set as the threshold. The 
ROC curves associated with miRs were obtained from the 
CancerMIRNome database [25].

Survival analysis
Survival analysis was exclusively conducted for the 

hub genes and miRs with an AUC greater than 0.80. To 
explore possible relationships between the DEGs and 
overall survival, both the Human Protein Atlas database 
[26] and the UALCAN databases [27] were used. The 
Human Protein Atlas, an open-source online platform, 
facilitates the mapping of human proteins in various 
tissues, cells, and organs by using data obtained from 
omics studies and antibody-based imaging techniques. In 
the “pathology” section of the Human Protein Atlas, we 
examined the impact of the expression levels of the DEGs 
on the survival of liver cancer patients. Proteins showing 
significant correlation with overall survival were identified 
using Kaplan-Meier survival curves. The predetermined 
cutoff p-value for significance was set at 0.05. For miRs, 

survival data were extracted from the CancerMIRNome 
database.

Results

Differentially expressed genes
To find the differentially expressed genes, the 

intersection between datasets was extracted from the 
Venn diagram. In the “GSE57957” dataset, a total of 
428 DEGs were identified, while in the “GSE76427” 
and “GSE84402” datasets, 312 and 2118 DEGs were 
identified, respectively. The intersection between these 
datasets resulted in 143 common genes (Figure 2). The 
DEG names are provided in Supplementary Table 1. 
The common DEGs were used for further bioinformatic 
analyses. 

Protein-protein interaction network analysis and hub 
genes

The PPI network consisted of a total of 118 nodes and 
552 edges after removing disconnected nodes, as shown 
in Figure 3. The network was constructed with high 
confidence interval of 0.7. The network was then analyzed 
using Cytoscape software. The hub nodes which exhibited 
the greatest degree of connectivity were then identified and 
designated as potential biomarkers for HCC. The top 20 
hub/bottleneck DEGs included CDC6, AURKA, MCM2, 
RAD51, PRC1, NCAPG, PTTG1, MCM5, NCAPH, RFC4, 
GINS2, CDKN3, ASPM, KIF23, RAD51AP1, MELK, 
PCLAF, RACGAP1, CDCA5, and SERPINF2 (Table 2). 

Gene ontology results
Based on the ClueGO Cytoscape plugin, the 

meaningful enriched gene ontology terms and KEGG 
pathways were determined for the DEGs (Table 3). The 

Figure 1. (A) The volcano plots and (B) the normalized GEO datasets, showing the significant up/down regulated 
genes in each dataset.
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GEO series Platform #Tumor samples #control samples Ref.

GSE57957 GPL10558 Illumina HumanHT-12 V4.0 expression beadchip 39 39 [17]

GSE76427 GPL10558 Illumina HumanHT-12 V4.0 expression beadchip 115 52 [18]

GSE84402 GPL570 [HG-U133_Plus_2] Affymetrix Human Genome U133 Plus 2.0 Array 14 14 [19]

Table 1. Details of the Selected Microarray Platforms

Figure 2. Venn Diagram Showing Common Genes 
between the Selected GEO Datasets. 

Figure 3. The Protein-Protein Interaction Ntwork, Constructed in Cytoscape Based on All the Possible Interactions of 
DEGs. Larger circles denote higher degree hub genes. 

most significant biological processes included cellular 
hormone metabolic process (adj.p-val=7.8E-06), protein 
homotetramerization (adj.p-val=0.00048), androgen 
metabolic process (adj.p-val=0.00016), response to 
phenylpropanoid (adj.p-val=0.0026), and cellular amino 
acid catabolic process (adj.p-val=3E-07). The top 
enriched molecular functions included fatty acid ligase 
activity (adj.p-val=0.0037), polysaccharide binding 
(adj.p-val=0.0063), oxidoreductase activity acting 

on the CH-CH group of donors (adj.p-val=0.0018), 
oxidoreductase activity acting on the aldehyde or oxo group 
of donors, NAD or NADP as acceptor (adj.p-val=0.0041), 
monooxygenase activity (adj.p-val=4.3E-06), and insulin-
like growth factor binding (adj.p-val=0.0077). The most 
significant cellular components were the mitotic spindle 
(adj.p-val=0.0017) and the plasma lipoprotein particles 
(adj.p-val=0.0033). The enrichment results from the KEGG 
pathways also indicated that the most noteworthy pathways 
related to liver cancer were the Pentose and glucuronate 
interconversions (adj.p-val=0.0069), Tryptophan 
metabolism (adj.p-val=0.000019), Complement and 
coagulation cascades (adj.p-val=0.0036), and Fatty 
acid degradation (adj.p-val=0.0051). Figure 4 shows 
the resulting network of gene ontology and pathway 
enrichment, with larger circles indicating more significant 
terms. The key miRs in the mRNA-miRNA network 
were also subjected to KEGG pathway enrichment 
analysis. The results showed that Rap1 signaling 
pathway (adj.p-value=0.001) and Apelin signaling 
pathway (adj.p-value=0.001) were the most important 
enriched signaling pathways that could be involved in 
the development of HCC. The Supplementary Table 2 
contains the enrichment results of miRs.

The mRNA-miRNA network and hub miRs
The miRNA-mRNA network created in Cytoscape 

contained 214 nodes and 830 edges (Figure 5). Then, 
analysis of the network was performed, and hub nodes 
with the highest connectivity were identified as potential 
biomarkers for further investigation by ROC and survival 
curve analysis. Specifically, the top 20 hub miRs were 
identified as hsa-mir-1-3p, hsa-mir-124-3p, hsa-mir-129-
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Gene symbol Degree Betweenness centrality Adj.P-value Fold change
CDC6 31 0.02014 0.0000377 4.21 ↑
AURKA 29 0.04503 1.73E-10 2.68 ↑
MCM2 28 0.02966 2.86E-19 2.82 ↑
RAD51 27 0.02401 0.000171 4.88 ↑
PRC1 27 0.00363 5.54E-12 3.05 ↑
NCAPG 26 0.02008 0.0242 2.19 ↑
PTTG1 26 0.00492 2.90E-12 2.68 ↑
MCM5 25 0.00338 0.000334 2.52 ↑
NCAPH 25 0.00439 0.00127 5.86 ↑
RFC4 25 0.01272 8.73E-10 2.1 ↑
GINS2 25 0.00378 0.00238 2.88 ↑
CDKN3 25 0.02069 5.61E-11 3.15 ↑
ASPM 24 0.00161 1.03E-09 2.54 ↑
KIF23 24 0.00171 0.0201 2.85 ↑
RAD51AP1 23 0.00283 0.000171 4.88 ↑
MELK 23 0.00142 0.000115 4.59 ↑
PCLAF 23 0.00226 2.13E-11 3.53 ↑
RACGAP1 23 0.00142 9.93E-13 2.3 ↑
CDCA5 22 0.00122 2.25E-11 2.23 ↑
SERPINF2 10 0.15982 1.78E-17 2.6 ↓

Table 2. Top 20 hub/bottleneck proteins/genes in the Protein-Protein Interaction Network. (↑: increased in tumor 
group, ↓: decreased in tumor group)

Figure 4. The Network of Gene Ontology and Pathway Enrichment Results. 

2-3p, hsa-mir-34a-5p, hsa-let-7b-5p, hsa-mir-155-5p, 
hsa-mir-195-5p, hsa-mir-200b-3p, hsa-mir-26a-5p, hsa-
mir-126-3p, hsa-mir-26b-5p, hsa-mir-101-3p, hsa-mir-
130a-3p, hsa-mir-429, hsa-mir-192-5p, hsa-mir-194-5p, 
hsa-mir-92a-3p, hsa-mir-212-3p, hsa-mir-29c-3p, and 
hsa-mir-24-3p (Table 4).

Roc curve analysis
ROC curves were constructed using the Graphpad prism 

software. The ROC (Receiver-Operating Characteristic) 
analysis is a valuable tool utilized for evaluating the 

performance of a diagnostic test or the precision of a 
statistical model. It consists of a graph that represents the 
sensitivity (true positive rate) for different cutoff values 
of a variable as a function of 100-fold specificity (false 
positive rate). AUC is used to measure how effectively 
a variable can distinguish between diagnostic groups, 
such as liver cancer, and control samples. The closer the 
curve is to the upper left corner, the higher the overall 
test accuracy. ROC curve analysis was performed on 
the top 20 hub genes in the network. The threshold for 
selection of potential biomarkers was set at an AUC value 
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Ontology GOID GOTerm Corrected 
P-Value 

% Associated 
Genes

Associated Genes Found

Biological 
Process

GO:0034754 cellular hormone metabolic process 7.80E-06 7.826 [AKR1C3, AKR1D1, ALDH8A1, CYP26A1, 
ESR1, PPARGC1A, SRD5A2, STARD5, 

SULT1A1]

GO:0051289 protein homotetramerization 0.00048 8.571 [ACADS, CTH, DCXR, GLYAT, TK1, TRPM8]

GO:0008209 androgen metabolic process 0.00016 15.151 [AKR1C3, AKR1D1, ESR1, PPARGC1A, 
SRD5A2]

GO:0080184 response to phenylpropanoid 0.0026 23.076 [FGA, GLYAT, PPARGC1A]

GO:0009063 cellular amino acid catabolic process 3.00E-07 7.913 [AGXT2, ALDH6A1, BBOX1, CTH, FTCD, 
GCDH, GSTZ1, IDO2, KMO, PRODH2, 

TDO2]

CC GO:0072686 mitotic spindle 0.0017 8.62 [ASPM, AURKA, FAM83D, NCAPG, 
RACGAP1]

GO:0034358 plasma lipoprotein particle 0.0033 7.317 [LCAT, LPA, SORL1]

Molecular 
Function

GO:0015645 fatty acid ligase activity 0.0037 20 [ACSL1, ACSM3, SLC27A5]

GO:0030247 polysaccharide binding 0.0063 12 [AGL, CLEC4G, FCN2]

GO:0016627 oxidoreductase activity, acting on the 
CH-CH group of donors

0.0018 8.771 [ACADS, AKR1C3, AKR1D1, GCDH, SRD5A2]

GO:0016620 oxidoreductase activity, acting on the 
aldehyde or oxo group of donors, NAD or 

NADP as acceptor

0.0041 10 [AKR1C3, ALDH2, ALDH6A1, ALDH8A1]

GO:0004497 monooxygenase activity 4.30E-06 8.411 [AKR1C3, CYP26A1, CYP39A1, CYP4F12, 
CYP4V2, DBH, KMO, SQLE, TDO2]

GO:0005520 insulin-like growth factor binding 0.0077 10.714 [CYR61, ESM1, IGFBP3]

KEGG 
pathway

GO:0000040 Pentose and glucuronate interconversions 0.0069 8.333 [ALDH2, DCXR, UGP2]

GO:0000380 Tryptophan metabolism 0.000019 15 [ALDH2, GCDH, IDO2, KMO, OGDHL, 
TDO2]

GO:0004610 Complement and coagulation cascades 0.0036 7.246 [F11, FGA, MASP1, MBL2, SERPINF2]

GO:0000071 Fatty acid degradation 0.0051 9.09 [ACADS, ACSL1, ALDH2, GCDH]

Table 3. Gene ontology and KEGG Pathway Enrichment Results for the Genes with Altered Expression. (CC: Cellular 
Component)

Figure 5. The DEG-miR Interaction Network Constructed in Cytoscape based on All Possible Interactions of DEGs 
with Their Targets in TarBase and miRDB. Larger circles denote highest degree hub miRs. 

of 0.80. Among the results, CDC6, PTTG1, CDCA5, 
RACGAP1, RAD51AP1, NCAPH, ASPM, AURKA, and 
MELK showed the highest accuracy with AUC values 

above 90 percent. These specific entities are recommended 
as potential diagnostic markers for liver cancer (Table 5 
and Supplementary Figure 1). Moreover, they may play 
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miR Name Degree Betweenness centrality ROC-curve AUC KM-plot p-val Hazard ratio
hsa-mir-1-3p 60 0.183 0.61 0.017 0.66
hsa-mir-124-3p 54 0.143 0.54 0.025 1.75
hsa-mir-129-2-3p 45 0.095 0.56 0.18 0.71
hsa-mir-34a-5p 37 0.061 0.81 8.55E-03 0.63
hsa-let-7b-5p 36 0.059 0.8 0.34 0.84
hsa-mir-155-5p 32 0.05 0.51 0.51 1.12
hsa-mir-195-5p 30 0.036 0.91 0.03 0.68
hsa-mir-200b-3p 24 0.04 0.79 0.67 1.08
hsa-mir-26a-5p 23 0.037 0.87 0.94 1.01
hsa-mir-126-3p 21 0.021 0.76 5.08E-03 0.61
hsa-mir-26b-5p 20 0.038 0.89 0.74 0.94
hsa-mir-101-3p 19 0.035 0.93 0.059 0.72
hsa-mir-130a-3p 18 0.026 0.89 0.044 0.7
hsa-mir-429 18 0.017 0.71 0.54 1.11
hsa-mir-192-5p 16 0.018 0.66 0.3 0.83
hsa-mir-194-5p 15 0.015 0.54 1.50E-03 0.57
hsa-mir-92a-3p 15 0.013 0.59 0.43 0.87
hsa-mir-212-3p 13 0.01 0.56 7.93E-03 1.61
hsa-mir-29c-3p 13 0.007 0.88 0.16 0.78
hsa-mir-24-3p 12 0.023 0.62 0.3 1.2

Table 4. ROC and kaplan-Meier Survival Curves Analysis Results for the top 20 hub miRs in the mRNA-miRNA 
Interaction Network, According to the CancerMIRNome Database.

Gene symbol KM-plot log-rank p ROC curve p-value AUC Correlation with survival
CDC6 6.00E-08 0.0001 0.94 unfavorable
AURKA 0.00015 <0.0001 0.91 unfavorable
NCAPG 3.10E-06 0.0067 0.8 unfavorable
PTTG1 1.60E-06 <0.0001 0.94 unfavorable
MCM5 0.00018 0.0005 0.88 unfavorable
NCAPH 9.50E-06 0.0002 0.91 unfavorable
RFC4 6.80E-07 <0.0001 0.9 unfavorable
ASPM 0.00013 <0.0001 0.91 unfavorable
KIF23 0.000032 0.0016 0.85 unfavorable
RAD51AP1 0.00035 0.0001 0.92 unfavorable
MELK 2.90E-07 0.0002 0.91 unfavorable
PCLAF 0.000033 <0.0001 0.88 unfavorable
RACGAP1 1.90E-06 <0.0001 0.93 unfavorable
CDCA5 8.20E-06 <0.0001 0.93 unfavorable
SERPINF2 0.000023 <0.0001 0.9 favorable

Table 5. ROC and Kaplan-Meier Survival Curve Analysis Results for the top 20 hub/bottleneck Genes in the Protein-
Protein Interaction Network. It is also shown that if the expression of the gene is favorable or unfavorable with the 
survival according to the HPA database.

a fundamental biological role in the pathogenesis of 
HCC. Supplementary Figure 1 shows only ROC curves 
with AUC values exceeding 0.9. For miRs, those with 
ROC curves with AUC values greater than 0.8 were 
selected as potential diagnostic and/or prognostic 
markers for hepatocellular carcinoma. Among the top 20 
miRs identified in the network, eight showed AUC≥0.8, 
including has-mir-34a-5p, hsa-let-7b-5p, has-mir-195-
5p, has-mir-26a-5p, has-mir-26b-5p, has-mir-101-3p, 

has-mir-130a-3p, and has-mir-29c-3p. Detailed results 
are shown in Table 4. Supplementary Figure 2 shows the 
results of ROC curves and miR expression boxplots. The 
boxplots showed that the expression levels of eight miRs 
were lower in the HCC group compared with normal 
samples, except for hsa-mir-34a-5p. Among these miRs, 
hsa-mir-101-3p and hsa-mir-195-5p showed the highest 
AUC values of 0.93 and 0.91, respectively.



Reyhaneh Farrokhi Yekta et al

Asian Pacific Journal of Cancer Prevention, Vol 26256

Gene Name AUC KM-plot log-rank p-value Diagnostic Prognostic
CDC6 0.94 6.00E-08 + +
PTTG1 0.94 1.60E-06 + +
CDCA5 0.93 8.20E-06 + +
RACGAP1 0.93 1.90E-06 + +
RAD51AP1 0.92 0.00035 + +

Table 6. A Panel of the Top 5 Potential Protein Biomarkers for Liver Cancer Diagnosis and Prognosis, Sorted based 
on the Area under the ROC Curves. Kaplan-Meier survival curves log-rank p-values are extracted from the UALCAN 
database.

miR Name AUC KM-plot log-rank p-value Diagnostic Prognostic
hsa-mir-101-3p 0.93 0.059 + -
hsa-mir-195-5p 0.91 0.03 + +
hsa-mir-130a-3p 0.89 0.044 + +
hsa-mir-26b-5p 0.89 0.74 + -
hsa-mir-29c-3p 0.88 0.16 + -
hsa-mir-26a-5p 0.87 0.94 + -
hsa-mir-34a-5p 0.81 8.55E-03 + +

Table 7. A Panel of the Top Ranked Potential Diagnostic and Prognostic miR Biomarkers in Liver Cancer, Sorted 
based on the Area under the ROC Curves.

Survival analysis results
To evaluate the association between the proposed 

biomarkers and the overall survival of liver cancer 
patients, gene and miR survival data were retrieved 
from primary databases, including Human Protein Atlas, 
UALCAN, and CancerMIRNome. The Kaplan-Meier 
survival curve represents the probability of survival 
over a certain time interval, taking into account time in 
many smaller sections [28]. Typically, the horizontal axis 
represents time in months or years, while the vertical axis 
represents the estimated cumulative survival probability. 
A steeper increase means an increase in the number of 
deaths, and therefore a less optimistic survival prognosis. 
Conversely, a gentler slope indicates a lower frequency 
of accidents and an improved chance of survival. To 
construct the Kaplan-Meier curve, patients are divided 
into two groups based on the expression of the target gene 
or miR, and the survival time of each patient is recorded. 
Normally, there should be hundreds or more patients in 
each group. In such cases, the log-rank t-test is usually 
used to compare the high and low expression groups. The 
Kaplan-Meier survival curve of the genes with an AUC 
of 0.9 or higher and a p-value of less than 0.05 from the 
UALCAN database was used to explore the effect of the 
expression levels of these genes on liver cancer survival. 
A log-rank p-value of less than 0.05 was set as the cutoff 
value. All the putative gene/protein markers with AUC 
values greater than 0.9 showed unfavorable correlation 
with overall survival. However, SERPINF2 showed 
favorable correlation according to both the Human Protein 
Atlas and UALCAN (Table 5, Supplementary Figure 3). 
This suggests that higher levels of these genes or proteins 
are associated with poorer survival in HCC patients, 
while increased levels of SERPINF2 are associated 
with better survival outcomes. Therefore, we proposed 
a theoretical group of diagnostic and prognostic markers 

associated with liver cancer survival, which consisted of 
a set of five most significant gene/protein markers and 
seven microRNAs, listed in Table 6 and 7. The CDC6, 
PTTG1, CDCA5, RACGAP1, and RAD51AP1 were the 
five top protein markers. The top-ranked microRNAs with 
diagnostic significance (AUC≥0.8) include hsa-mir-101-
3p, hsa-mir-195-5p, hsa-mir-130a-3p, hsa-mir-26b-5p, 
hsa-mir-29c-3p, hsa-mir-26a-5p and hsa-mir-34a-5p 
(among which hsa-mir-34a-5p, hsa-mir-195-5p and hsa-
mir-130a-3p can also function as prognostic markers) 
used to predict overall survival of HCC patients. The 
Kaplan-Meier survival curves in Supplementary Figure 4 
show that increased levels of hsa-mir-34a-5p (p-val=0.03), 
hsa-mir-195-5p (p-val=0.044), and hsa-mir-130a-3p 
(p-val=8.55E-03) are associated with improved survival 
in HCC patients. The hazard ratios (HRs) shown in this 
figure are used to quantitatively evaluate the degree of 
difference between the two curves shown in the Kaplan-
Meier plot, and the P-value determines the statistical 
significance of this difference. A hazard ratio of 1 means 
equal risk. A number greater than 1 indicates increased 
risk, and a number less than 1 indicates decreased risk. 
The hazard ratios for the above miRs ranged from 0.6 to 
0.7, indicating that increased expression was associated 
with a 30-40-fold increase in mortality. The protein levels 
of CDC6, PTTG1, CDCA5, and RACGAP1 that were 
analyzed in the HPA database by immunohistochemistry 
are shown in Supplementary Figure 5.  

Discussion

Hepatocellular carcinoma ranks as the fourth highest 
cause of cancer-related deaths globally [29]. Although 
many targeted therapies have been developed, there is still 
a requirement for more effective biomarkers to help early 
detection of HCC. In the modern era of precision medicine, 



Asian Pacific Journal of Cancer Prevention, Vol 26 257

DOI:10.31557/APJCP.2025.26.1.249
Biomarkers for Hepatocellular Carcinoma

survival and disease-free survival in HCC patients [43]. 
Several studies have elucidated the underlying mechanisms 
of RACGAP1 upregulation in hepatocellular carcinoma 
[43]. ECT2 interacts and colocalizes with RACGAP1, 
thereby protecting it from degradation. Additionally, 
RACGAP1 facilitates ECT2-mediated activation of RhoA 
and metastasis in HCC cells [44]. The initial documentation 
of ECT2 (Epithelial Cell Transforming 2) identified it as 
an oncogene that plays a role in various forms of human 
cancer [45]. Results of previous studies have also shown 
that aberrant expression and abnormal distribution of 
RACGAP1 in the cytoplasm and nucleus may correspond 
to the development and progression of HCC [46]. The 
next notable protein was RAD51-associated protein 1 
(RAD51AP1). Overexpression of RAD51AP1 plays an 
important role in both cell cycle and repair processes. 
Moreover, it holds significant diagnostic and prognostic 
value in hepatocellular carcinoma [47]. A study conducted 
by Chai et al. investigated the regulatory mechanism of 
the competing endogenous RNA (ceRNA) networks. They 
hypothesized that the long noncoding RNA MSC-AS1 
exerts its influence on hsa-miR-23c, thereby modulating 
the DNA damage repair process in HCC through 
interaction with RAD51AP1 [48]. In this study, we selected 
the top 20 candidate miRNAs as useful biomarkers (with 
significant degree and betweenness centrality) from the 
mRNA-miRNA network study in HCC. Of these, three 
miRNAs, namely hsa-mir-1-3p, hsa-mir-124-3p, and hsa-
mir-129-2-3p, showed the highest node degree. Hubs are 
actively involved in a large number of interactions, which 
makes them more likely to play the role of master 
regulators in both signaling and transcriptional processes 
[49]. According to the literature, miR-1-3p is dysregulated 
in various tumors and is closely related to tumor initiation 
and progression and drug resistance [50]. For example, 
Chen et al. conducted a study showing that miR-1-3p is 
downregulated in HCC tissues and cells. Conversely, 
upregulation of miR-1-3p may impede the proliferation, 
migration, and invasion of HCC cells, thereby activating 
the apoptotic signaling pathway [51]. Hsa-mir-124-3p was 
identified as another hub miR in our study. Studies have 
shown that decreased expression of miR-124-3p is 
associated with poor survival outcomes in HCC patients 
[52]. Recently, Zhao et al. demonstrated that miR-124-3p 
inhibited HCC proliferation and epithelial-mesenchymal 
transition (EMT) by binding to the 3ʹUTR of arrestin 
domain-containing 1 (ARRDC1) [53]. Another study 
found that miR-124-3p functions as a key miR in 
suppressing HCC development by targeting CRKL [54]. 
These findings suggest that the miR-124-3p/ARRDC1 
and miR-124-3p/CRKL regulatory pathways may serve 
as novel diagnostic and therapeutic targets to inhibit HCC 
proliferation and metastasis. Hsa-mir-129-2-3p was 
identified as another top hub in this study. The results of 
previously conducted studies confirmed the idea that miR-
129-2 plays a role in tumor suppression in various human 
malignancies [55]. In this context, Liu et al. showed that 
miR-129-2 levels were significantly decreased in HCC 
tissues and cell lines. Furthermore, they found that DNA 
methylation was involved in the downregulation of miR-
129-2. However, demethylation of miR-129-2 increased 

a variety of bioinformatics techniques are being used to 
enhance researchers’ understanding of molecular 
abnormalities in cancer and make it more widely available 
worldwide [30]. Recently, non-coding RNAs, mainly 
miRNAs, in conjunction with genes and transcripts, have 
emerged as molecular markers for clinical treatment due 
to their altered expression patterns in cancer [31]. The 
aim of this study was to identify potential biomarkers for 
HCC detection and overall survival prognosis through 
omics and bioinformatics analysis, and to determine the 
final hub genes and miRNAs through network analysis. 
Insights from PPI network analysis, ROC analysis, and 
Kaplan-Meier curve analysis were combined to generate 
a selection of the top five proteins that may potentially 
serve as both diagnostic and prognostic markers for HCC. 
These proteins include CDC6, PTTG1, CDCA5, 
RACGAP1, and RAD51AP1. The replication process is 
controlled in part by replication licensing elements under 
careful surveillance [32]. Among all these factors, CDC6 
has been highlighted as an essential molecule. CDC6 or 
Cell division cycle 6, is a protein responsible for 
monitoring DNA replication and participating in control 
checkpoints [33]. In the case of liver cancer, Kong et al. 
conducted a study showing a correlation between CDC6 
expression levels and poor prognosis as well as the 
progression of hepatocellular carcinoma [34]. A recent 
study by Jia et al. also reported that CDC6, RACGAP1, 
ASPM, AURKA, and a type of NCAP protein were the 
most highly expressed proteins in live cancer cells, all of 
which were included in the DEG results [35]. Furthermore, 
data obtained from comparative toxicogenomic analysis 
revealed that these basic genes were related to cell death, 
immune response, hepatocellular carcinoma, liver 
cirrhosis, and adenoid cystic carcinoma [35]. CDCA5 is 
the other cell division cycle-associated gene, according 
to our results. The cellular division cycle-associated gene 
family is composed of notable regulators of cell 
proliferation that are known to be critically involved in 
various malignancies [36, 37]. Several studies have 
demonstrated that CDCA5 and CDCA8 are important 
factors in the development of HCC [38, 39]. To illustrate, 
investigations have demonstrated that CDCA5 is 
overexpressed in HCC, and this phenomenon exhibits a 
substantial correlation with tumor advancement and an 
unfavorable prognosis [36]. Based on our findings, PTTG1 
(Pituitary tumor-transforming gene 1) has emerged as 
another promising biomarker candidate for HCC. PTTG1 
expression has been significantly increased in most human 
tumors, promoting tumor cell proliferation, migration, 
invasion, and angiogenesis [40]. A suggested mechanism 
of action of PTTG1 in HCC is that it promotes the 
transcription of asparagine synthetase by binding to its 
promoter. As a result, the levels of asparagine (Asn) 
increase accordingly. Elevated Asn levels then activate 
the mTOR signaling pathway, promoting the progression 
of HCC [41]. The RACGAP1 gene (RacGTPase-activating 
protein 1) is another top marker in the PPI network. The 
RACGAP1 gene plays a role in many cellular processes, 
including the regulation of cytokinesis, proliferation, 
migration, transformation, invasion, and metastasis [42]. 
Overexpression of RACGAP1 correlates with poor overall 
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its expression in HCC cells, resulting in a remarkable 
inhibitory effect on cell migration and invasion [56]. In 
conclusion, miR-129-2 exerts a tumor-suppressive 
function and therefore can be considered as a prognostic 
biomarker for HCC patients. Based on the results of ROC 
curve analysis and the AUC values, as well as the findings 
from Kaplan-Meier plots, we selected a set of top ranked 
microRNAs that possess diagnostic and prognostic 
significance in the context of liver cancer. The seven 
microRNAs of diagnostic relevance are hsa-mir-101-3p, 
hsa-mir-195-5p, hsa-mir-130a-3p, hsa-mir-26b-5p, hsa-
mir-29c-3p, hsa-mir-26a-5p and hsa-mir-34a-5p. In 
particular, hsa-mir-34a-5p, hsa-mir-195-5p and hsa-mir-
130a-3p may also serve as prognostic markers for 
predicting the overall survival of patients with 
hepatocellular carcinoma. In this regard, many studies 
have been conducted that proved the primary importance 
of the above miRs in HCC [57, 58]. The expression of 
miR-34a-5p was observed to be reduced in hepatocellular 
carcinoma cells and tumor tissue. Overexpression of miR-
34a-5p led to a reduced invasive ability of HCC cells [59]. 
Increasing studies suggest that aberrant downregulation 
of miR-101-3p and miR-26a-5p in both tumor tissues and 
cell lines is associated with the occurrence and development 
of hepatocellular carcinoma, as well as a poor prognosis 
in HCC [60, 61]. Our findings ranked hsa-mir-195-5p as 
the top biomarker for both diagnosis and prognosis of 
HCC. Chen et al. conducted a study to determine the 
diagnostic significance of serum miR-195 in hepatocellular 
carcinoma [62]. The results showed that the expression 
of miR-195 was decreased in both HCC cells and the 
serum of patients compared to the controls. Thus, they 
concluded that miR-195 may serve as a noninvasive 
diagnostic biomarker for patients with HCC. Another miR 
of high significance was hsa-mir-130a-3p. HOXD-AS1, 
a long noncoding RNA, has been reported to bind to miR-
130a-3p and prevent miR-induced degradation of SOX4 
protein. This process leads to the activation of EZH2 and 
MMP2 which facilitates metastasis of HCC tumors. Hsa-
mir-34a-5p is another miR in our results with both 
diagnostic and prognostic potential, which showed a 
favorable correlation with the survival of tumor samples 
compared with adjacent normal tissues. Research 
demonstrated that miR-34a enhances the sensitivity of 
HCC tumor cells to targeted therapy by attacking Bcl-2. 
It has also been suggested that miR-34a-5p may hinder 
the metastasis of liver cancer cells by inhibiting MYCT1 
transcription [63]. In this study, investigation of KEGG 
pathway enrichment of significantly altered expressed 
genes revealed that the foremost pathways of notable 
importance involved interconversions of pentose and 
glucuronate, metabolism of tryptophan, cascades of 
complement and coagulation, and fatty acid degradation. 
The conversion of pentose to glucuronate in the pentose 
phosphate pathway, a metabolic pathway that occurs in 
parallel with glycolysis, provides cancer cells with another 
way to utilize glucose and also produces ribose-5-
phosphate. Ribose-5-phosphate is an essential precursor 
of nucleic acids which is crucial for promoting rapid cell 
division and growth in hepatocellular carcinoma. A 
previous serum metabolomics study performed on HCC 

patients found 757 distinct metabolites. These metabolites 
were found to be abundant in the pathways of pentose 
and glucuronate interconversions, as well as tryptophan 
biosynthesis, which were identified as the most enriched 
pathways in the development of HCC [64]. Based on our 
findings, previous bioinformatics studies have often 
highlighted the complement and coagulation cascade 
signaling pathways as enriched functional pathways for 
understanding the mechanisms of hepatocellular 
carcinoma. Moreover, the involvement of C8B in the 
complement and coagulation cascade signaling pathways 
has been proposed as a prognostic biomarker for the 
survival of HBV-related HCC patients [65]. It is 
noteworthy that the liver is the primary source of the 
biosynthesis of more than 80% of complement components 
and also expresses various complement receptors. Recent 
studies have shown that the complement system is 
involved in liver inflammation, fibrosis, abnormal 
regenerative responses, carcinogenesis and the 
development of hepatocellular carcinoma [66]. Another 
KEGG pathway that showed enrichment in HCC was 
related to tryptophan metabolism, whose complex 
mechanisms are important in controlling cancer growth 
and metastasis. The liver is the primary site of tryptophan 
catabolism. However, the exact involvement of tryptophan 
metabolism in hepatocellular carcinoma development 
remains unclear. Clinical investigations have provided 
evidence suggesting that the metabolic breakdown of 
tryptophan promotes the advancement of tumors by 
exerting an influence on the immunosuppressive 
microenvironment through various mechanisms [67]. 
Previous studies have demonstrated the excellent 
predictive ability of genes related to tryptophan 
metabolism in determining survival outcomes in HCC 
cohorts. In addition, genetic signatures related to 
tryptophan metabolism were found to be significantly 
associated with specific immune infiltration patterns and 
drug sensitivity [68]. Fatty acid degradation was another 
important pathway in HCC. Metabolic reprogramming, 
mainly of lipid metabolism, is crucial in cancer 
development and progression, mainly providing energy 
source and micro-environmental adaptation and producing 
signaling molecules. In the case of HCC, various studies 
have suggested that fatty acid degradation pathways, such 
as alpha, beta, and omega oxidation, are key features of 
HCC progression. In a recent study, Li et al. utilized the 
fatty acid degradation pathway to distinguish different 
subtypes of HCC patients at similar stages and develop 
and improve targeted therapy [69]. Apelin and Rap1 
signaling pathways were the most abundant pathways 
associated with miRs in the mRNA-miRNA network. 
Apelin, a 77-amino acid peptide, acts as a natural ligand 
for the angiotensin-like receptor 1 (APJ), a G protein-
coupled receptor that regulates various physiological 
processes such as angiogenesis [70]. Previous studies 
have shown that apelin stimulates arteriogenesis in HCC 
by increasing smooth muscle cell proliferation and 
dilating blood vessels [71]. Rap1 signaling is another 
pathway that was enriched in our results. Previous studies 
have also demonstrated the role of the Rap1 signaling 
pathway in HCC [72]. It triggers MAPK signaling to 
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control migration and proliferation, thereby affecting 
cancer development. The MAPK-Rap1A signaling 
pathway plays a role in the tumor microenvironment and 
improves the prognosis of HCC [73]. Various research 
studies have shown a correlation between the expression 
and polymorphisms of Rap genes and tumorigenicity in 
HCC cells [74]. 

Challenges and limitations
Tumor gene expression profiles are associated with 

clinical and pathological characteristics, and patient 
prognosis. Many studies have shown the feasibility of 
conducting tissue biomarker studies in patients with 
hepatocellular carcinoma. Genetic biomarkers associated 
with HCC prognosis need to be further validated in clinical 
trials. A limitation of the present study concerns the limited 
size of the sample cohort. Subsequent research efforts 
should aim to increase the sample size to investigate the 
prognostic validity of the proposed biomarker panel and 
formulate a predictive model for predicting HCC prognosis. 
There are also some limitations such as individual or 
instrumental errors during the experiments. There are a 
number of other potential obstacles and considerations 
that must be taken into account before implementing a 
biomarker-based screening approach for hepatocellular 
carcinoma. First, the performance of the biomarker must 
be at least comparable to that of alternative screening 
methods, such as ultrasound or alpha-fetoprotein, in terms 
of early detection of HCC. Biomarker-based strategies 
have the potential to streamline the results reporting 
process, thereby accelerating diagnostic evaluation and 
addressing deficiencies in the subsequent screening 
workflow. Nevertheless, it is essential that the sensitivity 
of the biomarker is sufficient for consistent detection in 
different patient subgroups while ensuring specificity to 
minimize false-positive cases. In addition to incomplete 
cohort data and limited sample sizes, another obstacle 
in biomarker studies is the presence of selection bias 
in sampling. Furthermore, it is important to consider 
the detection technology and patient characteristics in 
clinical biomarker studies. An essential limitation of 
this study lies in the inability to establish a link between 
our results and the various subcategories within the 
histological cancer classification. The downloaded dataset 
lacked histological information, complicating the ability 
to make such correlations. These subtypes are known 
to be associated with aggressiveness, metastasis, and 
unfavorable outcomes such as poor prognosis in patients 
diagnosed with HCC. Tumor heterogeneity denotes 
the presence of varied cellular subpopulations within a 
tumor or across tumors of the same histopathological 
category. These specific groups of cells exhibit different 
genetic and physical characteristics, leading to unique 
biological behaviors. The presence of genetic differences 
within a tumor is crucial for the emergence of treatment 
resistance and recurrence of HCC. Therefore, it is crucial 
to acquire a thorough knowledge of the molecular 
processes responsible for the development of tumor 
heterogeneity. The development of new translational 
research frameworks that more accurately reflect the 
characteristics of native tumor cells will improve our 

knowledge of the different mechanisms underlying HCC 
heterogeneity and their impact on the emergence of 
drug resistance and treatment ineffectiveness. Enhanced 
exploration employing sophisticated translational 
platforms in large patient cohorts with diverse etiological 
and genetic profiles may accelerate the discovery of key 
biomarkers essential for accurate early detection of HCC, 
ultimately paving the way for more effective therapeutic 
interventions.

In conclusion, although hepatocellular carcinoma 
remains a challenging disease, the discovery and use of 
diagnostic and prognostic biomarkers offer hope in the 
fight against liver cancer. While the existing biomarkers 
have shown promise in predicting HCC prognosis, 
ongoing studies are aimed at identifying additional 
markers that may further improve accuracy and reliability. 
Incorporating these biomarkers into clinical practice 
may further refine prediction of overall survival and 
individualize treatment approaches. In the current study, 
the integration of GEO datasets with protein-protein 
and mRNA-miRNA interaction networks identified 
several proteins and microRNAs that may be promising 
biomarkers for the diagnosis and prognosis of HCC. 
The proteins CDC6, PTTG1, CDCA5, RACGAP1, and 
RAD51AP1 performed best in terms of diagnostic and 
prognostic value. Similarly, the microRNAs hsa-mir-101-
3p, hsa-mir-195-5p, hsa-mir-130a-3p, hsa-mir-26b-5p, 
hsa-mir-29c-3p, hsa-mir-26a-5p, and hsa-mir-34a-5p 
were highly ranked with diagnostic value, while hsa-
mir-34a-5p, hsa-mir-195-5p, and hsa-mir-130a-3p were 
additionally found to serve as prognostic markers for 
predicting overall survival in individuals with HCC. 
Future studies should mainly focus on exploring the 
mechanisms by which these proteins and miRs promote 
HCC progression and evaluating the therapeutic potential 
of these biomolecules in HCC patients. Furthermore, it 
will be essential to validate these findings in larger cohorts 
and by using different analytical methods.
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