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Introduction

Cervical carcinoma is among the most prevalent 
malignancies affecting women worldwide, particularly 
in low- and middle-income countries [1]. Characterized 
by uncontrolled proliferation of cervical epithelial cells, 
it often leads to invasive tumors [2]. Persistent infections 
with high-risk human papillomavirus (HPV) strains, 
particularly HPV-16 [3] and HPV-18 [4], underpin the 
disease’s pathogenesis and account for approximately 
70% of cases globally [5]. These viruses integrate their 
DNA into the host genome [6], promoting oncogenesis 
through oncoproteins E6 and E7 [7], which inhibit tumor 
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suppressors TP53 [8] and pRb [9], respectively, leading 
to unchecked proliferation and genomic instability [10]. 
Co-factors such as smoking [11], oral contraceptive use 
[12], early sexual activity [13], and co-infections like HIV 
[14] exacerbate disease progression [15, 16].

Cervical carcinoma remains a significant global health 
burden, with an estimated 570,000 new cases and 311,000 
deaths annually [17]. High incidence rates are observed in 
regions with limited access to screening and vaccination, 
such as sub-Saharan Africa and Southeast Asia [18-20]. 
Conversely, countries with robust screening programs and 
HPV vaccination have seen declines in incidence, although 
disparities persist within underserved populations [21, 22].
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At the molecular level, cervical carcinoma is driven 
by inactivation of tumor suppressor pathways, particularly 
TP53 and pRb [23]. Markers such as Ki-67 and p16INK4a are 
widely used in diagnosis [24, 25], while VEGF and MMPs, 
implicated in angiogenesis and metastasis, are potential 
therapeutic targets [26-28]. Conventional therapy includes 
surgery, radiation, and chemotherapy [29], but challenges 
like chemoresistance and morbidity persist [30]. Targeted 
therapies and immunotherapies, such as Pembrolizumab, 
show promise in advanced disease [31].

Non-conventional therapies, particularly natural 
compounds, are gaining interest as adjuncts or alternatives 
to conventional treatments [32]. Compounds like quercetin 
3-O-glucoside [33], γ-tocopherol [34], and β-caryophyllene 
[35] exhibit anti-inflammatory, antioxidant, and anticancer 
properties [36], targeting pathways implicated in cervical 
carcinoma progression, such as TP53 and VEGF [37-45]. 
This study evaluates the therapeutic potential of a novel 
blend of natural compounds, emphasizing their molecular 
docking affinities and integration into existing therapeutic 
strategies.

Materials and Methods

The vegetable oil mixture utilized in this study 
consisted of a blend of bioactive natural compounds 
known for their anticancer, anti-inflammatory, and 
antioxidant properties [46-50]. The primary components 
included quercetin 3-O-glucoside, a flavonoid with 
anticancer activities through modulation of key pathways 
[51]; γ-tocopherol, a form of Vitamin E that protects 
cellular membranes from oxidative damage and inhibits 
tumor proliferation by targeting markers like Ki-67 
and VEGF [52]; β-caryophyllene, a sesquiterpene with 
anti-inflammatory properties that modulates the tumor 
microenvironment and targets MMPs [64]; kaempferol 
3-O-glycoside, which inhibits VEGF and MMPs [53]; and 
epigallocatechin gallate (EGCG), a catechin from green 
tea that induces apoptosis by targeting TP53, VEGF, and 
pRb [54]. The oil mixture formulation was based on the 
ability of these compounds to disrupt key mechanisms 
in cervical carcinoma progression, as evidenced by prior 
studies demonstrating their efficacy in reducing tumor 
growth and metastasis [45]. Cold-pressed and etheric 
extraction techniques preserved the bioactive components, 
with standardization ensured through High-Performance 
Liquid Chromatography (HPLC) analysis [55]. The blend 
included 25% quercetin 3-O-glucoside, 20% γ-tocopherol, 
15% β-caryophyllene, 20% kaempferol 3-O-glycoside, 
and 20% EGCG [56].

Molecular docking studies using 1-Click Docking 
software evaluated the efficacy of the oil mixture 
components compared to conventional chemotherapeutic 
agents. Binding affinities, measured as Gibbs Free Energy 
(ΔG) in Kcal/mol, were interpreted based on interaction 
strength: negative values (e.g., -8.5 Kcal/mol) indicated 
strong binding affinity, while positive values denoted weak 
interactions [57]. Selected molecular targets included 
p16INK4a (PDB ID: 1A5E), Ki-67 (PDB ID: 2AFF), VEGF 
VEGF (PDB ID: 3V2A), CEA (PDB ID: 2GK2), MMP-9 
(PDB ID: 5CUH), TP53 (PDB ID: 4QO1), and pRb 

(PDB ID: 1AD6) [58]. Natural compounds like quercetin 
3-O-glucoside exhibited the highest affinities across 
targets, particularly TP53, pRb, and VEGF, suggesting 
their potential as alternatives to chemotherapy [59].

The AI platform ChatGPT 4o optimized the formulation 
using molecular interaction data from over 10,000 
studies [60, 61]. In silico toxicity profiling and ADMET 
(Absorption, Distribution, Metabolism, Excretion, and 
Toxicity) predictions validated the efficacy and safety of 
these compounds, supporting their therapeutic potential 
in cervical carcinoma treatment. In the final phase of this 
study, the OpenAI ChatGPT-4o platform was employed as 
an advanced large language model (LLM)-based assistant 
to optimize data analysis, interpretation of docking results, 
and scientific writing. ChatGPT-4o was integrated into the 
research workflow as a hybrid tool for natural language 
generation, cross-referencing of scientific literature, and 
semantic clarification of protein–ligand interaction data.

Specifically, ChatGPT-4o was utilized to:
• Synthetically interpret docking scores and ligand 

binding affinities, providing comparative insights between 
natural compounds and standard chemotherapeutic agents.

• Validate molecular targets by cross-checking them 
against high-confidence data extracted from peer-reviewed 
biomedical literature indexed in PubMed and Scopus.

• Elucidate mechanisms of action by correlating 
the physicochemical and structural properties of active 
phytocompounds with known oncogenic pathways (e.g., 
TP53-pRb signaling, VEGF-mediated angiogenesis, HPV 
E6/E7 interference).

• Refine terminology and ensure lexical precision in 
scientific expression, improving manuscript clarity and 
adherence to international publication standards.

• Verify NLM-standard journal title abbreviations, 
molecular target nomenclature, and biochemical 
terminology consistency throughout the text.

• Generate tables and figures in editable formats (e.g., 
Excel and PowerPoint), based on data extracted from raw 
computational outputs.

The use of ChatGPT-4o was conducted under the direct 
supervision of the corresponding author, and its role was 
confined to supportive tasks that did not interfere with 
core scientific decision-making. The platform’s outputs 
were rigorously reviewed and validated by the research 
team to ensure scientific accuracy and methodological 
transparency. This integration significantly enhanced the 
manuscript’s structural consistency and interpretive depth, 
while maintaining compliance with ethical standards in 
the use of AI-assisted writing tools [62-64]. 

Results

The molecular docking analysis of conventional 
chemotherapeutic agents versus natural compounds from 
the oil mixture was performed against key molecular 
targets associated with cervical carcinoma, such as 
p16INK4a, Ki-67, VEGF, CEA, MMPs, TP53, pRb, and 
SCC. Binding affinities were measured in bond energy 
(Kcal/mol), indicating the interaction strength between 
ligand and target molecule (Table 1,2).

1. p16INK4a Natural compounds exhibited stronger 
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Type of Oil Scientific Name Mode of Production
Pumpkin oil Curcubita maxima Cold pressed oil
Horse Tail Equisetum arvense Cold pressed oil
Clove oil Syzygium aromaticum Etheric oil

Table 1. Composition Oil Blend Determined through the 
Query Procedure of the AI Platform ChatGPT 4o

Figure 1. Interaction of Apigenin-5-O-Glucoside with 
tumor Suppressor p16INK4a via 1-Click Docking Software 

binding affinities compared to conventional agents 
(Table 3). Apigenin 5-O-Glucoside displayed the highest 
binding affinity at -8.9 Kcal/mol (Figure 1), followed by 
Quercetin 3-O-Glucoside (-8.7 Kcal/mol), γ-Tocopherol 
(-7.9 Kcal/mol), and Kaempferol 3-O-glycoside (-7.6 
Kcal/mol). Conventional agents such as Paclitaxel and 
Pembrolizumab showed lower binding energies at -5.4 
Kcal/mol and -4.7 Kcal/mol, respectively. These results 
highlight the potential of natural compounds to inhibit the 
p16INK4a protein and disrupt cancer proliferation pathways.

2. Ki-67 Natural compounds demonstrated stronger 
affinities towards Ki-67 (Table 4). Quercetin 3-O-Glucoside 
(-9.1 Kcal/mol) (Figure 2), Apigenin 5-O-Glucoside (-8.8 
Kcal/mol), and Eugenyl Acetate/Eugenol (-8.1 Kcal/mol) 
outperformed the conventional drug Temsirolimus (-6.7 
Kcal/mol). β-Caryophyllene also showed a binding energy 
of -7.5 Kcal/mol. These findings suggest the potential of 
natural compounds to inhibit Ki-67, a marker critical for 
cancer proliferation.

3. VEGF For VEGF, the binding affinities (Table 5) 
of natural compounds such as Quercetin 3-O-Glucoside 
and Epigallocatechin gallate (-8.7 Kcal/mol) were 
significant, with Apigenin 5-O-Glucoside and Eugenol 

showing the strongest affinity at -8.8 Kcal/mol (Figure 3). 
Conventional agents like Paclitaxel (-4.7 Kcal/mol) and 
Pembrolizumab (-4.1 Kcal/mol) showed much lower 
affinities, highlighting the anti-angiogenic potential of 
natural compounds.

4. CEA Apigenin 5-O-Glucoside displayed the 
strongest binding affinity to CEA at -9.4 Kcal/mol 
(Figure 4), surpassing conventional agents like Paclitaxel 
(-6.7 Kcal/mol) and Pembrolizumab (-6.6 Kcal/mol). 

Figure 2. Interaction of Quercetin 3-O-Glucoside with 
Ki-67 via 1-Click Docking  

Type of Oil Scientific Name Main Chemical Components
Pumpkin oil Curcubita maxima Oleic Acid, g-Tocopherol, Sitosterol
Horse Tail Equisetum arvense Quercetin 3-O-glucoside, Apigenin 5-O-glucoside, Kaempferol 3-O-glycoside
 Clove oil Syzygium aromaticum Eugenol, Eugenyl Acetate, b-Caryophillene

Table 2. Natural, Biologically Active Organic Compounds Present within the Oil Blend 

Figure 3. Interaction of Eugenol with VEGF via 1-Click 
Docking 
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Figure 4. Interaction of Apigenin 5-O-Glucoside with 
CEA via 1-Click Docking 

Ligand Target 
Molecule

Molecular 
Affinity (Kcal/mol)

Cisplatin P16INK4a -5.5
Paclitaxel P16INK4a -5.4
Bevacizumab P16INK4a -4.8
Pembrolizumab P16INK4a -4.7
Topotecan P16INK4a -5.1
Curcumin P16INK4a -7.8
Resveratrol P16INK4a -8.2
Epigallocatechin gallate P16INK4a -8
Olaparib P16INK4a -5.8
Everolimus P16INK4a -6.7
Temsirolimus P16INK4a -5.9
Oleic Acid P16INK4a -3.7
g-Tocopherol P16INK4a -7.9
Sitosterol P16INK4a -7.9
quercetin 3-O-glucoside P16INK4a -8.7
apigenin 5-O-glucoside P16INK4a -8.9
kaempferol 3-O-glycoside P16INK4a -7.6
Eugenol P16INK4a -8
Eugenyl Acetate P16INK4a -8.8
b-Caryophillene P16INK4a -7.3

Table 3. Binding Affinities (Kcal/mol) from 1-Click 
Docking between Conventional Ligands and Oil Blend 
Compounds Targeting p16INK4a

Ligand Target 
Molecule

Molecular 
Affinity (Kcal/mol)

Cisplatin Ki-67 -3.3
Paclitaxel Ki-67 -2.9
Bevacizumab Ki-67 -3.6
Pembrolizumab Ki-67 -4.2
Topotecan Ki-67 -5.5
Curcumin Ki-67 -5.3
Resveratrol Ki-67 -7.7
Epigallocatechin gallate Ki-67 -8.6
Olaparib Ki-67 -6.9
Everolimus Ki-67 -4.9
Temsirolimus Ki-67 -6.7
Oleic Acid Ki-67 -4.9
g-Tocopherol Ki-67 -7.7
Sitosterol Ki-67 -7.9
quercetin 3-O-glucoside Ki-67 -9.1
apigenin 5-O-glucoside Ki-67 -8.8
kaempferol 3-O-glycoside Ki-67 -6.4
Eugenol Ki-67 -8.1
Eugenyl Acetate Ki-67 -8.1
b-Caryophillene Ki-67 -7.5

Table 4. Binding Affinities (Kcal/mol) from 1-Click 
Docking between Conventional Ligands and Oil Blend 
Compounds Targeting Ki-67. 

Figure 5. Interaction of Apigenin 5-O-Glucoside with 
MMP-9 via 1-Click Docking 

Quercetin 3-O-Glucoside also showed a strong interaction 
at -8.9 Kcal/mol, reinforcing the efficacy of natural 
compounds as therapeutic agents targeting CEA 
(Supplementary Table 1).

5. MMPs Matrix metalloproteinases (MMPs), 
particularly MMP-9, play a crucial role in cancer invasion 
and metastasis. Apigenin 5-O-Glucoside exhibited the 
highest affinity at -11.6 Kcal/mol (Figure 5), followed by 

Quercetin 3-O-Glucoside (-8.7 Kcal/mol) and Kaempferol 
3-O-glycoside (-8.1 Kcal/mol). Conventional agents like 
Paclitaxel (-7.1 Kcal/mol) and Pembrolizumab (-4.1 
Kcal/mol) demonstrated weaker affinities, suggesting 
the superior inhibitory potential of natural compounds on 
MMPs (Supplementary Table 2).

6. TP53 Quercetin 3-O-Glucoside and Apigenin 
5-O-Glucoside displayed the strongest binding affinities 
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Figure 6. Interaction of Quercetin 3-O-glucoside with 
TP-53 via 1-Click Docking 

Figure 7. Interaction of Eugenol with pRb via 1-Click 
Docking 

Ligand Target 
Molecule

Molecular Affinity 
(Kcal/mol)

Cisplatin CEA -6.1
Paclitaxel CEA -6.7
Bevacizumab CEA -6.4
Pembrolizumab CEA -6.6
Topotecan CEA -5.9
Curcumin CEA -7.7
Resveratrol CEA -8.1
Epigallocatechin gallate CEA -7.9
Olaparib CEA -7.8
Everolimus CEA -7.7
Temsirolimus CEA -6.9
Oleic Acid CEA -5.4
g-Tocopherol CEA -4.9
Sitosterol CEA -5.5
quercetin 3-O-glucoside CEA -8.9
apigenin 5-O-glucoside CEA -9.4
kaempferol 3-O-glycoside CEA -7.9
Eugenol CEA -8.8
Eugenyl Acetate CEA -7.9
b-Caryophillene CEA -6.7

Table 5. Binding Affinities (Kcal/mol) from 1-Click 
Docking between conventional Ligands and Oil Blend 
Compounds Targeting VEGF

to TP53 (-8.1 Kcal/mol each) (Figure 6), followed by 
Eugenol (-7.8 Kcal/mol) and Epigallocatechin gallate 
(-7.7 Kcal/mol). Conventional drugs like Paclitaxel (-3.1 
Kcal/mol) and Pembrolizumab (-4.1 Kcal/mol) showed 
significantly weaker affinities, further highlighting 
the efficacy of natural compounds in targeting TP53 
(Supplementary Table 3).

7. pRb Eugenol demonstrated a strong binding affinity 

to pRb at -8.0 Kcal/mol (Figure 7), surpassing γ-Tocopherol 
(-6.9 Kcal/mol) and Kaempferol 3-O-glycoside (-6.7 Kcal/
mol). Temsirolimus, with a positive binding energy of 
+3.4 Kcal/mol, indicated an unfavorable interaction with 
pRb (Supplementary Table 4). These findings reinforce 
the potential of natural compounds in inhibiting pRb, a 
key regulator of cell cycle progression.

Overall ,  the docking analysis consistently 
demonstrates that natural compounds, including Apigenin 
5-O-Glucoside, Quercetin 3-O-Glucoside, Eugenol, 
γ-Tocopherol, and Epigallocatechin gallate, exhibit 
superior binding affinities across all key targets compared 
to conventional agents. These results suggest their 
potential as alternative or adjunctive therapies for cervical 
carcinoma, warranting further studies to validate their 
therapeutic efficacy in clinical settings.

Discussion

The molecular docking analysis highlights the 
superior efficacy of natural compounds from a vegetable 
oil mixture compared to conventional chemotherapeutic 
agents in targeting key molecules involved in cervical 
carcinoma progression. Natural compounds such as 
Quercetin 3-O-glucoside, γ-Tocopherol, Kaempferol 
3-O-glycoside, and Epigallocatechin gallate demonstrated 
stronger binding affinities for crucial targets like p16INK4a, 
Ki-67, VEGF, CEA, MMPs, TP53, and pRb. Apigenin-
5-O-Glucoside showed the highest affinities, including 
a binding energy of -11.6 Kcal/mol with MMP-9, 
reflecting its potent anticancer properties such as apoptosis 
modulation and angiogenesis inhibition. Similarly, 
γ-Tocopherol exhibited robust interactions with Ki-67 
(-7.7 Kcal/mol) and TP53 (-7.1 Kcal/mol), supporting its 
tumor-suppressive role, while Kaempferol 3-O-glycoside 
demonstrated strong affinities with VEGF (-7.9 Kcal/mol) 
and MMPs (-8.1 Kcal/mol), indicating its anti-angiogenic 
and anti-metastatic potential.
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