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Introduction

Overview of TGF-β Signaling Pathway
The Transforming Growth Factor-beta (TGF-β) 

signaling pathway is a complex network of intracellular and 
extracellular components that regulate cellular processes 
essential for cancer development and progression [1, 
2]. The TGF-β signaling pathway involves a variety of 
molecules, such as ligands, receptors, and intracellular 
messengers, all of which regulate different aspects of 
cell behaviour. TWSG1 was initially discovered for its 
role in controlling BMP signaling during embryonic 
development. However, recent research has shown that 
TWSG1 also plays a significant part in regulating TGF-β 
signaling in various cancers [3]. Twisted Gastrulation, 
known as TWSG1 or BMP signaling modulator 1, plays a 
versatile role in the body by both promoting and inhibiting 
BMP signaling. It is involved in critical biological 
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functions like developing thymocytes, producing red 
blood cells, embryonic development, and even cancer 
progression. The fact that TWSG1 shows different levels 
of expression in various types of tumours suggests it could 
be a promising target for cancer treatments [3, 4].

Role of TWSG1 in TGF-β Signaling
TWSG1 is a secreted glycoprotein vital in regulating 

the TGF-β signaling pathway [5]. This protein is expressed 
across various tissues and stages of development, 
highlighting its importance in numerous biological 
processes, including in muscle cells [6]. The regulation 
of the TGF-β signaling pathway by TWSG1 is crucial 
for controlling cellular activities such as differentiation, 
programmed cell death (apoptosis), cell proliferation, 
and the production of the extracellular matrix [2, 7]. 
Bone morphogenetic proteins (BMPs), which belong to 
the TGF-β superfamily, have their activity modulated by 
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TWSG1; by binding to BMPs, TWSG1 influences how 
these molecules interact with their receptors, thereby 
indirectly affecting the TGF-β signaling pathways. 
Interestingly, TWSG1 can enhance and inhibit signaling, 
depending on the specific context [8, 9]. It has a dual 
purpose since, depending on the situation, it can either 
increase or decrease signaling [10].

During embryonic development, TWSG1 is essential 
for forming and differentiating various tissues and 
organs [9]. Abnormalities in the expression or function 
of TWSG1 have been associated with several conditions, 
such as cancer and fibrosis, where TGF-β- signaling 
plays a critical role. These disruptions can lead to 
developmental abnormalities [11]. These disorders can 
cause developmental abnormalities [12]. Understanding 
how TWSG1 regulates TGF-β signaling is crucial for 
identifying potential therapeutic targets for diseases 
associated with disrupted TGF-β signaling [5]. This review 
aims to provide a comprehensive overview of the current 
understanding of TWSG1’s role in TGF-β signaling, 
particularly in various types of cancer (Table 1). 

TGF-β signaling pathway components and mechanism 
in cancer

The TGF-β signaling system is a crucial pathway in 
regulating cell functions such as growth, division, and 
apoptosis (programmed cell death). This system includes 
TGF-β ligands, SMAD proteins (like SMAD2, SMAD3, 
and SMAD4), and specific receptors (TGF-βRI and 
TGF-βRII). When TGF-β ligands bind to the TGF-βRII 
receptor, it recruits and activates TGF-βRI. This activation 
leads to the phosphorylation of receptor-regulated 
SMADs (R-SMADs), which then form a complex with 
SMAD4 and move into the cell nucleus to regulate the 
expression of target genes [2, 5, 7, 13]. TGF-β acts as a 
tumour suppressor in normal cells and early stages of 
cancer by preventing cell division, inducing apoptosis, 
and maintaining genomic stability [14, 15]. However, 
in advanced cancer stages, TGF-β can promote tumour 
growth, angiogenesis (formation of new blood vessels), 
immune evasion, and metastasis (spread of cancer cells) 
[16]. It achieves this by influencing the cell cycle and 
apoptosis, such as upregulating cyclin-dependent kinase 
inhibitors and downregulating c-Myc, a gene involved in 
cell proliferation [5, 17, 18]. TGF-β also helps maintain 
DNA stability and supports DNA repair mechanisms, 
highlighting its dual role in cancer progression [19].

Role in EMT and Tumor Microenvironment
TGF-β plays a key role in promoting cancer by 

inducing a process called Epithelial-to-Mesenchymal 
Transition (EMT). During EMT, epithelial cells can 
move and adopt mesenchymal traits, making it easier for 
them to spread or metastasise to other parts of the body 
[20, 21]. TGF-β also modifies the tumour environment 
to suppress the body’s immune response against the 
tumour, enhancing the activity of regulatory T-cells 
(which can dampen immune responses) and reducing the 
effectiveness of cytotoxic T-cells (which are involved in 
killing cancer cells) [5]. Additionally, TGF-β promotes the 
growth of new blood vessels (angiogenesis) by increasing 

the levels of pro-angiogenic factors like VEGF, which 
is essential for providing tumours with the nutrients 
they need to grow [22-25]. It also facilitates tumour 
invasion by increasing the production of enzymes called 
matrix metalloproteinases (MMPs), which break down 
the surrounding tissue, allowing cancer cells to invade 
neighbouring areas [26]. Mutations in TGF-β receptors 
(TGFBR1, TGFBR2) and SMAD proteins (like SMAD4), 
along with abnormal methylation (a DNA modification 
process), can disrupt the normal tumor-suppressing 
functions of the TGF-β-pathway [14]. Dysregulation 
methylation of TGF-β signaling components can lead to 
dysregulation of the system. Changes in the expression of 
regulatory proteins, such as TGIF1, can further influence 
the dynamics of TGF-β signaling [2, 27].

Targeting TGF-β signaling, small molecule inhibitors, 
neutralising antibodies, and receptor kinase inhibitors 
are being investigated as potential targets for cancer 
treatments [28-30]. The anti-tumour efficaciousness of 
TGF-β inhibitors may be increased when combined with 
other therapies (such as immune checkpoint inhibitors) 
[31, 32]. Determining biomarkers for TGF-β pathway 
activity can aid in forecasting the reaction of patients to 
medicines that target TGF-β [33, 34]. However, one of 
the main challenges is overcoming resistance to TGF-β-
targeted therapies and finding ways to block the tumour-
promoting effects of TGF-β while preserving its ability 
to suppress tumours. This requires a balanced and precise 
approach to therapy. 

Modulation of TGF-β Signaling by TWSG1
Enhancement of TGF-β Signaling by TWSG1

TWSG1 (Twisted Gastrulation 1) is known to 
regulate the TGF-β signaling pathway and modulate the 
activity of BMP ligands, which are part of the TGF-β 
superfamily [35]. TWSG1 has been shown to modulate 
TGF-β signaling through various mechanisms, viz., 
TWSG1 acts as a positive regulator of TGF-β signaling by 
enhancing the binding of TGF-β ligands to their receptors, 
thereby promoting downstream signaling events [3, 7, 
9]. Conversely, TWSG1 acts as a negative regulator in 
other cellular contexts by sequestering TGF-β ligands, 
preventing their interaction with receptors, and inhibiting 
downstream signaling [3, 36]. The dual role of TWSG1 in 
TGF-β signaling highlights its context-dependent function 
in cancer biology. 

TWSG1 gene involved in TGF-β ligands binds to their 
specific type II receptors on the cell surface. It helps in 
the activation of type I receptor phosphorylating type II 
receptor. Play a significant role in SMAD activation (Type 
I receptor phosphorylates receptor-regulated SMADs 
(R-SMADs, such as SMAD2/3)) [37]. It is involved in 
the phosphorylation of R-SMADs, which form complexes 
with SMAD4 and translocate to the nucleus [38]. The 
SMAD complex regulates the transcription of target 
genes involved in cell proliferation, differentiation, and 
apoptosis. Further, TWSG1 can bind directly to BMPs, 
regulating their availability and activity [39]. Modulates 
BMP signaling by either enhancing or inhibiting the 
interaction of BMPs with their receptors [40]. This 
modulation affects the downstream effects of the TGF-β 
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inflammation [3, 49].

Context-dependent regulation of TGF-β signaling by 
TWSG1

TWSG1 is a protein involved in several cellular 
processes, including development, differentiation, and 
homeostasis. It promotes TGF-β signaling by increasing 
the availability of active TGF-β ligands and activating 
latent TGF-β through interactions with extracellular matrix 
components and proteases [50]. TGF-β activity is crucial 
for tissue healing and fibrosis, increasing extracellular 
matrix synthesis and cell proliferation [51]. TWSG1 can 
decrease TGF-β signaling by sequestering ligands or 
preventing their interaction with receptors [36]. This is 
critical for avoiding undesired fibrosis and regulating 
cellular proliferation during development. TWSG1 can 
interact with inhibitory molecules such as Smad7, leading 
to negative control of TGF-β signaling. TWSG1 promotes 
TGF-β signaling for fast proliferation in developing 
tissues and inhibits it for differentiation [52]. Interactions 
with other signaling pathways, such as the BMP and Wnt 
pathways, can alter TWSG1 regulation [9]. TWSG1’s 
impact on TGF-β signaling is context-dependent, as 
studies involving animal models [53], cell culture [36], 
and genetic modification revealed [54].

Facilitation of TGF-β Ligand-Receptor Interactions
TWSG1 enhances the TGF-β signaling cascade by 

increasing the affinity between TGF-β ligands and their 
respective receptors, TGF-βRII and TGF-βRI [55]. This 
facilitation likely occurs through TWSG1-mediated 
stabilisation of the ligand-receptor complex, which 
optimises the spatial orientation and conformation of 
both the ligands and receptors, thereby enhancing the 
efficiency of receptor dimerisation and activation [56]. The 
increased ligand-receptor interactions lead to a higher rate 
of receptor phosphorylation and subsequent activation of 
downstream signaling pathways [57].

Promotion of SMAD Phosphorylation and Nuclear 
Translocation

Upon ligand-receptor interaction facilitated by 
TWSG1, the activated TGF-β receptor complex 
phosphorylates receptor-regulated SMADs (R-SMADs, 
specifically SMAD2 and SMAD3) [58]. TWSG1 
appears to play a role in optimising the phosphorylation 
efficiency of these R-SMADs, which is critical for signal 
propagation. Following phosphorylation, SMAD2/3 
forms a heteromeric complex with SMAD4, essential for 
translocation into the nucleus [59]. TWSG1’s influence 
on this process may involve enhancing the stability of 
the SMAD complex or altering the nucleocytoplasmic 
transport mechanisms, leading to more efficient nuclear 
translocation. In the nucleus, the SMAD complexes 
regulate the transcription of target genes involved in cell 
cycle regulation, differentiation, and extracellular matrix 
production [60, 61]

Role of TWSG1 in Specific Cancer Types
The recent evidence suggests that dysregulation of 

TWSG1 expression is associated with various cancers, 

signaling pathway, impacting cellular processes such as 
embryonic development, tissue homeostasis, and immune 
responses [5, 41]

Role of TWSG1 in regulating TGF-β Signaling
TWSG1 enhances TGF-β signaling

TWSG1 is an essential glycoprotein that plays a crucial 
role in regulating the TGF-β signaling pathway, which 
controls important cell functions [42]. TWSG1 helps 
enhance the stability and availability of TGF-β ligands, 
the molecules that start the signaling process. By doing 
this, it facilitates the activation of TGF-β receptors on 
the cell surface, ensuring that the signaling cascade can 
proceed efficiently [43, 44]. TWSG1 can also influence co-
receptors like beta glycan (TGFBR3), which are involved 
in the production and activation of TGF-β receptors. 
Moreover, TWSG1 promotes the activation of latent 
(inactive) TGF-β ligands, making them ready to trigger the 
signaling process. The TGF-β signaling pathway mainly 
operates through the Smad pathway. In this pathway, 
activated receptors cause the phosphorylation (a chemical 
modification) of specific proteins known as receptor-
activated Smads (R-Smads) [7, 45]. These phosphorylated 
R-Smads then form complexes with other Smad proteins 
and move into the cell nucleus, where they regulate 
the expression of target genes.  TWSG1 may enhance 
this phosphorylation process, aiding in the transport of 
R-Smads to the nucleus and boosting the activation of 
TGF-β target genes [46]. Additionally, TWSG1 might 
interact with other signaling pathways, such as the Wnt or 
BMP pathways, which can also influence TGF-β signaling. 
If TWSG1 or TGF-β signaling becomes dysregulated, it 
can contribute to the progression of various diseases, 
including cancer [47]. TWSG1 overexpression could lead 
to stronger TGF-β signaling responses, whereas reducing 
TWSG1 levels, either through genetic knockout or specific 
RNA techniques, results in weaker TGF-β signaling [48]. 

TWSG1 inhibits TGF-β signaling activation
TWSG1 can act as an inhibitor in the TGF-β signaling 

pathway by binding to TGF-β ligands and preventing 
them from interacting with their receptors on the cell 
surface. By doing this, TWSG1 reduces the availability 
of active TGF-β ligands, which in turn inhibits the 
initiation of the TGF-β signaling cascade [3]. TWSG1 
also blocks the activation of latent (inactive) TGF-β 
ligands by inhibiting the activity of proteases and other 
components in the extracellular matrix that normally 
activate these ligands. Additionally, TWSG1 prevents the 
phosphorylation of receptor-activated Smads (R-Smads), 
a crucial step in the TGF-β signaling process [36]. Without 
this phosphorylation, the Smads cannot activate the 
transcription of target genes, leading to a reduction in 
TGF-β’s effects on the cell.

Moreover, TWSG1 may enhance its inhibitory 
effect by interacting with other molecules that suppress 
TGF-β signaling, such as SMAD7. This inhibitory role 
of TWSG1 is essential for regulating processes like cell 
differentiation and tissue development. However, when 
TWSG1’s function is disrupted, it can lead to various 
pathological conditions, including cancer, fibrosis, and 



Praveen Kumar K. S et al

Asian Pacific Journal of Cancer Prevention, Vol 261132

TWSG1 Expression

Modulation of TGF-β 
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Potential for TWSG1-targeted therapies
Use as a prognostic biomarker
Combination with TGF-β inhibitors for enhanced efficacy

Figure 1. Schematic Representation of Showing the Role of TWSG1 in different cancers. TWSG1 interacts with the 
TGF-β signalling pathway in different cancers. In breast cancer, TWSG1 facilitates EMT by upregulating transcription 
factors like Snail and Slug, decreasing E-cadherin, and increasing vimentin expression. In colorectal cancer, it 
promotes metastasis by activating SMAD pathways, enhancing cell motility and invasion of organs like the liver. 
TWSG1 interacts with latent TGF-β ligands in pancreatic cancer to enhance SMAD phosphorylation, driving EMT 
and metastasis to distant organs such as the lungs. TWSG1 fosters immune evasion and metastatic spread in lung 
cancer by activating SMAD-dependent and independent TGF-β pathways, reshaping the tumour microenvironment to 
favour aggressive cancer progression. 

Cancer Type Role of TWSG1 Impact on TGF-β Signaling Therapeutic Implications
Breast Cancer [86] Promotes EMT and 

metastasis
Enhances TGF-β signaling Potential target for inhibiting EMT

Colorectal Cancer [87] Modulates EMT and 
invasion

Dual role: suppressor/promoter Targeting TWSG1 may reduce 
metastasis

Pancreatic Cancer [88] Increases invasiveness Facilitates SMAD phosphorylation Biomarker for predicting therapy 
response

Lung Cancer [89] Promotes metastasis Enhances ligand-receptor interaction Target for reducing metastatic spread

Table 1. The role of TWSG1 across different cancer types, including breast, colorectal, pancreatic, and lung cancers. 
The table shows how TWSG1 modulates TGF-β signalling to promote processes like EMT, invasion, and metastasis, 
showing context-dependent effects. The table also outlines the therapeutic implications of targeting TWSG1 to inhibit 
metastasis or use its expression as a prognostic biomarker. This concise overview emphasises TWSG1's potential as a 
target for cancer therapies and personalised treatment approaches. 

including breast, colorectal, pancreatic, and lung cancers 
[3, 4]. TWSG1 has been implicated in cancer progression 
by promoting epithelial-mesenchymal transition (EMT), 
cancer cell invasion, and metastasis through its effects 
on TGF-β signaling [62]. Additionally, TWSG1 may 
play a role in modulating the tumour microenvironment, 
influencing immune cell infiltration and angiogenesis 
needs further evaluation.

Breast Cancer: Role of TWSG1
Promotion of EMT and Metastasis

TWSG1 plays a significant role in promoting breast 
cancer progression by enhancing TGF-β signaling 

pathways that drive the epithelial-to-mesenchymal 
transition (EMT) [63]. EMT is a key process where 
cancer cells change from an epithelial state (less mobile) 
to a mesenchymal state (more mobile), enabling them to 
migrate and invade other tissues. TWSG1 influences this 
transformation by regulating the expression of specific 
EMT-related transcription factors, including Snail, Slug, 
and ZEB1 [64]. This shift is marked by a decrease in 
epithelial markers such as E-cadherin and an increase 
in mesenchymal markers like N-cadherin and vimentin, 
which helps the cancer cells become more migratory and 
invasive [65]. High levels of TWSG1 in breast cancer cells 
are associated with greater metastatic potential, facilitating 
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the spread of cancer to distant organs [66, 67]

Regulation of Tumor Microenvironment
TWSG1 also affects the tumour microenvironment 

(TME), which consists of not only cancer cells but also 
the surrounding stromal cells, including fibroblasts, 
immune cells, and blood vessels [68]. By enhancing 
TGF-β signaling, TWSG1 influences the interaction 
between tumour cells and these surrounding stromal 
cells [11]. This can lead to the recruitment and activation 
of cancer-associated fibroblasts (CAFs), which produce 
components of the extracellular matrix (ECM) and secrete 
pro-tumorigenic cytokines, substances that can promote 
tumor growth [69]. Furthermore, TWSG1 can create 
conditions that suppress the immune response within the 
tumour microenvironment, allowing the tumour to grow 
and evade detection by the immune system.

TWSG1 association with clinical outcomes in breast 
cancer correlating  prognosis

Clinical studies have shown that high levels of TWSG1 
expression are linked to a poor prognosis for breast 
cancer patients. Elevated TWSG1 levels are associated 
with more advanced tumour grades, a higher likelihood 
of lymph node metastasis, and reduced overall survival. 
These findings suggest that TWSG1 could serve as a useful 
biomarker for predicting breast cancer outcomes, helping 
to identify patients who may be at higher risk of aggressive 
disease progression [3, 4]. This association suggests 
that TWSG1 could serve as a prognostic biomarker for 
breast cancer, helping to identify patients at higher risk 
of aggressive disease progression. Moreover, targeting 
TWSG1 for therapeutic intervention could potentially 
disrupt the TGF-β-driven pathways that promote cancer, 
offering a strategy to mitigate breast cancer progression 
and improve patient outcomes.

Colorectal Cancer
Role of TWSG1 in TGF-β Signaling and Metastasis in 
Colorectal Cancer

In colorectal cancer, TWSG1 plays a role in modulating 
the TGF-β signaling pathway, which has a dual function: 
it acts as a tumour suppressor in the early stages of cancer 
development but promotes metastasis in later stages [14]. 
TWSG1 enhances TGF-β-mediated signaling by activating 
downstream SMAD pathways, which drive the epithelial-
to-mesenchymal transition (EMT) [70]. During EMT, 
cancer cells lose epithelial characteristics, marked by 
reduced expression of markers like E-cadherin, and gain 
mesenchymal traits, indicated by increased markers like 
vimentin and fibronectin [71]. This transformation boosts 
the mobility and invasiveness of colorectal cancer cells, 
facilitating their spread to distant organs, particularly the 
liver [72]. Additionally, TWSG1’s enhancement of TGF-β 
signaling may influence the tumour microenvironment by 
promoting the recruitment of myofibroblasts (cells that 
play a role in wound healing) and immunosuppressive 
cells. These changes further support tumour progression 
and metastasis, contributing to the aggressive nature of 
colorectal cancer in its advanced stages [73].

Potential Therapeutic Implications of Targeting TWSG1 
in Colorectal Cancer

Due to its role in enhancing TGF-β-mediated EMT and 
metastasis, TWSG1 is a promising target for therapeutic 
intervention in colorectal cancer. By inhibiting TWSG1, 
it may be possible to disrupt TGF-β signaling pathways, 
thereby reducing EMT and the spread of cancer cells 
while potentially restoring the tumour-suppressing 
effects of TGF-β in early-stage cancers [74]. Potential 
therapeutic strategies could include using small molecule 
inhibitors, monoclonal antibodies, or RNA interference 
techniques designed to lower TWSG1 expression or 
block its interaction with TGF-β ligands [75]. These 
targeted therapies could be used alongside existing cancer 
treatments, providing a novel approach to managing 
colorectal cancer, especially in cases where abnormal 
TGF-β signaling driven by TWSG1 leads to aggressive 
tumour behaviour and metastasis. Continued research 
into developing and testing TWSG1 inhibitors may offer 
valuable insights into effective strategies for slowing 
down or halting colorectal cancer progression.

Pancreatic Cancer
TWSG1-Mediated Modulation of TGF-β Signaling in 
Pancreatic Cancer Cells

In pancreatic cancer, TWSG1 plays a critical role in 
modulating TGF-β signaling pathways that are essential 
for tumour growth and metastasis. TWSG1 enhances the 
TGF-β-induced EMT, increasing pancreatic cancer cells’ 
invasiveness and metastatic potential. By interacting with 
TGF-β ligands, TWSG1 promotes the phosphorylation of 
SMAD proteins. These SMAD proteins then move into the 
cell nucleus, where they initiate gene expression changes 
associated with EMT [76, 77] These changes include 
an increase in mesenchymal markers such as vimentin 
and N-cadherin and a decrease in epithelial markers like 
E-cadherin. Such molecular alterations contribute to a 
shift in cell characteristics, making pancreatic cancer 
cells more mobile and capable of invading surrounding 
tissues. This shift ultimately facilitates the metastasis 
of cancer cells to distant organs, including the liver and 
lungs. Understanding TWSG1’s role in these processes 
highlights its importance in promoting pancreatic cancer 
progression and its potential as a target for therapeutic 
intervention [20, 65]

TWSG1 as a Potential Biomarker for Predicting Response 
to TGF-β-Targeted Therapies in Pancreatic Cancer

The expression levels of TWSG1 could serve as a 
valuable biomarker for predicting the effectiveness of 
TGF-β-targeted therapies in pancreatic cancer. Since 
high TWSG1 expression is associated with enhanced 
TGF-β signaling and aggressive tumour behaviour, 
patients with elevated TWSG1 levels may respond better 
to therapies that inhibit TGF-β signaling [3]. Directly 
targeting TWSG1 or modulating its activity might make 
pancreatic tumours more sensitive to TGF-β inhibitors, 
potentially slowing down tumour progression and 
reducing metastasis. Evaluating TWSG1 expression in 
tumour biopsies could help identify patients who are 
more likely to benefit from TGF-β-targeted treatments, 
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allowing for a more personalised therapy approach and 
improving clinical outcomes [78]. Further research into 
TWSG1 as a biomarker could lead to the development of 
diagnostic tools and tailored therapeutic strategies that 
match the molecular characteristics of pancreatic cancer.

Lung Cancer
TWSG1 Expression and Its Correlation with TGF-β 
Signaling in Lung Cancer

In lung cancer, TWSG1 expression is closely linked to 
the activation of TGF-β signaling pathways, which play a 
crucial role in tumour growth and metastasis. High levels 
of TWSG1 have been detected in lung cancer tissues, 
where it enhances TGF-β signaling by promoting the 
interaction between TGF-β ligands and their receptors 
[79]. This interaction activates both SMAD-dependent 
and SMAD-independent pathways, leading to processes 
that drive cancer, such as increased cell proliferation, 
EMT (epithelial-to-mesenchymal transition), and immune 
evasion [80]. The connection between TWSG1 and TGF-β 
signaling indicates that TWSG1 may mediate TGF-β’s 
cancer-promoting activities in lung cancer, supporting 
tumour growth and leading to more aggressive cancer 
behaviour. 

Role of TWSG1 in lung cancer metastasis and potential 
therapeutic strategies

TWSG1 plays a significant role in promoting metastasis 
in lung cancer by enhancing TGF-β-induced EMT, which 
gives cancer cells the ability to migrate and invade other 
tissues. This process involves the downregulation of 
epithelial markers like E-cadherin and the upregulation 
of mesenchymal markers like vimentin, enabling cancer 
cells to detach from the primary tumour and invade 
surrounding tissues and blood vessels [76]. Targeting 
TWSG1 could help disrupt this EMT process, potentially 
inhibiting the spread of cancer. Therapeutic strategies 
may include developing TWSG1 inhibitors, such as small 
molecules, monoclonal antibodies, or RNA interference-
based therapies, to reduce TWSG1 activity and block 
its interaction with TGF-β ligands [81, 82]. By limiting 
TWSG1-mediated TGF-β signaling, these strategies could 
effectively slow down tumour progression and metastasis, 
providing new treatment options for lung cancer.

Clinical implications of targeting TWSG1 in TGF-β-driven 
cancers
Therapeutic potential with inhibitors

Given TWSG1’s role in enhancing TGF-β signaling, 
targeting TWSG1 alongside TGF-β pathway inhibitors 
may present a new therapeutic strategy for cancers 
driven by abnormal TGF-β activity. Inhibiting TWSG1 
could reduce TGF-β-mediated processes such as 
epithelial-to-mesenchymal transition (EMT), invasion, 
and metastasis by decreasing the availability of TGF-β 
ligands for receptor activation [76]. Combining TWSG1 
inhibitors with existing TGF-β receptor kinase inhibitors 
or blockers of the SMAD pathway could offer a more 
comprehensive approach to blocking the signaling cascade 
[83]. This combined strategy could potentially improve the 
effectiveness of treatments by overcoming the limitations 

of single-agent therapies and reducing the chance of 
tumour resistance, providing a more robust option for 
patients with aggressive and metastatic cancers.

Use of TWSG1 expression as a prognostic biomarker in 
TGF-β-driven cancers

The expression levels of TWSG1 in tumour tissues 
could serve as a valuable biomarker for predicting the 
aggressiveness of TGF-β-driven cancers. High TWSG1 
expression is associated with enhanced TGF-β signaling, 
increased EMT, and more significant potential for 
metastasis, all of which correlate with worse clinical 
outcomes. Measuring TWSG1 expression in cancer 
patients could help identify those at higher risk and those 
more likely to benefit from targeted therapies that inhibit 
the TGF-β pathway [84]. This biomarker approach could 
improve personalised treatment strategies, ensuring 
patients receive the most suitable and effective therapeutic 
interventions [85]. This biomarker-based approach could 
improve personalised treatment strategies, ensuring 
patients receive the most appropriate and effective 
therapeutic interventions.

Challenges and clinical translation of TWSG1-targeted 
therapies

Developing TWSG1-targeted therapies presents several 
challenges, such as identifying specific inhibitors that can 
effectively block TWSG1 activity without causing off-
target effects. Additionally, it is crucial to understand the 
precise mechanisms by which TWSG1 influences TGF-β 
signaling in various types of cancer to design effective 
combination therapies. Future research should focus on 
conducting preclinical studies to validate the safety and 
effectiveness of TWSG1 inhibitors and investigate their 
potential synergistic effects with existing TGF-β pathway 
inhibitors. Clinical trials will be necessary to evaluate 
the therapeutic potential of these approaches in cancer 
patients, ultimately paving the way for incorporating 
TWSG1-targeted strategies into standard cancer treatment 
practices (Figure 1).

In conclusion, TWSG1 has emerged as a pivotal 
regulator of TGF-β signaling in various cancer types, 
demonstrating both tumour-promoting and suppressive 
roles depending on the context of its expression and the 
specific cancer environment. TWSG1 modulates TGF-
β-induced processes such as epithelial-to-mesenchymal 
transition (EMT), immune evasion, and tumour 
microenvironment remodelling. These actions facilitate 
cancer cell invasion, metastasis, and resistance to therapy, 
underscoring TWSG1’s role in cancer progression. 
Moreover, elevated TWSG1 expression has been linked to 
poor prognosis in several cancers, suggesting its potential 
as a prognostic biomarker and a therapeutic target.

Further research is necessary to delineate the precise 
molecular mechanisms TWSG1 regulates TGF-β signaling 
in cancer. Understanding the context-specific effects of 
TWSG1 how it can switch from tumour-suppressive to 
tumour-promoting roles will be crucial for developing 
targeted therapies. Future studies should focus on 
identifying the upstream regulators and downstream 
effectors of TWSG1 in different cancer types. Additionally, 
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preclinical and clinical investigations into TWSG1 
inhibitors, either alone or combined with TGF-β pathway 
inhibitors, are needed to explore their efficacy and safety. 
Developing reliable diagnostic tools to measure TWSG1 
expression in tumour tissues will also be critical for its 
application as a prognostic biomarker.

Overall, TWSG1 plays a complex yet crucial role 
in regulating TGF-β signaling pathways in cancer 
progression and metastasis. Its dual role, depending on 
the tumour type and microenvironment, highlights the 
need for a nuanced understanding of its function in cancer 
biology. Targeting TWSG1, alone or in combination with 
other therapeutic agents, represents a promising strategy 
for treating TGF-β-driven cancers. Ongoing and future 
research into the molecular underpinnings and clinical 
implications of TWSG1 will pave the way for innovative 
cancer therapies and personalised treatment approaches.
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