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Introduction

Ovarian cancer is one of the most common cancers 
worldwide [1], known for its poor prognosis and high 
mortality rates [2]. Due to late-stage detection and 
inconsistent treatment outcomes, ovarian cancer remains 
a challenging illness to treat, with a high fatality rate. 
Although advancements in chemotherapy and surgery 
have provided some improvements, there is still a pressing 
need for personalized treatment options. In this context, 
novel machine learning (ML) algorithms have been 
developed to enhance tailored treatment plans, fueled 
by recent advancements in computational techniques 
and genomics. Specifically, integrating ML with gene 
expression data has become a cutting-edge approach to 
better individualize treatment for each patient.

Analyzing gene expression data offers new insights 
into the molecular makeup of ovarian cancer. By 
studying the activity of hundreds of genes, researchers 
can identify new patterns associated with drug sensitivity 
and resistance. These patterns contribute to the creation 
of personalized medicine regimens [3], providing a path 
to more targeted and effective treatments by illuminating 
key processes involved in drug response and resistance [4].
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ML approaches are increasingly used to analyze 
complex gene expression data, which is characterized by 
high dimensionality. Advanced ML algorithms, such as 
support vector machines (SVM), random forests (RF), and 
neural networks, can process these data more accurately, 
predicting how patients will respond to specific drugs 
[5]. Recently, ML algorithms have effectively integrated 
omics data to develop predictive models, which could 
revolutionize chemotherapy selection and delivery [6].

Khalid et al. [7] demonstrated how ML approaches 
can utilize gene expression data to predict chemotherapy 
response, leading to more personalized treatment plans. 
Similarly, Jiang et al. [8] showed that combining ML 
with multi-omics data could improve therapy efficacy and 
prediction accuracy.

Personalized chemotherapy is an intriguing treatment 
option for ovarian cancer, known for its heterogeneity 
and variable response to therapies. Traditional methods 
of individualized chemotherapy have struggled to capture 
the molecular complexity of patients, as they are based on 
clinical and histopathological criteria. Recently, the focus 
has shifted toward integrating molecular data to enhance 
therapeutic approaches.

Yu et al. [9] employed various machine learning 
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techniques to predict platinum drug responses. These 
models were evaluated using leave-one-out cross-
validation and included data from 130 ovarian serous 
carcinoma patients. The random forest classifier achieved 
the highest accuracy (79%) compared to other classifiers 
in the study.

Fekete et al. [10] identified predictive biomarkers 
for chemotherapy resistance in ovarian cancer. The 
study focused on the platinum and taxane regimen and 
utilized GEO and TCGA data to compare treatment 
responders and non-responders. The researchers identified 
eight significant genes linked to resistance: AKIP1, 
MARVELD1, AKIRIN2, CFL1, SERBP1, PDXK, TFE3, 
and NCOR2. Additionally, a combined dataset was created 
to discover new biomarkers. Similarly, Buttarelli et al. [11] 
developed a method to identify key biomarkers associated 
with treatment outcomes by employing gene expression 
profiles to predict responses to chemotherapy in ovarian 
cancer. Their study identified four downregulated genes 
and six upregulated genes, which were used as identifiers 
for training a Random Forest (RF) approach. The RF 
model achieved 93% accuracy and 94% precision.

Weberpals et al. [12] conducted an extensive analysis 
that categorized ovarian cancer into molecular subtypes 
based on gene expression patterns. Their study provided 
insights into the varied responses to chemotherapy, 
aiming to use molecular signatures to guide treatment 
selection. In their examination of 39 patient samples, 
they found that platinum-resistant (PR) tumors displayed 
distinct mutations and amplifications, whereas platinum-
sensitive (GR) tumors were associated with longer 
median progression-free intervals and BRCA2 mutations. 
Additionally, gene expression analysis of GR samples 
revealed higher levels of immune cell infiltration and 
PD-L1 expression compared to PR samples.

Huan et al. [13] developed a machine learning-derived 
prognostic signature (MLDPS) for clinical assessments in 
ovarian cancer, highlighting the limited effectiveness of 
current models in predicting outcomes and the need for 
better biomarkers. The study identified robust prognostic 
risk genes that outperformed existing models and 
suggested that patients with low MLDIS scores might 
benefit from immunotherapy and chemotherapy. This 
tool could significantly improve precision treatment and 
clinical management for ovarian cancer patients.

Lu et al. [14] developed an ML model for predicting 
relapse following first-line chemotherapy. They created a 
pharmacological model using the GSE9891 dataset from 
TCGA and validated it using data from the Cancer Cell 
Line Encyclopedia (CCLE). Their 10-gene predictive 
model indicated that patients who responded well to 
treatment had higher recurrence-free survival times, 
suggesting that those who responded partially or poorly 
would benefit from switching to other medications.

Hsu et al. [15] examined five machine learning 
models for predicting muscle loss, analyzing changes in 
the skeletal muscle index (SMI) in 617 ovarian cancer 
patients who underwent chemotherapy and surgery. Blood 
values, BMI fluctuations, and demographic information 
were important variables. The SHAP method was used 
to determine the significance of each factor. The Random 

Forest (RF) model performed better in external validation 
than other models, with an AUC of 87.4% and an F1 
score of 74%.

Hwangbo et al. [16] examined the medical records 
of 1,002 patients with high-grade serous ovarian cancer 
to predict platinum sensitivity. Using stepwise selection, 
six key variables were identified. Of the four machine 
learning techniques tested, logistic regression performed 
best in detecting platinum-resistant patients, achieving 
an AUC of 0.741. Based on these findings, a web-based 
nomogram was developed.

Recent advancements in multi-omics integration, 
powered by machine learning, have transformed the 
landscape of personalized medicine. Multi-omics 
approaches combine diverse datasets, such as genomics, 
transcriptomics, proteomics, and metabolomics, to provide 
a comprehensive understanding of biological systems 
and disease mechanisms. Machine learning algorithms, 
particularly deep learning and ensemble methods, have 
proven effective in addressing the challenges of multi-
omics data, such as high dimensionality, heterogeneity, 
and noise [17]. Techniques like data fusion and feature 
selection have enhanced the integration and interpretation 
of these diverse data types, allowing for the identification 
of clinically relevant biomarkers and predictive signatures 
[18]. In the context of ovarian cancer, these advancements 
have paved the way for individualized chemotherapy 
approaches by enabling the identification of molecular 
subtypes and patient-specific treatment responses. Recent 
studies have demonstrated the utility of integrating multi-
omics data to predict chemotherapy sensitivity, uncover 
resistance mechanisms, and guide therapeutic decisions 
[19].

In summary, the integration of gene expression data 
with machine learning has shown significant promise 
in personalizing chemotherapy for ovarian cancer. 
These advancements underscore the potential for 
improved treatment outcomes through more precise and 
individualized therapeutic strategies.

Materials and Methods

This section outlines the methods applied to obtain the 
results. Initially, the data was preprocessed to be suitable 
for advanced gene selection methods and machine learning 
algorithms. This involved removing duplicates and 
formatting the data to ensure compatibility with machine 
learning approaches. Next, the mutual_info_classif 
method was used to select the most informative genes, 
which were then used as identifiers for training classifier 
techniques. Ten classifier algorithms were compared 
for efficacy, and the best one was selected based on its 
performance using four assessment metrics: accuracy 
(AC), precision (Pre), recall (Rec), and F1 score (Figure 1).

 
Datasets

A total of 58 samples were used for feature selection 
and machine learning techniques. The dataset was 
downloaded from the Gene Expression Omnibus (GEO) 
(ID: GSE30161) and includes data for 45,782 genes. 
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Extra Trees
Increases accuracy and randomness.

XGBoost
Optimized performance with regularization.

LightGBM
Efficient and uses low memory.
This diverse set of methods was used to ensure a 

comprehensive assessment and determine which model 
performed best for the task.

Support Vector Machine 
Support Vector Machines (SVMs) are primarily used 

for classification tasks due to their strong performance in 
this area, though they can also be applied to regression. 
SVMs work by finding an optimal hyperplane in an 
n-dimensional space to separate data points into distinct 
classes [21]. Despite their popularity, SVMs have several 
notable limitations:

They struggle with large datasets compared to smaller 
ones.

They perform poorly with noisy or overlapping target 
classes.

They are unsuitable for scenarios where the number 
of features exceeds the number of samples.

These drawbacks significantly affect their application 
to gene expression data, which is often noisy and has far 
more genes than samples [22].

K-Nearest Neighbors
K-Nearest Neighbors (KNN) is a straightforward and 

effective algorithm based on the principle that similar data 
points are typically located close to one another. It predicts 
the class of a new data point by calculating its distance 
from previously labeled points, assigning it to the class 
of its nearest neighbors. This makes KNN particularly 
useful for applications like recommendation systems. 
Selecting the optimal number of neighbors (K) is crucial 
for achieving high accuracy, which is usually done by 
testing various values of K [23]. Despite its simplicity 
and effectiveness for small datasets, KNN can encounter 
challenges with noisy or missing data, inefficiency when 
dealing with large datasets, and struggles with high-
dimensional data.

Decision Tree
A Decision Tree (DT) is a supervised machine 

learning method commonly used for classification tasks 
[23]. It works by iteratively splitting the data based on 
specific attributes, making it intuitive and requiring 
less pre-processing compared to other algorithms. 
However, decision trees can become overly complex, 
prone to overfitting, and computationally expensive, 
particularly when dealing with multiple class labels. The 
process begins with the full dataset, selecting the best 
attribute using an attribute selection measure (ASM), 
and recursively splitting the dataset into subsets based on 
attribute values [24].

Gradient Boosting
Gradient Boosting (GB) is a powerful ensemble 

Preprocessing 
Several crucial steps were undertaken to prepare the 
dataset for machine learning applications

Removing Duplicates: Duplicate records were 
identified and eliminated to ensure that each entry in the 
dataset was unique. This step helps prevent biased or 
skewed results during model training.

Handling Missing Data
Genes with missing data were removed, ensuring the 

dataset was complete and suitable for machine learning 
techniques.

Feature selection 
The mutual_info_classif technique was employed 

to select the most effective features that would serve 
as identifiers to measure responses to Carboplatin/
Taxol treatment. This method selected 20 key features. 
Mutual Information (MI) measures the quantity of shared 
information between two random variables. In gene 
selection, MI is used to identify a subset of genes most 
relevant to the target variable, such as cancer types [20]. 
MI has two significant advantages: it is versatile across 
various machine learning models and computationally 
efficient for feature selection. Formally, MI is defined as 
follows, where X represents the random variables (genes) 
and Y denotes the target variable (e.g., cancer types).

Machine Learning Approaches 
Ten machine learning techniques were utilized to 

address the problem: Support Vector Machine (SVM), 
Decision Trees (DT), K-Nearest Neighbors (KNN), 
Multilayer Perceptron (MLP), Random Forest (RF), 
Gradient Boosting (GB), AdaBoost, Extra Trees, 
XGBoost, and LightGBM. Each technique has unique 
benefits:

Decision Trees (DT)
Known for their interpretability.

K-Nearest Neighbors (KNN)
Simple and effective for small datasets.

Multilayer Perceptron (MLP)
A deep learning method that captures complex 

patterns.

Random Forest (RF)
Robust due to its ensemble learning approach.

Gradient Boosting (GB)
Focuses on sequential error correction.

AdaBoost
Concentrates on difficult-to-classify cases.
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learning method that builds a strong predictive model 
by combining multiple weak learners, typically decision 
trees, in a sequential manner. In contrast to Gaussian 
Naïve Bayes (GNB), which is based on Bayes’ theorem, 
GB focuses on reducing errors from previous iterations 
by adjusting model weights, thereby improving predictive 
performance. It works by assigning data points to classes 
based on probabilities calculated from the model’s 
predictions. Although it is highly effective for many 
classification tasks, GB can be computationally expensive 
and sensitive to noise in the data [25, 26, 27].

Multilayer Perceptron
Multilayer Perceptron (MLP) is a robust feedforward 

neural network commonly applied in supervised learning 
tasks such as pattern recognition, classification, and 
prediction [21]. Its fully connected architecture allows 
efficient mapping of inputs to outputs. MLP employs 
hidden layers for complex computations and optimizes 
weights iteratively using backpropagation to minimize 
errors, making it highly effective for learning intricate 
patterns [28].

Random Forest 
Random Forest (RF) is a versatile ensemble machine 

learning technique that combines multiple decision trees 
to improve accuracy and robustness. It is highly resilient 
to overfitting and effectively handles diverse data types. 
However, its “black-box” nature reduces interpretability, 
and it can be computationally intensive when dealing with 
large datasets [29].

AdaBoost
AdaBoost is a boosting algorithm that combines 

multiple weak classifiers to form a strong classifier. By 
iteratively adjusting weights for misclassified instances, 
it enhances accuracy and overall model performance. 
However, AdaBoost can be sensitive to noisy data, which 
may impact its effectiveness in certain scenarios [30].

Extra Trees
Extra Trees, or Extremely Randomized Trees, is an 

ensemble method that builds multiple decision trees using 
random subsets of data and features. It is computationally 
faster than traditional decision trees and helps reduce 
overfitting. However, it may be less accurate than other 
boosting methods when applied to complex datasets [31].

XGBoost
XGBoost is a powerful and highly efficient gradient 

boosting algorithm, known for its scalability and 
strong performance on structured data. It incorporates 
regularization to minimize overfitting and is widely 
used in competitive machine learning due to its speed, 
precision, and reliability [32].

LightGBM
LightGBM is a gradient boosting framework 

optimized for speed and efficiency, particularly with 
large datasets. It utilizes a histogram-based approach 
to enhance training time and memory usage, delivering 

high performance on large-scale data while maintaining 
accuracy [33].

Experiential setup
With an Intel Core™ i5-1335U processor and 8 GB 

RAM, Python software was utilized to implement machine 
learning techniques. The effectiveness of the models was 
rigorously evaluated using ovarian cancer as a case study. 
To ensure reliable results and better assess the model’s 
generalization performance, a cross-validation method 
was employed to partition the datasets into training and 
testing groups.

A Cross-Validation 
Cross-Validation (CV) is a statistical method used in 

ML that aims to minimize or eradicate overfitting issues 
in different ML approaches [34]. The k CV method allows 
a model to be trained on several training datasets instead 
of just one by training the ML algorithm on each of the 
k-folds created by folding the dataset. This leads to the 
model’s ability to generalize, a sign of a strong model. It 
also aids in providing a clearer picture of how well the 
algorithmic forecast performed. Figure 2 shows how the 
datasets are partitioned into k-folds, such as k = 5.

Evaluation Metrics
The performance of any classification approach is 

typically evaluated using four key metrics. These metrics 
are designed to comprehensively assess a classifier’s 
effectiveness in predicting outcomes. The evaluation 
criteria are as follows:

Accuracy (AC)
Accuracy is an essential evaluation metric used to 

identify the most successful classifier for a given dataset. 
In machine learning, accuracy refers to the ratio of 
correctly predicted observations to the total number of 
observations. It is calculated using the following formula 
[35]:

                                                                     (1)

Where:

TP (True Positive): Cases correctly predicted as 
positive (e.g., correctly identifying cancerous cases).

TN (True Negative): Cases correctly predicted as 
negative (e.g., correctly identifying non-cancerous cases).

FP (False Positive): Cases incorrectly predicted as 
positive (e.g., non-cancerous cases mistakenly classified 
as cancerous).

FN (False Negative): Cases incorrectly predicted as 
negative (e.g., cancerous cases mistakenly classified as 
non-cancerous). 

recision (Pre)
Precision measures the proportion of correctly 

predicted positive cases out of all cases predicted as 
positive. It evaluates the classifier’s ability to avoid false 
positives and is calculated as follows [35]:

𝐴𝐴𝐴𝐴 =
𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹 + 𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹
 

۱
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                                                                               (2)

Recall (Rec)
Recall, also referred to as sensitivity, quantifies the 

proportion of actual positive cases correctly identified 
by the model. It is particularly useful for assessing how 
well the classifier captures all relevant cases. The recall 
formula is as follows [35]:

                                            (3)

F1-score (F1)
The F1-score is the weighted harmonic mean of 

precision and recall, providing a single metric that 
balances both. It ranges from 0 (worst) to 1 (best) and 
is particularly useful when dealing with imbalanced 
datasets. The F1-score is calculated using the following 
formula [32]:

                                                  (4)

Results

Without using feature selection 
Table 1 presents the performance comparison of ten 

classifier algorithms for predicting chemotherapy response 
in ovarian cancer without applying a feature selection 
method. The results show that the K-Nearest Neighbors 
(KNN) classifier achieved the highest performance among 

the tested techniques.

Applying mutual_info_classif
Twenty genes were selected for analysis, including 

CYAT1, BBS7, AP5S1, MZT2B, BCL3, MRI8085, AS1, 
AF186192, PCP4L1, FAAH, RP11, PTPN20B, 574H6, 
LOC146880, XCL1, TMBIM6, SAFB, SLC25A14, LRMP, 
and LOC101929450. These genes served as identifiers to 
train ten different classifier methods. Table 2 summarizes 
the comparative performance of these classifiers in 
predicting chemotherapy responses in ovarian cancer. 
The mutual information-based feature selection method 
(mutual_info_classif) was employed to identify the most 
important genes for training. The results demonstrated 
that the Random Forest (RF) classifier outperformed other 
techniques, achieving the highest accuracy and superior 
evaluation metrics.

The results of the ten machine learning algorithms 
were compared before and after applying the feature 
selection technique. Table 1 shows the outcomes of 
employing the ten machine learning approaches without 
feature selection. These results indicate that the highest 
performance was achieved by the K-Nearest Neighbors 
(KNN) algorithm, which accomplished 76%, 79%, 76%, 
and 77% for accuracy, precision, recall, and F1-score, 
respectively. The lowest performance, however, was 
observed when applying the Multi-Layer Perceptron 
(MLP) and LightGBM algorithms.

In contrast, Table 2 presents the outcomes of the 
ten machine learning algorithms with feature selection 
applied. The results indicate substantial improvements in 
the performance of most machine learning algorithms. The 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹
 

۱

 

𝑅𝑅𝑅𝑅𝑅𝑅 =
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹
 

۱

 

Figure 1. The System Model Structure



Mahmood Khalsan et al

Asian Pacific Journal of Cancer Prevention, Vol 26964

Figure 2. Cross-Validation into 5 Kfold

Classifier Accuracy % Precision % Recall % F1-score %
SVM 65 64 65 63
DT 65 71 65 64
KNN 76 79 76 77
MLP 59 35 59 44
RF 59 57 59 56
GB 71 75 71 71
AdaBoost 65 65 65 61
Extra Trees 76 77 76 76
XGBoost 71 71 71 71
LightGBM 59 35 59 44

Table 1. Applying ML Approaches when before Applying Feature Selection Method Used

Classifier Accuracy % Precision % Recall % F1-score %
SVM 76 76 76 76
DT 76 79 76 77
KNN 71 75 71 71
MLP 65 67 65 65
RF 97 98 97 97.5
GB 71 71 71 71
AdaBoost 76 76 76 76
Extra Trees 94 95 94 94
XGBoost 65 67 65 65
LightGBM 59 35 59 44

Table 2. The Outcomes of Applying ML Approaches after Using Feature Selection Method 

highest enhancement was observed when the RF classifier 
was employed, achieving 97%, 98%, 97%, and 97.5% for 
accuracy, precision, recall, and F1-score, respectively.

The carboplatin predictor successfully distinguished 
between platinum-sensitive and platinum-resistant 
patients, achieving a statistically significant result 
(p = 0.019). Its performance parameters included a 
positive predictive value (PPV) of 65%, a negative 
predictive value (NPV) of 78%, a specificity of 33%, and 
a sensitivity of 93%. Similarly, the Paclitaxel predictor 
demonstrated effective stratification of patient responses 
with a sensitivity of 96%, specificity of 26%, PPV of 61%, 
and NPV of 86% (p = 0.033).

Discussion

This study employed ten machine learning approaches 
and gene expression patterns to determine which genes 
can predict a patient’s response to platinum-based 
chemotherapy. The results demonstrated high accuracy, 
making the proposed model a reliable clinical indicator. 
Specifically, in the GEO validation sets, the Random 
Forest classifiers achieved 97%, 98%, 97%, and 97.5% 
accuracy, precision, recall, and F1-score, respectively, 
when feature selection (mutual_info_classif) was applied, 
as shown in Table 2. In contrast, the performance of most 
machine learning models declined significantly when 
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feature selection was omitted, as presented in Table 1. Our 
findings were compared with those of previous studies 
[36, 37, 38], which reported accuracy levels above 90% 
in both training and validation sets. The proposed model, 
achieving an accuracy of 97%, represents a substantial 
improvement over prior works in this field. For instance, 
[11] employed a Random Forest (RF) algorithm and 
reported an accuracy of 93%. The superior performance 
of the current model can be attributed to advancements 
in hyperparameter optimization, more effective feature 
selection methods, or the use of a more comprehensive 
and well-curated dataset. Similarly, [16] achieved an RF 
accuracy of 87.4%, further highlighting the performance 
gap. This notable improvement underscores the potential 
contributions of algorithmic refinements and preprocessing 
enhancements in the present approach.

In contrast, [20] reported an accuracy of 74.1% using 
stepwise logistic regression, identifying six important 
genes. The relatively lower performance of regression-
based methods suggests limitations in capturing complex 
non-linear relationships in the data an issue that the 
proposed model effectively addresses. Furthermore, 
[9] achieved an accuracy of 79% using RF, further 
emphasizing the advancements of the current study. 
These improvements are likely due to the integration 
of a more refined RF variant, novel techniques for data 
preprocessing, or more sophisticated feature engineering.

Collectively, these comparisons highlight the 
innovative aspects of the proposed methodology, 
which sets a new benchmark in predictive modeling for 
identifying critical genes or biomarkers.

In conclusion, this study highlights the potential of 
using gene expression data in combination with machine 
learning algorithms to improve chemotherapy outcomes 
for ovarian cancer. By employing the mutual_info_classif 
method, a crucial group of 20 genes was identified as 
having a significant impact on treatment response. The 
Random Forest classifier emerged as the best-performing 
model, achieving high metrics in accuracy, precision, 
recall, and F1-score. 

The results also demonstrated the effectiveness of the 
carboplatin predictor in distinguishing between platinum-
resistant and platinum-sensitive patients. Furthermore, 
significant differences were observed in the survival rates 
between patients expected to respond to the platinum-
taxane regimen and those who were not, underscoring 
the clinical importance of predictive modeling in 
chemotherapy.

In summary, this study underscores the potential of 
personalized chemotherapy approaches that incorporate 
complex genetic data to enhance treatment effectiveness 
for ovarian cancer patients. While the findings are 
promising, the proposed model requires further validation 
using additional datasets to improve its generalizability. 
Future work should focus on training the model with larger 
and more diverse datasets, as well as integrating advanced 
machine learning approaches and feature selection 
methods to further enhance its efficiency and robustness.
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