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Introduction

Annually, more than 500,000 women receive a 
diagnosis of cervical cancer, leading to over 300,000 
fatalities globally. The severity of the disease influences 
treatment decisions at diagnosis and the availability of 
local resources. A radical hysterectomy, chemotherapy, 
or a combination of both may be necessary [1]. Results 
from five randomized clinical trials indicate [2-7], 
that women with invasive cervical cancer eligible for 
radiotherapy should consider simultaneous cisplatin-based 
chemo-radiotherapy rather than radiotherapy alone. 
Multiple studies across 11 countries have demonstrated the 
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positive impact of combined chemoradiation on prognosis. 
The analysis showed a 12% increase in overall survival 
and improved local and distant disease progression 
management [8-11]. Although chemoradiotherapy is 
commonly considered a fundamental treatment for 
cervical cancer, the adverse side effects of chemotherapy 
require the investigation of safer options. Multiple trials 
have been done to identify an efficacious treatment for 
cervical cancer by repurposing a medicine that is already 
used for another therapeutic purpose.

Numerous efforts have been undertaken to identify a 
more effective and safer alternative treatment for cancer, 
such as employing medications that are approved for 
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other diseases in the treatment of cancer. Omeprazole 
is an example of a medication that shows a promising 
anticancer impact. Some studies suggest that the anti-
cancer activity of omeprazole is related to the inhibition 
of vacuolar-type ATPase (V-ATPase) [12] And fatty acid 
synthase (FASN) [13-19]. Furthermore, Omeprazole was 
proposed to influence the cancer hallmarks of migration, 
invasion, and genomic instability [20, 21]. it induces 
apoptosis in cancer cells and enhances drug delivery by 
inhibiting V-ATPase and subsequent modulation of pH. 
V-ATPase is present in cancer cells and plays a role in 
regulating intra- and extracellular pH [22, 14, 20, 23] .

Omeprazole considerably impedes the invasion and 
migration of aggressive cancer cells associated with 
epithelial-mesenchymal transition (EMT), a critical 
phase in metastasis [24, 25] . Significant changes in the 
expression of E-cadherin and the mesenchymal markers 
vimentin, fibronectin, and N-cadherin characterize the 
epithelial-mesenchymal transition [26] .Omeprazole was 
shown to inhibit Snail expression, which may trigger 
epithelial-mesenchymal transition (EMT), without 
affecting the expression of other transcription factors 
related to EMT [27-29] . Furthermore, Omeprazole 
demonstrated a strong affinity for binding directly to the 
Snail protein by disrupting CREB-binding protein (CBP)/
p300-mediated Snail acetylation, thereby facilitating Snail 
degradation [30-33]. Metformin is another drug with 
promising anticancer properties. Multiple studies have 
been conducted to assess and investigate its properties. 
Metformin influences cancer hallmarks by sustaining 
proliferative signaling and deregulating cellular energetics 
[34] metformin can activate AMPK by interacting with 
the lysosomal protein PEN2. Induced activation of AMPK 
has been demonstrated to inhibit mTOR, leading to cell 
cycle arrest in multiple myeloma cells [35-40]. Another 
study demonstrated that metformin exhibited an apoptotic 
effect and induced apoptosis in p53-deficient colon cancer 
cell lines [41]. 

Various heat shock proteins, including Hsp 60, are 
critical in cancer development. Hsp 60 is integral to the 
transport and folding of mitochondrial proteins and has 
been linked to multiple cancer types [42]. Many studies 
suggest that HSP60 contributes to apoptosis by facilitating 
the activation of pro-caspase-3 via several caspases, 
including caspase-6. HSP60, situated in the cytosol, 
inhibits the translocation of the pro-apoptotic protein Bax 
into mitochondria, thus facilitating cell survival [43]. The 
prognostic association of HSP60 with cervical cancer has 
recently become a significant focus of research. In these 
investigations, the prognostic significance of HSP60 
in cervical cancer was evaluated using 2-dimensional 
Electrophoresis (2-DE), semi-quantitative reverse 
transcriptase polymerase chain reaction (RT-PCR), and 
Western Blot (WB) analyses. The results suggest that 
HSP60 plays a critical role in the advancement of cervical 
cancer [44] .Recent studies demonstrate that HSP60 
expression is elevated in prostate cancer tissues relative 
to normal prostatic tissue [45-48]

Combining current medicines for non-cancer 
therapeutic purposes is a viable approach to developing an 
effective, safer option for cancer treatment. Several studies 

were conducted on this subject, and one showed that the 
combination of amygdalin and esomeprazole had a specific 
ability to eradicate cervical cancer cells [49, 50] Others 
demonstrated that the combination of ciprofloxacin and 
laetrile successfully hinders the proliferation of esophageal 
cancer cells [51] . Despite these studies, they showed 
limitations in demonstrating the anticancer properties 
of the metformin–omeprazole combination. This study 
investigates the suppressive effect of metformin and 
omeprazole on the growth of cervical cancer cells and 
explores their ability to bind with Hsp 60.

Materials and Methods

Medications utilized in the study
The Samarra Pharmaceutical Factory provided 

metformin and omeprazole as raw materials. The 
medications were diluted with RPMI medium to achieve 
various concentrations, ranging from 0.1 µg/ml to 1000 
µg/ml.

Hela cell line
The Hela cancer cell line, derived from a malignant 

cervical carcinoma, was first established in the tissue 
culture division of ICCMGR. The cells were cultured 
in 75 cm² tissue culture containers under controlled 
conditions, maintaining a relative humidity of 37°C and 
5% CO2. The cells were incubated in RPMI-1640 medium 
(Sigma Chemicals, England) with 10% fetal calf serum 
(FBS) and 100 U/mL penicillin-streptomycin (100 μg/mL 
streptomycin) [52, 49].

Cytotoxicity assay
Metformin, omeprazole, and a combination were 

utilized to assess their efficacy in inhibiting cervical 
cancer cells cultured in a 96-well microtiter plate. Cancer 
cell proliferation demonstrated a gradual and consistent 
increase in the logarithmic growth phase. The toxicity of 
the evaluated medications was examined at two distinct 
incubation periods: 24 hours and 72 hours [53, 54].

Each well contains 10,000 cells. Seeding requires the 
use of a medium that contains 10% fetal bovine serum. 
The plates were incubated at 37°C for 24 hours to facilitate 
cell attachment. Serial dilutions were performed using 
a serum-free RPMI medium. Metformin, omeprazole, 
and a combination of both drugs were diluted in RPMI 
medium devoid of calf serum. A series of dilutions for 
each medication was produced, ranging from 0.1 to 1000 
µg/ml [55, 51].

After 24 hours of cancer cell proliferation, the cells 
were divided into six identical samples, each receiving 
200 µl of a medication. Each control was administered 
200 microlitres of maintenance media, with exposure 
durations varying from 24 to 72 hours. The plates were 
reinserted into the incubator after being securely affixed 
with a self-adhesive material. The cells were subsequently 
treated with MTT dye. A microtiter plate reader (ELISA 
reader) was utilized to assess the optical density of each 
well at a transmission wavelength of 550 nm [56, 57]. 

A mathematical equation is used to determine the 
growth inhibition rate, and it is as follows: [57]
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and BIOVIA Discovery Studio [60, 61].

Ethical approval
This research did not include any human subjects.

Statistical Analysis
The MTT test results are presented as the mean ± 

standard deviation (SD) based on six replicates. A one-way 
analysis of variance (ANOVA) test was utilized. The LSD 
test was employed to compare various groups. The study 
used statistical software version 20, with a significance 
threshold set at p < 0.05 [62].

Results

Cancer cell line cytotoxicity study
Metformin cytotoxicity

Study results demonstrated that metformin can reduce 
the proliferation of cervical cancer cells. The pattern of 
growth inhibition was contingent upon the concentration, 
notably evident at the highest concentration. Additionally, 
the pattern of growth inhibition was affected by the 
incubation period, particularly at doses of 1, 10, and 1000 
µg/ml. The IC50 values substantiate this observation, 
falling from 1582.19 µg/ml to 1225.89 µg/ml, revealing 
the incubation period’s impact on cellular viability: 
Table (1) and Figure (1). 

Omeprazole cytotoxicity
The study results indicate that omeprazole has a growth 

inhibition ability regarding cervical cancer, primarily 
following a concentration-dependent pattern. The impact 
of time was less than the concentration impact, except at 
100 µg/ml. Further, there was a lowered decline in IC 50 
between the two incubation periods, suggesting a less time 
effect on cellular growth inhibition: Table (2), Figure (2).

(metformin -omeprazole) combination cytotoxicity
The study’s findings indicated that the combination of 

metformin and omeprazole reduces the viability of cancer 
cells. The aptitude is contingent upon the concentration 
of the combination. This impact is elucidated through 
significant differences in growth inhibition observed 
between the highest and lowest concentrations. 

Furthermore, the pattern of growth inhibition was 
dependent on the incubation duration, particularly at 

Growth inhibition %= (optical density of control 
wells-optical density of treated wells)/(optical density of 
control wells)*100%

Study of drug combinations
A comprehensive study of the combination of drugs 

in a mixture was conducted based on the investigation 
findings. After a treatment period of 24 and 72 hours, the 
concentration-effect curves were generated by plotting 
the percentage of cells that exhibited a reduction in 
growth against the concentration of the medication. 
The Compusyn computer software (Biosoft, Ferguson, 
Missouri, USA) was used to evaluate the synergy, additive 
effects, and antagonism to determine the pharmacological 
interaction. Through the process of calculating the 
combination index and dose reduction index values, the 
accomplishment was completed.

CI values below 1 suggest synergy, values above 
1 indicate additivity and values exceeding 1 denote 
antagonism. The dose reduction index (DRI) measures the 
degree to which the concentration of each component in a 
combination can be lowered while maintaining equivalent 
efficacy to that of individual drug administration.

A DRI score of 1 indicates no decrease in concentration. 
A DRI number greater than 1 signifies a favorable 
reduction in concentration, whereas a DRI value less 
than 1 indicates an unfavorable decline in concentration 
[58, 59].

Molecular docking
The chemical structures of metformin and omeprazole 

were shown using ChemDraw software (Cambridge 
Soft, USA) and refined using the Chem3D version. The 
molecular configuration of the Hsp 60 chaperonins, known 
as the Heat shock protein, was acquired from the Protein 
Data Bank.

Protein structures were optimized and adjusted using 
AutoDock Tools. The optimal conformation of the ligands 
was determined using AutoDock Tools, followed by the 
ligands’ generation of a PDBQT file. 

After optimization, each ligand’s structures (metformin 
and omeprazole) and the human Hsp 60 chaperone protein 
were inputted into AutoDock-Tools. Subsequently, the 
docking procedure was performed utilizing the identical 
program. The docking energy scores and binding 
interactions were comprehensively analyzed using PLIP 

Concentration (µg/ml) Inhibition of cellular proliferation (mean ± SE a) P- value
24 hr. 72 hr.

0.1 C 1.00 ± 1.000 D 3.00 ± 2.000 0.196
1 C 3.00 ± 1.000 C 17.00 ± 2.000 0.0001* 
10 C 7.00 ± 3.000 BC 23.00 ± 3.000 0.003* 
100 B 21.00 ± 4.000 B 27.00 ± 1.000 0.065
1000 A 33.00 ± 4.000 A 43.00 ± 3.000 0.026* 
b LSD value 10.68 8.46 -
IC50 1582.19 µg/ml 1225.89 µg/ml  -

Table 1. The Impact of Metformin on the Viability of Hela Cancer Cells at 24 and 72 hours

a, standard error; b, least significant difference, statistically significant differences are shown by variations in capital letters within the same column 
*, significant at (P<0.05) 
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figure 1. The Impact of Metformin on the Viability of Hela Cancer Cells at 24 and 72 hours

Concentration (µg/ml) Inhibition of cellular proliferation (mean ± SE a) P- value
24 hr. 72 hr.

0.1 C 1.00±1.000 D 2.00±1.000 0.288
1 C 3.00±2.000 CD 7.00±3.000 0.127
10 B 11.00±1.000 BC 13.00±5.000 0.534
100 B 17.00±2.000 B 21.00±1.000 0.036* 
1000 A 48.00±3.000 A 53.00±3.000 0.111
b LSD value 7.1 10.92 -
IC 50 1031.61 µg/ml 916.03 µg/ml -

Table 2. The Impact of Omeprazole on the Viability of Hela Cancer Cells at 24 and 72 Hours

a, standard error; b, least significant difference, statistically significant differences are shown by variations in capital letters within the same column 
*: significant at (P<0.05)

Figure 2. The Impact of Omeprazole on the Viability of Hela Cancer Cells at 24 and 72 Hours

concentrations of 0.1, 10, and 100 µg/ml. The impact of 
incubation time on growth inhibition is evidenced by the 
decrease in the IC 50 level, which declined from 1112.07 
µg/ml to 602.52 µg/ml across the two incubation periods.  

(Table 3) (Figure 3).
Moreover, the inhibitory impact of the mixture on 

cervical cancer growth exceeded that of any individual 
component at every incubation period. (Table 4,5) 
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Concentration (µg/ml) Inhibition of cellular proliferation (mean ± SE a) P- value
24 hr. 72 hr.

0.1 C 2.00 ± 2.000 D 8.00 ± 3.000 0.045* 
1 C 11.00 ± 1.000 D 17.00 ± 4.000 0.065
10 B 23.00 ± 3.000 C 27.00 ± 2.000 0.127
100 A 36.00 ± 3.000 B 42.00 ± 2.000 0.045* 
1000 A 45.00 ± 5.000 A 67.00 ± 1.000 0.002* 
b LSD value 11.28 9.48 -
IC 50 1112.07 µg/ml 602.52 µg/ml -

Table 3. The Impact of the Metformin-Omeprazole Combination on HeLa Cancer Cell Viability at 24 and 72 Hours

a, standard error; b, least significant difference; statistically significant differences are shown by variations in capital letters within the same column 
*: significant at (P<0.05)

Figure 3. The Impact of the Metformin-Omeprazole Combination on HeLa Cancer Cell Viability at 24 and 72 Hours

Concentration (µg/ml) Growth inhibition (mean ± SE a) b LSD value
Metformin Omeprazole mix

0.1 C 1.00 ± 1.000 C 1.00±1.000 C 2.00 ± 2.000 N. S
1 C 3.00 ± 1.000 C 3.00±2.000 C 11.00 ± 1.000 5.66*
10 C 7.00 ± 3.000 B 11.00±1.000 B 23.00 ± 3.000 10.06*
100 B 21.00 ± 4.000 B 17.00±2.000 A 36.00 ± 3.000 12.42*
1000 A 33.00 ± 4.000 A 48.00±3.000 A 45.00 ± 5.000 16.32
b LSD value 10.68 7.1 11.28 -
IC 50 1582.19 µg/ml 1031.61 µg/ml 1112.07 µg/ml -

Table 4. A 24-hour Growth Inhibition Comparison of Metformin, Omeprazole, and a Combination

a, standard error; b, least significant difference. Capital letters within the same column indicate statistically significant differences, while variations 
in lowercase letters within the same rows also signify statistically significant differences.: significant at (P<0.05)

(Figure 4,5, Supplementary Figures 4,5,6).

Studying drug combinations 
The study of drug combinations encompassing 

metformin and omeprazole produces the following 
results. Following a 24-hour incubation, the combination 
of metformin and omeprazole at 0.1, 1, 10, and 100 µg/
ml exhibited a synergistic anticancer effect. In contrast, 
A concentration of 1000 µg/ml exhibited antagonism. At 
72 hours, all concentrations demonstrated a synergistic 

combination effect. 
The findings of the dose reduction index indicated that 

the concentrations of the combined ingredients required 
to induce cytotoxicity were decreased at all time intervals 
(24 and 72 hours of incubation) for all concentrations 
of metformin and omeprazole, except the higher 
concentration of omeprazole at 24 incubation periods.

The reduction in effective concentration was notable 
for metformin and omeprazole, indicating a favourable 
drop in the effective concentration of the mixture 
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Figure 4. A 24-hour Growth Inhibition Comparison of Metformin, Omeprazole, and a Combination.

Figure 5. A 72-hour Growth Inhibition Comparison of Metformin, Omeprazole, and a Combination

Concentration (µg/ml) Growth inhibition (mean ± SE a) b LSD value
Metformin Omeprazole mix

0.1 D 3.00 ± 2.000 D 2.00±1.000 D 8.00 ± 3.000 N. S
1 C 17.00 ± 2.000 CD 7.00±3.000 D 17.00 ± 4.000 12.42
10 BC 23.00 ± 3.000 BC 13.00±5.000 C 27.00 ± 2.000 14.22
100 B 27.00 ± 1.000 B 21.00±1.000 B 42.00 ± 2.000 12.17
1000 A 43.00 ± 3.000 A 53.00±3.000 A 67.00 ± 1.000 10.06
b LSD value 8.46 10.92 9.48 -
IC 50 1225.89 µg/ml  916.03 µg/ml 602.52 µg/ml -

Table 5. A 72-hour Growth Inhibition Comparison of Metformin, Omeprazole, and a Combination.

a, standard error; b, least significant difference. Capital letters within the same column indicate statistically significant differences, while variations 
in lowercase letters within the same rows also signify statistically significant differences.: significant at (P<0.05)

components relative to the individual components. 
Tables (6,7) Supplementary Figures (1,2)

Molecular docking studies
Molecular docking modeling explored the interaction 

between metformin and omeprazole with human Hsp 60. 

The investigation employed AutoDock tools 1.5.7 and 
BIOVIA Discovery Studio [63]. 

Our molecular docking studies results demonstrated 
that the molecular docking score of binding omeprazole 
with Hsp 60 was (-7.3) kcal/mol. Molecular docking 
analysis was presented. One Conventional hydrogen bond 
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concentration μg/ml Con. ratio CI value Combination behaviour DRI value
Metformin Omeprazole 1:01 Metformin Omeprazole
0.05 μg/ml 0.05 μg/ml 0.48094 Synergism 4.32674 4.0029
0.5 μg/ml 0.5 μg/ml 0.09144 Very Strong Synergism 28.2385 17.8493
5 μg/ml 5 μg/ml 0.13288 Strong Synergism 21.8744 11.4725
50 μg/ml 50 μg/ml 0.33476 Synergism 9.49869 4.35761
500 μg/ml 500 μg/ml 1.48285 antagonism 2.26562 0.96018

Table 6. The Suppressive Impact of the Metformin-Omeprazole Combination on HeLa Cancer Cell Line Proliferation 
after 24 hours of Incubation

The CI (Combination Index) and DRI (Dose Reduction Index) Values were evaluated utilizing Compusyn software. A CI number exceeding 1 
indicates antagonism, a CI value of 1 denotes an additive effect, and a CI value below 1 suggests synergism. A dose reduction index (DRI) exceeding 
one correlates with reduced toxicity. (Chou, 2006, Chou, 2018)

concentration μg/ml Con. ratio CI value Combination behaviour DRI value
metformin omeprazole 1:01 metformin omeprazole
0.05 μg/ml 0.05 μg/ml 0.25399 Strong Synergism 4.6043 27.1693
0.5 μg/ml 0.5 μg/ml 0.17262 Strong Synergism 7.77399 22.7354
5 μg/ml 5 μg/ml 0.28464 Strong Synergism 5.46281 9.84397
50 μg/ml 50 μg/ml 0.39152 Synergism 5.0121 5.20837
500 μg/ml 500 μg/ml 0.21545 Strong Synergism 15.0364 6.71378

Table 7. The Suppressive Impact of the Metformin-Omeprazole Combination on HeLa Cancer Cell Line Proliferation 
after 72 hours of Incubation

The CI (Combination Index) and DRI (Dose Reduction Index) Values were evaluated using Compusyn software. A CI number exceeding 1 indicates 
antagonism, a CI value of 1 denotes an additive effect, and a CI value below 1 suggests synergism. A dose reduction index (DRI) exceeding one 
correlates with reduced toxicity. (Chou, 2006, Chou, 2018).

formed with the ASN A:287 amino acid residues at 2.21 
Å distance. One carbon-hydrogen bound formed with 
the ASN A:284 amino acid residues at 3.35 Å distance. 
One pi-anion formed with the GLU A:364 amino acid 
residues at 4.74 Å distance. Four pi-pi-stacked formed 
with the PHE A:281, TYR A:361, PHE A:281, and TYR 
A:361 amino acid residues at 5.19 Å, 3.74 Å, 5.94, and 
3.91 Å distances, respectively. Three pi-alkyl formed 
with the TYR A:361, LYS A:363, and LYS A:363 amino 
acid residues at 5.09 Å, 5.09 Å, and 5.46 Å distance, 
respectively (Supplementary Figure 1).

furthermore, molecular docking study data of 
metformin with Hsp 60 revealed a total docking score 
of (-6.2) kcal/mol. Molecular docking analysis was 
presented. Three conventional hydrogen-bound with 
each ASP A:399, ASP A:52, and SER A:151 amino 
acid residues at 2.88 Å, 2.70 Å, and 2.97 Å of distance, 
respectively (Supplementary Figure 2).

For comparison purposes, the molecular docking study 
of Epolactaene (the standard Hsp 60 inhibitor) revealed a 
total docking score of (-6.7) kcal/mol. Molecular docking 
analysis was presented. Four conventional hydrogen-
bound with SER A:228 amino acid residue at 4.08 Å, SER 
A:229 amino acid residue at 1.89 Å, SER A:229 amino 
acid residue at 2.20 Å and GLN A:231 amino acid residue 
at 2.39 Å. Two alkyls bound also found with LYS A:225 
amino acid residue at 5.39 Å and LEU A:310 amino acid 
residue at 4.74 Å (Supplementary Figure 3).

Discussion

The study on cytotoxicity and combination index 

revealed that the metformin–omeprazole combination 
exhibited synergistic antiproliferative effects on cervical 
cancer cells, characterized by both cell cycle-specific 
and non-specific inhibition patterns.  The results of the 
computational molecular docking simulations indicate 
that both drugs demonstrate a novel mechanism targeting 
Hsp 60. Each exhibited a distinct binding site on Hsp60, 
clarifying the synergistic interactions between the drugs 
in the mixture. 

Prior studies have shown several other suggested 
mechanisms for each drug. metformin has been verified 
to be effective in reducing the incidence of specific 
malignancies, including pancreatic cancer [64, 65]. A 
recent study has evidenced that metformin effectively 
reduces the likelihood of colon cancer development and 
the associated mortality rate [66, 67]. Metformin has 
demonstrated efficacy in decreasing the formation of 
adenomas and polyps in patients undergoing polypectomy 
[68]. It lowers the death risk among diabetics who get 
a colon cancer diagnosis [69, 70]. Metformin has been 
shown in yet another investigation to decrease the risk 
of developing prostate cancer and liver cancer, as well 
as the mortality rate associated with these two varieties 
of cancer [70-74]. Multiple proposed mechanisms have 
been studied to explore metformin’s anticancer effects. 
Metformin activation of AMPK in rat hepatoma H4IIE 
cells reduces pS6 phosphorylation [75]. A distinct in 
vitro study concluded that metformin directly inhibited 
AMP deaminase, leading to elevated AMP levels and the 
subsequent activation of AMPK [76, 41, 77]. Moreover, 
Metformin can eliminate active K-ras from the cellular 
membrane via a PKC-dependent mechanism [78]. 
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Conversely, study outcomes revealed that omeprazole 
could minimize the growth of cervical cancer with 
cytotoxic behavior, including concentration-dependent. 
On the same topic, multiple studies exhibited the ability 
of omeprazole to reduce the growth of several types of 
cancer, such as gastric cancer [79]. Pancreatic cancer [12]. 
Human B-cell malignancies [80]. And glioblastoma [81]. 
And its ability to minimize the invasion of breast cancer 
and pancreatic cancer [82-84].

Several suggested mechanisms clarify omeprazole’s 
anticancer properties. For example, Omeprazole can 
significantly hinder the invasion and migration of 
aggressive cancer cells related to epithelial-mesenchymal 
transition (EMT), an essential process during metastasis 
[24, 25]. The epithelial-mesenchymal transition is marked 
by dramatically altered expression of E-cadherin and 
the mesenchymal markers vimentin, fibronectin, and 
N-cadherin [26] .Omeprazole was found to suppress Snail 
expression, which can induce epithelial-mesenchymal 
transition (EMT) without impacting the expression of 
other transcription factors associated with EMT [27-29] 
. Furthermore, omeprazole exhibited a high affinity for 
directly and physically binding to the Snail protein via 
disrupted CREB-binding protein (CBP)/p300-mediated 
Snail acetylation, which promotes Snail degradation [30].

A molecular docking study was performed to clarify 
the novel anticancer mechanisms of each drug in the 
mixture. We focus on heat shock protein 60 (Hsp 60) 
due to its essential role in the transport and folding of 
mitochondrial proteins and its reported association with 
various cancer types [42] . and it promotes apoptosis by 
activating pro-caspase-3 via caspases like caspase-6 [43] . 

Recently, the prognostic association of HSP60 
with cervical cancer has emerged as a significant area 
of investigation. The predictive value of HSP60 in 
cervical cancer was assessed through 2-dimensional 
Electrophoresis (2-DE), semi-quantitative reverse 
transcriptase polymerase chain reaction (RT-PCR), and 
Western Blot (WB) analyses. findings strongly indicate 
that HSP60 is integral to the progression of cervical 
cancer [44-47] .

Based on the factors above, Hsp 60 has been elected 
due to its key function in cancer. Our molecular docking 
study results indicate that each drug interacts with 
Hsp60 at varying levels of binding affinity. The results 
of the molecular docking study suggest that omeprazole 
exhibits a more significant antiproliferative effect than 
metformin, as evidenced by the higher molecular docking 
score associated with omeprazole. Molecular docking 
studies indicate the synergistic effect of omeprazole and 
metformin. Each drug interacts with the Hsp 60 protein at 
a specific site, leading to a complementary and synergistic 
effect when combined.

The dose reduction index result reveals that the 
cytotoxic concentration of each medication in the 
combination was inferior to that of each drug individually, 
implying a less likelihood of adverse effects from the 
mixture compared to the individual drugs. A limitation 
of the study was the absence of restrictions on the drug 
concentration ranges. We utilized various concentrations 
to determine the optimal doses for omeprazole and 

metformin.
In conclusion, our study’s findings indicate that the 

metformin–omeprazole combination effectively inhibits 
the proliferation of cervical cancer cells. Inhibition occurs 
through both cell cycle-specific and cell cycle-nonspecific 
mechanisms. Results demonstrated that the combination 
of these components shows synergistic cytotoxicity, as 
evaluated by the combination index value. 

Computational docking simulations indicated that 
metformin and omeprazole target Heat Shock Protein 
60. These findings clarify the synergistic pattern among 
mixture ingredients, as each drug has a specific binding 
site on Hsp60, indicating a complementary binding 
mechanism with Hsp60. Furthermore, the dose reduction 
index value indicates that the concentration of constituents 
in the mixture required to achieve significant cytotoxicity 
is lower than that of each ingredient, indicating that the 
combination is safer than each component alone.
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