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Introduction

Retinoblastoma (RB) is a rare paediatric eye cancer 
primarily caused by biallelic inactivation of the RB1 
tumour suppressor gene in more than 95% of cases [1]. 
A small percentage of non-hereditary retinoblastoma 
(2%) is caused by MYCN gene amplification without 
RB1 inactivation [2]. In addition to tumour initiation, 
the progression and characteristics of retinoblastoma 
involve further alterations, including genetic mutations, 
epigenetic dysregulation, gene expression changes, and 
proteomics variations [3]. The most frequently reported 
alterations include mutations in BCOR and CREBBP, copy 
number variations (CNVs) involving chromosomes 1q, 
2p, 6p, 13q, and 16q [4], altered expression of oncogenes 
such as MYCN, E2F3, DEK, KIF14, and MDM4, and 
chromothripsis [5]. Promoter hypermethylation of the DNA 
repair gene MLH1, RASSF1A, and MGMT is common 
in retinoblastoma, leading to its silencing [6]. Moreover, 
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histone modifications cause the upregulation of SYK, 
which supports tumour progression in retinoblastoma 
[7]. Proteomic analyses have uncovered critical proteins 
involved in retinoblastoma progressions, such as B7H3, 
IGF2BP1, SOX4, and PEDF [8]. Alternative splicing 
contributes to retinoblastoma progression, which has been 
less extensively studied in this context [9].

A comprehensive analysis of RB1 mutations has 
shown that 4-15% occur in splice sites [10], suggesting 
that altered splicing affects the RB1 gene and initiates 
RB [11]. Several studies have documented exon-skipping 
events in the RB1, MDM4, and Dab1 genes in RB 
patients[12]. However, a complete profile of alternative 
splicing events and their role in RB tumour progression 
remains elusive. 

RNA-seq transcriptomic data has been widely used to 
identify alternative splicing events in cancer progression. 
Yang et al. [13] used RB transcriptome data from a single 
study to detect differential alternative splicing (DAS) 

Editorial Process: Submission:12/21/2024   Acceptance:05/14/2025

1Department of Bioinformatics, Aravind Medical Research Foundation, Madurai, India. 2Department of Bioinformatics, 
Alagappa University, karaikudi, India. 3Department of Molecular Genetics, Aravind Medical Research Foundation, Madurai, 
India. 4Department of Orbit, Oculoplasty and Oncology, Aravind Eye Hospital, Madurai, India. *For Correspondence: 
bharani@aravind.org

Mohamed Hameed Aslam Assane Rachidou1,2, Ayyasamy Vanniarajan3, Usha 
Kim4, Bharanidharan Devarajan1*



Mohamed Hameed Aslam A et al

Asian Pacific Journal of Cancer Prevention, Vol 261782

events in retinoblastoma. They identified exon skipping 
and mutually exclusive exons as the most predominant 
DAS events, mostly enriched in E2F family transcription 
factors, the visual sense gene ABCA4, and the splicing 
factor DAZAP1, suggesting their role in RB progression. 
However, since the SRA database (https://www.ncbi.
nlm.nih.gov/sra) contains several studies with RNA-seq 
transcriptomics data from RB patients, a meta-analysis of 
RB will provide comprehensive profiling and more true-
positive alternative splicing events in RB progression. 
Thus, in this study, we performed a comprehensive, 
integrated meta-analysis of gene expression and 
alternative splicing events by comparing RB with normal 
retinal tissue, aiming to uncover dysregulated pathways, 
transcription factors, and splicing factors with aberrant 
splicing events leading to RB progression. Our findings 
provide novel insights into the molecular mechanisms 
underlying RB progression and highlight potential 
therapeutic targets. They also pave the way for future 
studies in this field, offering a beacon of hope for improved 
understanding and treatment of RB. 

Materials and Methods

RNAseq data of retinoblastoma tumour tissue was 
collected from the Sequence Read Archive (SRA) 
database (https://www.ncbi.nlm.nih.gov/sra) from their 
inception up to September 7, 2023. After manual curation 
of sample details, the SRA files of 50 RB tissues and 17 
retinal tissues were obtained by removing the fetal retina 
and para-tumour from the following retinoblastoma 
project with accession PRJNA728725, PRJNA343264, 
PRJNA752257, PRJNA693838, PRJNA494224, 
PRJNA436090, PRJNA658590, PRJNA517916 (Table 1). 
The selected sample data were downloaded as SRA files 
and converted to FASTQ format using fastq-dump from 
the SRA toolkit (https://github.com/ncbi/sra-tools). We 
removed the low-quality reads and adapters using the fastp 
tool [14]. Further, the cleaned raw reads were indexed 
and aligned to the ensemble human reference genome 
(GRCh38 release-104) fasta file with its annotation GTF 
file by STAR (v2.7.9a) [15]. In addition, the parameter 
options were changed accordingly based on the type of 
libraries (stranded or unstranded). Further, we quantified 
the aligned reads as raw counts using featureCounts 

(v2.0.3) [16]. The phenotype quantile technique 
normalised the raw counts. Furthermore, the early merging 
technique was adopted to conduct a gene set test in the 
meta-analysis of transcriptome data. Principal Component 
Analysis (PCA) was performed to assess the batch effect, 
and outliers were removed, as illustrated in Supplementary 
Figure S1.

Differential Genes Expression Analysis 
The normalised count was used by the R edgeR(v3.30) 

[17] package to conduct the differential expression 
analysis. The dispersion was estimated and fitted to a 
negative binomial generalised log-linear model by edgeR 
functions. QL (Quasi-likelihood) F-Test statistics and 
log2 fold change were used to evaluate the statistical 
significance (FDR<0.05, logCPM>0.5 and log2 fold 
change > ±2). 

Differential Alternative Splicing Analysis 
rMATS [18] was used to screen differential alternative 

splicing events across all samples. The ensemble human 
reference (GRCh38 release 104) annotation GTF file 
and aligned bam files were given as input for rMATS 
with the default parameters. We selected Differential 
Alternative Splicing (DAS) events with FDR<0.05. The 
deltaPSI value was computed by subtracting the average 
PSI (IncLevel) value of the control group(retina) from the 
average PSI value of the tumour group (RB), expressed 
as follows: deltaPSI = Average (Tumour_PSI) - Average 
(Control_PSI).

Functional and pathway enrichment analysis of DAS 
and DEG

The cluster Profiler [19] R package(version 4.0) was 
used to perform gene functional enrichment analysis of 
the differentially expressed genes (DEGs) and genes 
with differential alternative splicing (DAS). The analysis 
included Gene Ontology (GO), Kyoto Encyclopedia of 
Genes and Genomes (KEGG) and hallmark signature 
datasets from Molecular Signature (MsigDB). The DEGs 
and DAS events were first converted from Ensembl IDs 
to gene symbols and Entrez IDs using the clusterProfiler 
annotation package. The Entrez IDs were then used as 
input for the enrichment analysis. Enriched pathways 
and gene sets were identified based on a false discovery 

Project accession ID Tumour Control Retina Fetal Retina Para-tumour Reference
PRJNA728725 21 3 Norrie JL et al., 2021 
PRJNA343264 1 8 Aldiri I et al., 2017 
PRJNA752257 5 5 not available till (7-9-2023)
PRJNA693838 5 3 not available till (7-9-2023)
PRJNA494224 1 Saengwimol D et al.,2018
PRJNA436090 3 3 Ni H et al., 2020 
PRJNA658590 7 3 Amit Chatterjee et al., 2021
PRJNA517916 7 3 Rajasekaran S et al., 2019
Total 50 17 11 3

Table 1. RNAseq Data were Collected from Projects in Public Repositories. The table lists the project accession IDs, 
the number of tumour samples, control retina samples, fetal retina samples, and para-tumour samples, along with the 
reference for each project. 
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> 0.8 through intramodular analysis.

Comprehensive Protein-Protein interaction analysis 
Protein-protein interaction (PPI) information of 

significant module genes identified from WGCNA 
modules of DAS and splicing factor was obtained from 
the Search Tool for the Retrieval of Interacting Genes 
(STRING) database (https://string-db.org/). The PPI 
network was produced using Cytoscape software, and 
the degree of nodes was calculated using the Cytohuba 
program in Cytoscape software. 

Identification of the hub genes from WGCNA
We identified the candidate genes from the significant 

module extracted through Weighted Gene Co-expression 
Network Analysis (WGCNA). Subsequently, we 
performed a sub-network analysis to identify hub 
genes. VarEelct [22] was then employed to analyse 
the relationship between the identified key genes and 
retinoblastoma. 

Results

Identification of differential alternative splicing events in 
retinoblastoma

This comprehensive analysis identified 6136 significant 
differential alternative splicing events involving 1262 
distinct genes (Table 2). The most common event 
type observed was Mutually Exclusive Exons (MXE), 
accounting for 41.6% of occurrences, followed closely 
by Skipped Exons (SE) at 35.8%. Retained Intron (RI) 
accounted for 8.4% of events, while Alternative 3’ splicing 
site (A3SS) and Alternative 5’ splicing site (A5SS) 
represented 8.1% and 6.1% respectively (Figure 1B). In 
terms of the distribution of DAS genes, SE (734) had a 
higher count than MXE (573) (Figure 1A). Noteworthy 
genes, including PCBP4, MYL6, HMGN1, GUK1, 

rate (FDR) cutoff of adjusted p-value < 0.05. From the 
results of enriched genes and pathways from the hallmark 
signature of the MsigDB database, a functional interaction 
network was constructed and visualised using a Cytoscope 
3.1 [20].

Weighted Gene Co-expression Network Analysis
We conducted a Weighted Gene Co-expression 

Network Analysis (WGCNA) [21] on the transcripts 
of genes exhibiting differential alternative splicing 
using gene-level summarised transcript expression 
data. Our analysis employed stepwise module detection 
methods, starting with constructing a sample tree through 
hierarchical clustering to identify outliers. Next, we 
determined the soft threshold beta for scale-free topology 
using the mean connectivity and R2 correlation coefficient 
from the pickSoftThreshold() function. Subsequently, 
the weighted adjacency matrix and dissimilarity matrix 
were established using the adjacency () and TOMdist() 
functions. We then calculated RB tumour tissue co-
expressions with DAS, treating them as weights for the 
analysis.

Further, we computed the Pearson correlation matrix 
for gene pairs and employed the Dynamic Tree Cut 
algorithm to group genes into modules, using a merging 
threshold function of 0.25. Subsequently, we identified 
modules associated with traits. The traits’ expression 
matrix was crafted by integrating the expressions of 
differential splicing factors genes, RB tumour tissue, 
and control retina tissue. Following that, we calculated 
gene significance and module membership to discern the 
relationship between genes and traits and the importance 
of each module. Lastly, we pinpointed a highly correlated 
module from the module-trait relationship, selecting hub 
genes with high gene significance (correlation between 
gene and trait) > 0.2 and Module Membership (correlation 
of the module eigengene and the gene expression profiles) 

Figure 1. Distribution of Differentially Alternatively Spliced (DAS) Events and Genes in the Analysed Dataset. (A) 
An upset plot depicts the number of genes undergoing each type of alternative splicing (AS) event. The left side strips 
show the number of genes affected by each AS type, while the dots in the matrix represent the AS types included 
in each subset. The histogram on top displays the number of genes in each subgroup. (B) Pie chart illustrating the 
distribution of AS events. The chart segments represent the proportion of each AS event type: RI (retained intron), 
A5SS (alternative 5' splice site), A3SS (alternative 3' splice site), MXE (mutually exclusive exons), and SE (skipped 
exon) 
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Figure 2. Volcano Plot Showing Differentially Expressed Genes (DEGs) between Control Retina and Retinoblastoma 
(RB) Tumour Samples. The x-axis represents the log2 fold change in gene expression, while the y-axis shows the 
negative log10 of the p-value. Each dot represents an individual gene. The dashed horizontal line indicates the 
statistical significance threshold of p < 0.05, corresponding to -log10(p-value) = 1.3. The two vertical dashed lines 
represent a log2 fold change cutoff of ±2. Blue dots on the left side denote downregulated DEGs, while red dots on 
the right side represent upregulated DEGs. The top 50 most significantly differentially expressed genes are labelled 
on the plot. 

Events Type Significant 
Differential AS Events

DAS genes for 
each event

A3SS 496 255
A5SS 376 246
MXE 2554 573
RI 514 334
SE 2196 734
Total 6136 2143

Table 2. The List of Significant DAS Events and 
Corresponding Genes for Each of the Five Main Types 
of Alternative Splicing: alternative 3' splice site (A3SS), 
alternative 5' splice site (A5SS), mutually exclusive 
exons (MXE), retained intron (RI), and skipped exon 
(SE).

ENO2, HNRNPC, PKM, HNRNPA1, RPLP0, and PTMS 
(in descending order), exhibited a high prevalence of 
differential alternative splicing events (Supplementary 
Table S1, S2).

All the five types of alternative splicing events were 
noted in the following 27 DAS genes, including BAG6, 
CAMK2B, CKB, CUTA, EEF1D, ENO2, FLOT1, GNB3, 
HMGN1, HMGN2, HNRNPA1, HNRNPC, HNRNPH1, 
MYL6, NT5DC2, PCBP2, PCBP4, PRRC2A, PTMA, 
PTMS, RACK1, RPS18, RPS24, SNHG1, SNHG29, 
SNHG5, and YIPF3 (Supplementary Table S2). Notably, 
the gene PTMS exhibited the highest count in A3SS and 
RI events, while PCBP4 accounted for the largest numbers 
in MXE and SE events, and MYL6 accounted for most 

A5SS events. This intricate characterisation enhances our 
understanding of retinoblastoma’s differential alternative 
splicing landscape.

 
Differential gene expression analysis in retinoblastoma

Differential gene expression analysis compared the 
transcriptomic profiles of retinoblastoma (RB) and normal 
retinal tissue. A total of 1787 DEGs were identified, 
with 1140 genes showing upregulation and 647 genes 
exhibiting downregulation (Figure 2). Among the most 
significantly upregulated genes were MMP12, SP9, and 
DNMT3L, while OVCH2, PIP, and PDE6A were found to 
be among the most downregulated genes (Supplementary 
Table S3).

Functional and pathway enrichment analysis of genes 
with DAS in retinoblastoma

The functional enrichment analysis of 1262 DAS 
genes, which included Gene Ontology (GO), the Kyoto 
Encyclopedia of Genes and Genomes (KEGG), and 
the Hallmark gene signature set from the Molecular 
Signature Database (MsigDB), revealed pathways 
pertinent to tumour progression (see Figure 3 and 
Supplementary Table S4). Among these, 536 GO terms 
showed significant enrichment (P.adj < 0.05), categorised 
into Biological Process (334 terms), Cellular Component 
(134 terms), and Molecular Function (67 terms). The top 
ten enriched GO terms were primarily associated with 
RNA splicing (including RNA splicing, RNA splicing 
via transesterification reactions with bulged adenosine as 
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Figure 3. Bubble Plots Showing Functional Enrichment Analysis of Differentially Alternatively Spliced (DAS) Genes. 
(A) Gene Ontology (GO) terms enriched among DAS genes. (B) Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathways enriched among DAS genes. (C) Molecular Signatures Database (MSigDB) pathways enriched among 
DAS genes. In each plot, the x-axis represents the gene ratio, which is the proportion of DAS genes associated with 
each term or pathway. The size of the bubbles indicates the number of DAS genes enriched in each term or pathway, 
while the colour represents the statistical significance of the enrichment (adjusted p-value) according to the colour 
scale provided.Terms or pathways with smaller adjusted p-values (darker colours) are considered more significantly 
enriched. 

Figure 4. Bubble Plots Depicting Gene Set Enrichment Analysis (GSEA) Results for Differentially Expressed Genes 
(DEGs). (A) Gene Ontology (GO) terms enriched among DEGs. (B) Kyoto Encyclopedia of Genes and Genomes 
(KEGG) pathways enriched among DEGs. (C) Molecular Signatures Database (MSigDB) pathways enriched among 
DEGs. The x-axis represents the normalized enrichment score (NES), which reflects the degree to which a gene set 
is overrepresented at the top or bottom of a ranked list of genes. A positive NES indicates gene set enrichment at the 
top of the ranked list (upregulated genes). In contrast, a negative NES indicates gene set enrichment at the bottom of 
the ranked list (downregulated genes). The size of the bubbles represents the number of DEGs enriched in each term 
or pathway, while the colour indicates the statistical significance of the enrichment (adjusted p-value) according to 
the colour scale provided. Terms or pathways with smaller adjusted p-values (darker colours) are considered more 
significantly enriched. 

nucleophile, mRNA splicing via spliceosome, and RNA 
splicing via transesterification reactions), translation 
(cytoplasmic translation), and energy production 
(energy derivation by oxidation of organic compounds, 
cellular respiration, aerobic respiration, and oxidative 
phosphorylation). The prominence of RNA splicing-related 
terms, particularly those involving transesterification and 
spliceosome machinery, suggests that these genes may 
regulate splicing events. The enrichment of mRNA 
splicing terms further corroborates this. Moreover, the 
enrichment of terms related to cellular respiration, aerobic 

respiration, and oxidative phosphorylation indicates that 
these DAS genes might also enhance cellular energy 
production through oxygen-dependent pathways. This 
could support splicing activity or other cellular processes 
regulated by these alternatively spliced transcripts.

Furthermore, 45 KEGG pathways demonstrated 
significant enrichment (P.adj < 0.05) with the DAS 
genes. The top ten enriched pathways in KEGG were 
associated with Neurodegenerative Diseases, including 
pathways of neurodegeneration involving multiple 
diseases, Amyotrophic lateral sclerosis, Parkinson’s 
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Figure 5. Functional Network Highlighting Significant DAS Genes and their Pathways. The nodes represent genes 
and pathways, while the edges denote their associations. Gene nodes are categorised based on their DAS status: 
circles indicate downregulated DAS genes, hexagons represent upregulated DAS genes, and diamonds signify non-
significant DAS genes. The colour gradient of the gene nodes reflects their expression levels, ranging from red (highly 
upregulated) to blue (highly downregulated). Pathway nodes are depicted as downward triangles.

Figure 6. Construction of a Weighted Gene Co-Expression Network Analysis (WGCNA) Using Differentially 
Alternatively Spliced (DAS) Genes. (A) Analysis of network topology for various soft-thresholding powers (β). The 
left panel displays the scale-free fit index (y-axis) as a function of the soft-thresholding power (x-axis). The right 
panel shows the mean connectivity (degree, y-axis) as a function of the soft-thresholding power (x-axis). The red 
line in the left panel represents the correlation coefficient threshold of 0.8. The soft-thresholding power of 19, where 
the scale-free topology fit index reaches 0.8, was chosen for subsequent analysis. (B)  The dendrogram illustrates the 
hierarchical clustering of genes based on their co-expression patterns. The y-axis represents the height or distance 
between clusters, while the x-axis shows the genes grouped into distinct modules. The dendrogram branches are 
colour-coded to represent different co-expression modules. Each colour corresponds to a group of genes with highly 
correlated expression patterns across samples. The black module highly correlated with gene expression in RB. 

disease, Huntington’s disease, Prion disease, and 
Alzheimer’s disease. Additionally, pathways related to 
Cellular Processes, such as Ribosome and Oxidative 
phosphorylation, and Disease Pathogenesis and Response, 
including Coronavirus disease (COVID-19) and Chemical 
carcinogenesis involving reactive oxygen species, were 
highlighted. The enrichment of these KEGG pathways, 
particularly those related to neurodegenerative diseases 

and immune-related pathways, suggests potential 
molecular connections between retinoblastoma and 
neurodegeneration, as well as immune dysregulation in 
tumour pathogenesis.

We identified significant enrichment in ten Hallmark 
gene sets related to Cellular Stress Responses and 
Signaling (Unfolded Protein Response and Reactive 
Oxygen Species), Metabolism (Fatty Acid Metabolism, 

A B
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mTOR Signaling, Peroxisomes), and Cell Cycle 
Regulation (E2F Targets, G2M Checkpoint, MYC 
Targets) with a P.adj < 0.05. These findings were initially 
visualised in a bubble plot (Figure 3 and Supplementary 
Table S4) and later transformed into a network format 
using Cytoscape, incorporating additional attributes 
such as DAS and DEG gene expression levels and the 
count of alternative splicing events (Figure 5). Based on 
betweenness centrality by degree, pathways such as MYC 
target genes, oxidative phosphorylation, E2F targets, 
and G2M checkpoint were predominantly dysregulated 
by differentially alternative spliced genes. Among these, 
MYC Target genes showed decreased alternative splicing 
events and upregulated expression compared to the control 
retina. The MYC family of transcription factors, known as 
proto-oncogenes, are implicated in regulating alternative 
splicing [23]. The Hallmark MYC Targets v1 gene set 
includes genes often upregulated in cancer cells where 
MYC is overactive [24]. A recent study by Phillips et al. 
[25] suggested that MYC targets tend to downregulate 
with increased splicing activity due to the introduction 
of stop codons. Nodes common between E2F targets and 
G2M checkpoint were upregulated in gene expression 
and showed increased alternative splicing in RB tumours. 
Another enriched molecular signature was the Fatty 
Acid Metabolism pathway. Notably, ENO2, a glycolysis 
enzyme, exhibited more alternative splicing events and 
decreased differential splicing and gene expression in 
tumours compared to the retina. This gene is implicated 
in cancer progression [26].

Functional and pathway enrichment analysis of DEGs 
in retinoblastoma

The functional enrichment and pathway analysis 
were performed on the 1787 genes identified from 
the differentially expressed genes (DEG). As shown 
in Figure 4 and Supplementary Table S4, a total of 
377 Gene Ontology (GO) terms showed significant 
enrichment (P.adj < 0.05), distributed across Biological 
Process (277 terms), Cellular Components (57 terms), 
and Molecular Function (43 terms). Additionally, 47 
Kyoto Encyclopaedia of Genes and Genomes (KEGG) 
pathways exhibited significant enrichment (P.adj < 0.05) 
with DEG genes. Notably, eight Hallmark gene sets 
displayed significant enrichment (P < 0.05) and are linked 
to cell Cycle Regulation (E2F Targets, G2M Checkpoint, 
Mitotic Spindle), Muscle Development and Function 
(Myogenesis), Reproductive Processes (Spermatogenesis, 
Estrogen Response Early), Oncogenic Pathways (MYC 
Targets V1) and Immune Response (Allograft Rejection). 
The bubble plot (Figure 4 and Supplementary Table S4) 
shows the functional enrichment analysis of DEGs. The 
dysregulation in the cell cycle pathway is linked to the 
progression of retinoblastoma (RB) cancer [27]. Pathways 
related to the functional loss of the retina were highly 
enriched with the most DEGs in suppressed pathways. The 
impairment of retinal function or vision in retinoblastoma 
is critical to RB progression, as highlighted by Warda et 
al. [28].

Identifying hub genes with differential alternative splicing 
(DAS) using weighted gene co-expression network 
analysis (WGCNA) in retinoblastoma

The construction of the Weighted Gene Co-expression 
Network Analysis (WGCNA) network aimed to identify 
co-expression modules by utilising the expression profiles 
of genes exhibiting DAS between the control retina and 
RB tumour samples as described in methods. The soft 
threshold power was calculated as 19 to establish a scale-
free network, corresponding to the correlation coefficient 
square value and mean connectivity (Figure 6A). Modules 
sharing high similarities were merged, resulting in 
the identification of nine distinct gene modules. RB 
tumour expression served as the weight for our analysis 
(Figure 6B). We selected the black module from the 
modules that exhibited a high correlation with RB 
tumour expression (Supplementary Figure S2 A). We 
then identified 42 significant candidate genes that have 
the potential to act as hub genes related to RB tumours 
within the black module (Supplementary Figure S2 B).

We constructed the sub-network using black module 
genes and pathways from GO, KEGG, and MsigDB 
(Supplementary Figure S3). We identified eight hub genes: 
PCNA, TFDP1, KIF22, CCNB1, NASP, APEX1, DUT, and 
RACGAP1 by analysing high betweenness and closeness 
centrality scores through degree measures. The VarElect 
tool analysed the correlation between these hub genes 
and retinoblastoma. Based on the VarElect scores, we 
identified TFDP1, PCNA, and CCNB1 genes, suggesting 
that DAS events of these genes play an important role in 
retinoblastoma progression.

Identifications of splicing factors and their associated 
genes involved in retinoblastoma

Wang et al. [29] identified 118 DNA- and RNA-
binding protein (DRBP) genes as splicing factors, out of 
which seven genes LIN28, RBM15, ILF2, DDX1, YBX3, 
HNRNPA1, and MBNL2 were found to be differentially 
expressed between control retina samples and RB 
tumour samples, indicating their role as differential 
splicing factors. Module-trait relationship analysis 
reveals differential splicing factors ILF2 and HNRNPA1 
were highly co-expressed with the black module in 
DAS (Supplementary Figure S2 A) associated with RB 
tumour expression. The Protein-Protein interaction (PPI) 
network was constructed to infer interaction between 
the IFL2, HNRNPA1 and the DAS genes from the black 
module (Supplementary Figure S4). The following DAS 
genes, YBX1, KHDRBS1, SRSF10, VPS72, SNRPB, 
HNRNPD, MRPL9, HSP90AB1, PPIA, MAZ, SQSTMT, 
TRIM28, RBMX, PTMA, UBA2, PFDN6 ,SRSF1, NONO, 
SRSF7, and HNRNPA3 showed potential interaction with 
splicing factor IFL2 and HNRNPA1. Therefore, ILF2 and 
HNRNPA1 may regulate the alternative splicing events in 
the above DAS genes during retinoblastoma progression.

Discussion

Alternative splicing has extensively been studied for 
its role in cancer progression. However, it is not studied 
exclusively in retinoblastoma progression beyond the 
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RB1 gene using RNA-seq data. In this study, We adopted 
a comprehensive meta-analysis approach, pooling data 
from eight studies and analysing 70 samples of RNA 
sequencing data from retinoblastoma compared to normal 
retinal tissues. We show that MXE (41.6 %) accounts 
for the most alternative events, followed by SE (38.8%). 
Similarly, Yang et al., [13] have shown that MXE and 
SE are predominant events in RB using single RNA-
seq data. Also, it was observed that MXE events were 
more prevalent in multiple myeloma, making up 44.3%, 
followed by SE (36.2%), suggesting that MXE and SE 
are predominant in RB progression. 

DAS and DEG functional enrichment analyses 
commonly identified cell cycle regulation pathways, such 
as E2F targets and G2M checkpoint, with upregulated 
gene expression and predominantly increased alternative 
splicing events in RB tumours (Figure 4 & 5). Additionally, 
both analyses highlighted the involvement of the MYC 
target gene pathway, although DAS genes showed mostly 
decreased alternative splicing events and upregulated 
expression, while DEGs were enriched in the MYC targets 
V1 gene set. Pathways such as neurodegenerative diseases 
(Amyotrophic lateral sclerosis, Parkinson’s disease, 
Huntington’s disease, Prion disease, and Alzheimer’s 
disease ), cellular processes (ribosome and oxidative 
phosphorylation), disease pathogenesis and response 
(COVID-19 and chemical carcinogenesis), cellular stress 
responses (unfolded protein response and reactive oxygen 
species), and metabolism (fatty acid metabolism), mTOR 
signalling, and peroxisomes were uniquely enriched 
in DAS analysis [30–33] Among these DAS genes, 
ATP5MC1, NDUFS2, RDH11, RPS14, SOD1, SOD2 were 
enriched in all the pathways. DAS genes uniquely found 
in these pathways are given supplementary Table S4. 
In contrast, DEGs were uniquely enriched in pathways 
associated with muscle development and function 
(myogenesis), reproductive processes (spermatogenesis 
and early estrogen response), oncogenic pathways, and 
immune responses (allograft rejection) [34–40]. Among 
these DEG genes, CCNA1, DCC, HDAC2, IGF1, ITGA2B, 
MAPK12, PRKCB, RAC2, and TNNC1 were enriched in 
all the pathways. DEG genes uniquely found in these 
pathways are given in supplementary Table S3. These 
findings suggest that while DAS and DEGs contribute to 
cell cycle dysregulation in retinoblastoma, they also have 
distinct roles in various biological processes and pathways 
related to tumour progression and cellular functions. 

Functional enrichment of DAS genes showed Fatty 
acid metabolism as one of the major pathways in which 
ENO2 (Enolase2) had the most DAS events. ENO2, a key 
glycolytic enzyme associated with lipid biosynthesis and 
energy homeostasis in cancer, has been previously linked 
to these processes [41, 42]. Altered splicing of ENO2 
may enhance metabolic adaptability in RB by increasing 
glycolytic flux, which can elevate intermediates for fatty 
acid synthesis and support rapid tumour growth [43]. The 
cancer cells depend on lipid metabolism for membrane 
biosynthesis and survival under hypoxic conditions [44, 
45], reinforcing the role of ENO2 as a metabolic regulator 
in RB. These findings suggest that targeting ENO2 splicing 
variants and their associated metabolic effects could offer 

novel therapeutic strategies for RB treatment.
Additionally, This study identified eight hub genes 

PCNA, TFDP1, KIF22, CCNB1, NASP, APEX1, DUT, 
and RACGAP1 through WGCNA analysis. These hub 
genes are significantly enriched in several biological 
processes, including the cell cycle, G2M checkpoint, 
E2F targets, DNA repair and maintenance, chromatin 
and nucleosome organisation, and fatty acid metabolism 
[46–48] (Supplementary Figure S3). Among these, PCNA, 
TFDP1, and CCNB1 were highlighted as key genes due to 
their high varelect scores, indicating a strong association 
with retinoblastoma. The predicted alternative splicing 
events (ASE) for these hub genes are as follows: TFDP1 
has 1 A3SS, 4 MXE, and 3 SE events; PCNA exhibits 1 
A5SS and 11 MXE events; and CCNB1 shows 1 SE event. 
TFDP1 (Transcription Factor Dp-1) is a dimerisation 
partner for the E2F family of transcription factors, which 
are essential regulators of cell cycle progression and are 
often deregulated in various cancers [49]. Alternative 
splicing of TFDP1 may lead to the formation of different 
isoforms with distinct functions, potentially contributing 
to the dysregulation of cell cycle control [50]. TFDP1 
was differentially expressed in retinoblastoma compared 
to the normal retina and altered TFDP1 splicing might 
affect its transcriptional role [51]. Similar to its role in 
retinoblastoma, TFDP1 has been found to be differentially 
expressed in glioblastoma compared to normal brain 
tissue [52]. PCNA (Proliferating Cell Nuclear Antigen) 
is a key player in DNA replication and repair, and its 
expression is often altered in cancer cells [53]. Alternative 
splicing of PCNA may produce variants with different 
cellular localisation and functions, possibly promoting 
cell proliferation and genomic instability [54]. The 
retinoblastoma protein (RB) disrupts PCNA chromatin 
tethering in S-phase cells, inhibiting DNA replication 
[55]. The changes in PCNA alternative splicing may 
impact RB’s regulation. CCNB1 (Cyclin B1) is a crucial 
regulator of the G2/M transition in the cell cycle, and its 
aberrant expression has been linked to various cancers 
[56]. Alternative splicing of CCNB1 may generate 
isoforms with altered stability or activity, potentially 
contributing to the deregulation of cell cycle progression 
[57]. Given the involvement of these key genes in critical 
cellular processes and their dysregulation in RB and other 
cancers, we speculate that alternative splicing of TFDP1, 
PCNA, and CCNB1 may contribute to the development 
and progression of retinoblastoma, warranting further 
investigation into their specific roles and potential as 
therapeutic targets.

The module-trait relationship analysis and protein-
protein interaction (PPI) network provide essential 
insights into the role of alternative splicing and splicing 
factors in retinoblastoma (RB) tumour progression. The 
results show that the splicing factors ILF2 and HNRNPA1 
are highly co-expressed with a set of differentially 
alternatively spliced (DAS) genes in the black module 
associated with RB tumour expression (Supplementary 
Figure S2 and Figure S3). ILF2 (interleukin enhancer 
binding factor 2) and HNRNPA1 (heterogeneous nuclear 
ribonucleoprotein A1) are known to regulate alternative 
splicing of pre-mRNA [58, 59]. The high co-expression 
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suggests these splicing factors may drive RB’s observed 
alternative splicing changes. The PPI network further 
reveals that ILF2 and HNRNPA1 potentially interact with 
20 specific DAS genes in the black module, including 
YBX1, KHDRBS1, SRSF10, SRSF1, SRSF7 and others 
(Supplementary Figure S4). Many of these genes are 
splicing factors or regulators, such as the SR proteins 
SRSF1, SRSF7, and SRSF10, which are crucial for 
regulating the alternative splicing of numerous genes 
[60]. YBX1 modulates alternative splicing by regulating 
splicing factor activities [61]. Therefore, the interaction 
of ILF2 and HNRNPA1 with these DAS genes suggests 
they regulate the splicing changes directly or indirectly 
by modulating the activity of other splicing factors 
during RB progression. The additional DAS genes 
interacting with ILF2 and HNRNPA1, despite not being 
splicing factors themselves, have varied functions in 
transcription (TRIM28, MAZ), translation (MRPL9), 
protein folding (HSP90AB1, PFDN6), and protein 
degradation (SQSTM1, UBA2), with their alternative 
splicing potentially influencing these crucial cellular 
processes to promote RB tumour growth [62–66]. 

In summary, functional analyses of DAS events 
containing genes highlighted involvement in E2F targets, 
cell cycle, G2M checkpoint, MYC targets and fatty 
acid metabolism. Notably, numerous DAS events were 
detected in ENO2. WGCNA identified TFDP1, PCNA, 
and CCNB1, potentially contributing to RB progression 
through alternative splicing. Splicing factors ILF2 and 
HNRNPA1 were highly co-expressed with DAS events 
containing genes, suggesting their regulatory role in 
splicing changes during RB progression. This reveals a 
coordinated alternative splicing program where specific 
splicing regulators modify cancer-associated pathways 
through transcript diversification, creating molecular 
trajectories that accelerate RB progression through 
metabolic reprogramming, immune evasion, and enhanced 
proliferative signaling. Future research directions should 
prioritize experimental validation of the identified splicing 
events and interactions, coupled with mechanistic studies 
to unravel the molecular pathways governing these 
processes. Additionally, systematic investigation of the 
therapeutic potential of targeting these splicing factors 
and hub genes could yield critical insights for developing 
retinoblastoma treatment strategies.

In conclusion, our comprehensive meta-analysis of 
RNA sequencing data from retinoblastoma and normal 
retinal tissues has revealed significant insights into the 
role of alternative splicing in retinoblastoma progression 
beyond RB1 mutation. We identified 1787 differentially 
expressed genes (DEGs) and 6136 differential alternative 
splicing (DAS) events, with exon skipping and mutually 
exclusive exons being the most prevalent. Functional and 
pathway enrichment analyses highlighted the involvement 
of E2F targets, cell cycle, G2M checkpoint, MYC 
targets and fatty acid metabolism in retinoblastoma. Key 
genes such as ENO2, CCNB1, PCNA, and TFDP1 were 
identified as potential contributors to RB progression 
through alternative splicing. Additionally, We found 
that the splicing factors ILF2 and HNRNPA1 are highly 
co-expressed with DAS genes, suggesting their regulatory 

role in alternative splicing during RB progression. 
Further research is essential to confirm these findings and 
explore their potential in developing novel treatments for 
retinoblastoma.
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