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Introduction

Breast cancer is a complex disease and remains one 
of the leading causes of death among women worldwide. 
It is classified into four main subtypes based on hormone 
receptor expression: estrogen receptor-positive (ER+), 
progesterone receptor-positive (PR+), human epidermal 
growth factor receptor-2-positive (HER2+), and triple-
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negative breast cancer (TNBC) [1, 2]. According to 
GLOBOCAN 2020 data, breast cancer ranks as the 
second most commonly diagnosed cancer after lung 
cancer, accounting for approximately 2.3 million new 
cases (11.7%) [3]. Current treatment strategies include 
neoadjuvant chemotherapy (administered prior to surgery), 
surgical tumor removal, and radiotherapy. Despite these 
available treatments, significant challenges remain in 
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breast cancer therapy, particularly in overcoming drug 
resistance, accelerating the discovery of new drugs from 
novel compounds, and predicting patient responses [4, 5].

Bioinformatics approaches, together with omics-based 
methods, provide powerful tools for the in-depth analysis 
of genes, pathways, and molecular networks involved 
in disease progression and therapeutic response. These 
strategies also play a pivotal role in accelerating the drug 
discovery process and enhancing the efficacy of breast 
cancer treatments by combining existing conventional 
drugs with single natural compounds or plant-derived 
natural products through the identification of potential 
molecular targets. Unlike conventional laboratory methods, 
which are often time-consuming and resource-intensive, 
bioinformatics utilizes advanced computational tools to 
efficiently analyze large-scale genomic and proteomic 
datasets [4, 6, 7]. This computational approach enables 
researchers to predict drug efficacy, uncover mechanisms 
of resistance, and prioritize candidate genes or pathways 
for further experimental validation, thus significantly 
reducing the time and cost associated with preclinical 
research. For example, the integration of bioinformatics 
with omics-based techniques allows the identification 
of key signaling pathways implicated in breast cancer 
progression, thereby guiding the development of more 
targeted and effective therapeutic strategies [8].

A bioinformatics workflow that begins with data 
mining, followed by GO enrichment and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) pathway 
analysis, protein-protein interaction (PPI) network 
construction and hub gene selection, genetic alteration 
assessment, and survival analysis can be applied to 
explore the molecular mechanisms underlying breast 
cancer therapeutic responses. Additionally, this approach 
facilitates the identification of potential target genes to 
support the rapid discovery of new drugs from single 
natural compounds and plant-derived natural products, 
including TCMs, as well as their potential to enhance the 
efficacy of conventional drugs when used in combination 
[9–11].

Therefore, this review aims to highlight the application 
of bioinformatics and omics-based approaches in 
identifying potential target genes to accelerate the drug 
discovery process and improve the effectiveness of breast 
cancer therapy through the combination of existing 
conventional drugs with single natural compounds or 
plant-derived natural products. The primary focus is 
on recent studies from the past five years that have 
successfully identified relevant potential target genes using 
bioinformatics approaches, including data mining, GO 
and KEGG pathway analysis, PPI network construction 
and hub gene selection, genetic alteration, and survival 
analysis. Furthermore, this review discusses how this 
information can serve as a valuable foundation for future 
research in developing effective breast cancer therapies 
using bioinformatics tools and various omics-based 
databases, web servers, or software.

Materials and Methods

Search strategy
The literature search was performed using three 

major scientific databases: PubMed, ScienceDirect, 
and Scopus. Boolean operators “OR” and “AND” were 
applied to combine the search items, which included: 
“Bioinformatics approaches, target gene, breast cancer, 
identification, data mining, gene ontology enrichment, 
and KEGG pathway, protein-protein interaction (PPI), 
hub gene, genetic alteration, and survival analysis.” These 
keywords were used to identify original research articles 
published within the last five years, up to August 2024.

Study screening and selection
A total of 3,882 articles were retrieved from PubMed, 

ScienceDirect, and Scopus (Figure 1). After removing 
duplicates (n = 82), a total of 3,800 original articles 
remained for further screening. The compilation of articles 
and removal of duplicates were conducted using the 
Rayyan web-based reference management tool (https://
www.rayyan.ai) [12].

Data extraction
The data extraction process focused on highlighting 

the use of omics-based databases, web servers, and 
software in the identification of potential target genes for 
breast cancer treatment. This involved exploring single 
natural compounds and natural products derived from 
plants or TCMs, as well as their impact on enhancing 
the effectiveness of conventional drugs when used in 
combination. The bioinformatics analysis included data 
mining, GO, and KEGG pathway analysis, PPI network 
and hub gene selection, genetic alteration and survival 
analysis across various breast cancer subtypes. Following 
the screening process, a total of 70 primary articles were 
selected for review (Figure 1). The extracted data were 
then organized into a narrative according to the specified 
writing guidelines and format requirements.

Results

Bioinformatics analysis involves the application 
of informatics techniques, derived from fields such as 
applied mathematics, computer science, and statistics, 
to process and interpret biological data. It also integrates 
concepts from macromolecular physics, biology, and 
chemistry, applying bioinformatics approaches to 
generate large-scale, detailed information about these 
molecules [13]. In general, several studies have focused 
on bioinformatics approaches (Figure 2) for identifying 
potential target genes in breast cancer treatment, utilizing 
single natural compounds, natural products derived from 
plants, or TCMs. These studies also examine the effects of 
conventional drugs when combined with natural products, 
including data mining, GO and KEGG pathway analysis, 
PPI network and hub gene analysis, genetic alteration and 
survival analysis, all performed using various omics-based 
databases, web servers, and software tools [9–11].
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such as anhydroicaritin, schisandrin, CKI, Xihuang Pill, 
borneol, and trastuzumab combinations (Supplementary 
Table 1).

Discussion

TCGA is an omics-based database that provides 
extensive genomic information for cancer research, 
including gene-expression profiles, mutations, and 
epigenetic data from various tumor types [43]. This 
database supports the linkage of cancer genome data with 
investigational therapies, including relevant compounds 
with potential anticancer properties such as [10]-Gingerol, 
γ-Mangostin, Sulfasalazine, and CKI [19, 29, 44–46]. 
However, the data is specific to cancer and does not 
encompass the entire human genome.

PubChem is a chemical database that contains a wide 
range of molecules, from small compounds to large 
macromolecules such as nucleotides, carbohydrates, 
lipids, peptides, and chemically modified macromolecules. 
It supports target identification by providing data 
on bioactive compounds, their molecular structures, 
biological activities, and interactions with various proteins 
and genes. However, the database is limited to compounds 
that have already been published, with no inclusion of new 
data [47]. There are 13 studies (Supplementary Table 1) 
on various single compounds such as anhydroicaritin and 
Paclitaxel [20, 42] as well as combinations of antibreast 
cancer agents such as honokiol and trastuzumab on the 
HER2+ breast cancer subtype that used this database to 
identify differentially expressed target genes [48].

The STITCH is a web server designed to integrate and 
analyze interactions between chemical compounds and 
proteins, as well as their interaction networks, based on 
data collected from several other major databases. Similar 
to PubChem, STITCH is also limited to compounds that 
have already been published [49]. Through the analysis 
of these interaction networks, researchers can explore the 
relationships between compounds and their gene or protein 
targets. This approach is highly useful in the discovery 
of potential therapeutic targets, particularly in cancer 
research and drug discovery. A total of 14 studies have 
utilized the STITCH database in the process of identifying 
potential target genes using various compounds across 
specific cancer subtypes (Supplementary Table 1).

In addition, several omics-based databases and web 
servers are utilized during the data mining stage. These 
include DisGeNET, which focuses on the relationship 
between genes and diseases, making it particularly useful 
for target gene identification by providing comprehensive 
data on genes and genetic variants associated with various 
diseases, including cancer. However, this makes it is less 
suitable for data analysis that requires detailed information 
on biological pathways, protein interactions, or specific 
molecular mechanisms [50]. OMIM focuses on the 
relationship between genes and hereditary diseases and 
provides important information about genes associated 
with certain pathological conditions; however, its data 
is limited to known genetic diseases [51]. DrugBank 
provides detailed information on drugs, including 
pharmacokinetics, pharmacodynamics, drug interactions, 

Data Mining
Data mining is the process of extracting valuable 

information from large and complex data sets [14]. It can 
serve as a supporting method in the search for target genes 
using various databases to improve the success of breast 
cancer treatment, either through single or combination 
therapy [15]. In the context of bioinformatics and breast 
cancer research, data mining is used to explore various 
chemical compounds, drugs, and natural products 
with potential anticancer activity. It also facilitates the 
identification of differentially expressed genes (DEGs) 
relevant to specific breast cancer subtypes, thereby 
increasing therapeutic effectiveness [16]. This stage 
typically utilizes omics-based databases or web servers 
(Table 1). Examples of such resources include the Gene 
Expression Omnibus from the National Center for 
Biotechnology Information (NCB GEOI), Swiss Target 
Prediction, SuperPred, GeneCards, Search Tool for 
Interactions of Chemicals (STITCH), Traditional Chinese 
Medicine System Pharmacology (TCMSP), The Cancer 
Genome Atlas (TCGA), and others.

NCBI GEO is an omics-based database that collects 
data related to gene expression and gene function analysis. 
However, a limitation of NCBI GEO is that its metadata 
is sometimes insufficiently detailed for specific studies. 
Information such as experimental conditions, techniques 
applied, or the design of experiments is not always 
described in sufficient detail, making the interpretation 
of results challenging without additional information 
[17]. This database is useful for identifying potential 
target genes and is frequently employed in breast 
cancer research involving various natural compounds 
or traditional medicines, both as single agents and in 
combination therapies (Supplementary Table 1). These 
include trastuzumab, Compound Kushen Injection (CKI), 
paclitaxel, honokiol, and tamoxifen [9,18–21]. The use 
of NCBI GEO dominates data searches and is applied 
across multiple breast cancer subtypes, such as luminal 
[10,22–27] and TNBC [28–36].

Swiss Target Prediction is a database designed to 
predict the molecular targets of bioactive compounds 
based on their chemical structure. However, this database 
does not include all potential chemical compounds, which 
may result in missing new targets or compounds with 
undetected therapeutic effects [37]. This database has been 
used in several studies, including research on trastuzumab, 
schisandrin, honokiol, and propolis [9, 38–40].

GeneCards provides detailed information on human 
genes, including their functions, expression patterns, and 
disease associations. However, unlike databases such as 
GTEx or TCGA, GeneCards does not offer real-time gene-
expression data, which allows for a more detailed analysis 
across various tissues and conditions [41]. Despite this 
limitation, GeneCards serves as an important resource 
for identifying target genes of specific compounds in 
breast cancer research, including compounds such as 
anhydroicaritin and schisandrin [39, 42]. A total of 22 
studies (Supplementary Table 1) that include various 
natural compounds or traditional medicine involved in 
breast cancer research both single and in combination 
using the GeneCards database. These include compounds 
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Bioinformatics 
approaches

Omics-based resources Category Link

Data Mining ArrayExpress Database https://www.ebi.ac.uk/ArrayExpress/

Bioinformatics Analysis Tool for Molecular mechanism of 
Traditional Chinese Medicine (BATMAN-TCM)

Web server http://bionet.ncpsb.org.cn/batman-tcm 

BindingDB Database https://bindingdb.org/bind/

BioCrick Web server http://www.biocrick.com/

Comparative Toxicogenomics Database (CTD) Database https://ctdbase.org/

Cancer Cell Line Encyclopedia (CCLE) Database https://portals.broadinstitute.org/ccle

ChEMBL Database https://www.ebi.ac.uk/chembl/

ChemMapper Web server http://www.chemmapper.com/

Developmental Therapeutics Program (DTP) Database https://dtp.cancer.gov/

DisGeNET Database http://www.disgenet.org/

Drug Bank Database https://go.drugbank.com/

Existing Traditional Chinese Medicine (ETCM) Database http://www.etcm.info/

European Genome-Phenome Archive (EGA) Database https://ega-archive.org/

National Center for Biotechnology Information Gene Expres-
sion Omnibus (NCBI GEO)

Database https://www.ncbi.nlm.nih.gov/geo/

Gene Set Enrichment Analysis (GSEA) Web server http://software.broadinstitute.org/gsea/index.jsp

GeneCards Database https://www.genecards.org/

GreenMolBD http://www.greenmolbd.com/

HERB Database https://herb.ac.cn/

Herbal Ingredients Targets 2.0 (HIT 2.0) Web server http://lifecenter.sgst.cn:8000/

Indian Medicinal Plants, Phytochemistry and Therapeutics 
(IMPPAT)

Web server http://www.imppat.com/

KNApSACK Database http://www.knapsackfamily.com/

MalaCards Database https://www.malacards.org/

Online Mendelian Inheritance in Man (OMIM) Database https://omim.org/

PharmMapper Web server http://www.pharmmapper.org/

PharmGkb Database https://www.pharmgkb.org/

PubChem Database https://pubchem.ncbi.nlm.nih.gov/

Similarity Ensemble Approach (SEA) Web server http://sea.bkslab.org/

Search Tool for Interactions of Chemicals (STITCH) Database http://stitch.embl.de/

STRING Web server https://string-db.org/

SuperPred Web server http://prediction.charite.de/

Swiss Target Prediction Web server http://www.swisstargetprediction.ch/

SwissADME Web server http://www.swissadme.ch/

SymMap Web server http://symmap.ulti-map.com/

The Cancer Genome Atlas (TCGA) Database https://www.cancer.gov/about-nci/organization/ccg/
research/structural-genomics/tcga

Traditional Chinese Medicine Integrated Database (TCMID) Database http://www.megabionet.org/tcmid/

Traditional Chinese Medicine System Pharmacology (TCMSP) Database http://www.cuilab.cn/tcmsp.php

Terapeutic Target Database Database http://bidd.nus.edu.sg/group/cjttd/

TargetMol Database http://www.targetmol.com/

TargetNet Database http://targetnet.scbdd.com/

UALCAN Web server http://ualcan.path.uab.edu/

UCSC Xene database Database https://xenabrowser.net/datapages/

UniProt Database https://www.uniprot.org/

canSAR Black Database https://cansar.icr.ac.uk/

GO and KEGG 
pathway 
enrichment 
analysis

BATMAN-TCM Web server https://cran.rproject.org/

WebGestalt Web server https://www.webgestalt.org/

Database for Annotation, Visualization, and Integrated 
Discovery (DAVID)

Web server https://david.ncifcrf.gov/

GEN ONTOLOGY Database Database http://geneontology.org/

Table 1. A Summary of the Bioinformatics Approaches and Omics-Based Databases, Web Servers, and Software 
Used in the Search for Potential Target Genes for Breast Cancer Treatment from Single Natural Compounds, Natural 
Products from Plants, or TCMs. It also examines their impact on enhancing the effectiveness of conventional drugs 
when used in combination.
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Bioinformatics 
approaches

Omics-based resources Category Link

GO and KEGG 
pathway 
enrichment 
analysis

KEGG Database Database https://www.kegg.jp/

ShinyGO Web server http://bio.tools/shinygo

Metascape Web server https://metascape.org/

The Harmonizome software Software https://www.harmonizome.org/

Enrichr Web server https://maayanlab.cloud/Enrichr/

CluePedia Software https://apps.cytoscape.org/apps/cluepedia 

ClueGO plug in Cytoscape Software https://apps.cytoscape.org/apps/cluego

SRplot Web server http://bio.tools/srplot

PANTHER Web server http://pantherdb.org/

Bioconductor (clusterProfiler) Software https://www.bioconductor.org/packages/release/bioc/html/
clusterProfiler.html

Bioconductor (DOSE) Software https://bioconductor.org/packages/release/bioc/html/DOSE.
html

Bioconductor (GSEABase) Software https://bioconductor.org/packages/release/bioc/html/GSEA-
Base.html

Bioconductor (GSVA) Software https://bioconductor.org/packages/release/bioc/html/GSVA.
html

SIGNOR Web server https://www.signor.dbcls.jp/

PPI network 
and hub gene 
selection

STRING Web server https://string-db.org/

Cytoscape Software https://cytoscape.org/

GeneMANIA Software https://genemania.org/

Genetic 
Alteration

cBioPortal Web server https://www.cbioportal.org/

TIMER Web server http://timer.cistrome.org/

Survival analysis Kaplan–Meier Plotter Web server http://gepia.cancer-pku.cn/

Breast Cancer Gene-Expression Miner version 4.7r Web server https://bcgenex.ico.unicancer.fr/

GEPIA Web server https://kmplot.com/analysis/

OncoLnc Web server http://www.oncolnc.org/

Table 1. Continued

and chemical structures. Nevertheless, its primary focus 
is confined to drugs used in medical practice [52]. 
PharmMapper is designed to identify potential drug targets 
from chemical compounds based on pharmacological 
data, enabling rapid mapping of the relationships between 
chemical compounds and drug targets. Despite this, its 
accuracy is limited when identifying potential targets in 
newly discovered compounds [53]. SEA applies a chemical 
structure similarity approach to predict molecular targets, 
meaning its analysis results are confined to compounds 
that share structural similarities with known compounds, 
making it less effective for compounds with unique or 
unknown structures [54].

There are also databases and web servers, such as the 
Therapeutic Target Database which provide information 
on therapeutic targets and drug molecules related to 
cancer. Similar to other databases, there may be a delay 
in data updates, meaning that the most recent information 
on a specific drug target or compound may not yet be 
available [55]. BindingDB offers binding affinity data of 
small compounds to relevant target proteins in cancer; 
however, it only includes interactions that have been 
experimentally verified [56]. TargetNet and TargetMol 
utilize computational engines to predict drug targets, 
primarily relying on the chemical similarity of compounds 
to known targets. As a result, their effectiveness is reduced 
when predicting targets for compounds with unique or 

novel chemical structures [57]. canSAR Black integrates 
information from multiple fields including biology, 
chemistry, pharmacology, structural biology, cellular 
networks, and clinical data, to support the identification 
of therapeutic targets in cancer. Nevertheless, its scope is 
limited to specific cancer types and lacks comprehensive 
in-depth genetic studies [58]. PharmGkb provides data on 
genetic associations with drug response and is valuable 
for understanding treatment responses in cancer. However, 
access to certain detailed data or advanced analytical tools 
may require special permissions, limiting general users in 
conducting deeper data exploration [59]. The Comparative 
Toxicogenomics Database links chemical compounds 
with genes and diseases to aid in the identification of 
relevant targets. However, it does not include all chemical 
compounds or molecular targets within its database [60]. 
The UCSC Xena Database offers genomic data for cancer 
gene expression and mutation analysis, but it lacks detailed 
information on specific genetic mechanisms [61].

UALCAN enables the analysis of breast cancer gene 
expression, but it does not cover all cancer types and is 
limited to gene-expression data [62]. STRING analyzes 
protein-protein interactions, helping to understand 
molecular networks in cancer therapy. Therefore, to 
conduct an in-depth data mining analysis, STRING 
should be used in conjugation with other tools that can 
provide additional biological context or quantitative 
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Figure 1. PRISMA Flow Diagram of the Literature Search Strategy and Selection Process in This Narrative Review. 

data, such as TCGA, NCBI GEO, or DisGeNET [63]. 
IMPPAT supports the discovery of potential targets from 
herbal compounds, but it is limited to anticancer drugs 
and lacks detailed information on other pathways [64]. 
HERB integrates data on herbal-based therapies and 
active molecules, but its scope is restricted to specific 
herbal medicines, and the knowledge in this field is 
still limited [65]. SwissADME aids in assessing the 
pharmacokinetic properties of cancer compounds, but 
the predictions are based solely on computational data 
and require laboratory validation [66]. ChEMBL provides 
information on bioactive compounds and their activities, 
including chemical, bioactivity, and genomic data, which 
helps translate genomic information into effective drugs. 
However, the data in ChEMBL predominately relate 
to the preclinical activity of chemical compounds, and 

data on clinical effectiveness or advanced-phase studies 
are often unavailable [67]. BioCrick is a database that 
collects information related to bioactive compounds 
used in pharmacology and toxicology, offering detailed 
information on chemical structures, biological activity, 
and molecular targets. However, interpretating chemical 
structure data requires additional expertise. The Cancer 
Cell Line Encyclopedia provides data on gene expression 
and genetic mutations in cancer cells, but the data are 
limited to specific cancer cell lines, not covering all 
genes or pathways [68]. The Developmental Therapeutics 
Program is a database from the National Cancer Institute 
that provides information on chemical compounds and 
their anticancer activity. The data are available for research 
on anticancer compounds and their effects on various 
cancer cells, but the focus is primarily on anticancer 
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Figure 2. The Workflow of Bioinformatics Approaches Applied in the Search for Potential Target Genes for Breast 
Cancer Treatment Using Various Omics-based Databases, Web Servers and Software. This process involves the analy-
sis of single natural compounds, natural products derived from plants, or TCMs, as well as the evaluation of their 
combined effects with conventional drugs to enhance treatment efficacy across different types of breast cancer. 

assays and does not cover the full range of biological 
activity [69]. DrugBank provides detailed information on 
drugs, including pharmacokinetics, pharmacodynamics, 
drug interactions, and chemical structure, but is limited 
to drugs used in medical practice [70].

UniProt was also utilized in the data mining stage 
(Table 1), providing protein-related data, including those 
associated with cancer, such as information on protein 
structure, function, and interactions. However, it lacks 
detailed data on gene expression and mutations [71]. 
KNApSACK offers data on plant metabolites that may 
be relevant to cancer targets, but it does not include other 
types of chemical compounds [72]. SuperPred predicts 
compound targets based on structural similarity, which 
limits its ability to predict the activity of compounds with 
unique or previously unstudied structures [73]. MalaCards 
compiles data on the association of genes with diseases, 
including cancer, from various sources. However, due to 
the large volume of data, it can sometimes be challenging 
to locate specific information [74]. HIT 2.0 provides data 
on medicinal plants and their targets; however, its data is 
limited to published interactions and does not consider 
potential interactions that have yet to be reported [75]. 
ChemMapper predicts molecular targets of compounds 
through pharmacophore similarity. If a compound does 
not share pharmacophore similarity with previously tested 
compounds, its predictive accuracy may be reduced or 
unavailable [76]. Gene Set Enrichment Analysis (GSEA) 
enables the analysis of gene expression and cancer-related 

pathways but requires advanced bioinformatics knowledge 
for accurate interpretation of the results [77]. ArrayExpress 
stores gene-expression data for target analysis; however, 
it relies on existing gene-expression data, meaning that if 
data related for a particular compound or gene is not yet 
available in the database, the analysis may be incomplete 
or inaccurate [78]. GreenMolBD provides data on plant 
bioactive compounds, but it does not include all chemical 
compounds with pharmacological activity [79]. The 
European Genome-Phenome Archive offers genotype 
and phenotype data for target analysis in breast cancer, 
but its data is limited to studies that have been deposited 
in this database [80].

Some databases also offer information related to 
TCM, such as TCMSP, which facilitate drug discovery 
from herbal medicines by integrating information 
on pharmacochemistry, Absorption, Distribution, 
Metabolism, and Excretion properties, drug feasibility, 
drug targets, related diseases, and interaction networks. 
Similarly, BATMAN-TCM, SymMap, Existing Traditional 
Chinese Medicine (ETCM), and the Traditional Chinese 
Medicine Integrated Database (TCMID) also intregated 
TCM data to explore the molecular mechanisms of herbal 
compounds, including potential cancer targets. However, 
the data in some of these web servers are limited to specific 
medicinal plants and their interactions, with less emphasis 
on compounds used in modern medicine [81–84].

Data mining plays a vital role in advancing the 
understanding of target genes within compounds and 
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molecular mechanisms that were previously unknown, 
thereby supporting progress in the field of molecular 
oncology. By utilizing various omics-based databases 
or web servers, researchers can analyze the molecular 
mechanisms of single natural compounds and natural 
products derived from plants or TCMs, enabling the 
identification of more effective strategies for breast cancer 
treatment. As more data become available, this approach 
will continue to evolve, facilitating the discovery of more 
potential targets and improving treatment outcomes in 
the future.

GO and KEGG Pathway Analysis
Complex diseases, such as breast cancer, are often 

driven by mutations in multiple genes. Identifying 
disease-associated genes is essential for understanding 
the biological mechanisms underlying the disease. 
GO and KEGG pathway enrichment analysis provide 
information on the biological processes, metabolic 
pathways, molecular functions, and disease classifications 
of DEGs [85]. GO classifies genes into three main 
categories: biological process, molecular function, and 
cellular component. This analysis helps to determine 
the roles of cancer-related genes in specific biochemical 
activities, cellular structures, or molecular interactions 
[86]. KEGG focuses on metabolic pathways and 
molecular signaling networks that are disrupted in certain 
diseases, including cancer. By mapping DEGs to KEGG 
pathways, researchers can gain insights into the cellular 
and molecular mechanisms involved in the development 
and progression of breast cancer [87].

Several databases, web servers, or software tools 
are commonly used to perform GO and KEGG pathway 
enrichment analyses, including DAVID, WebGestalt, 
ShinyGO, ClusterProfiler, and others (Table 1). These 
tools are selected based on the specific research needs 
related to various compounds and breast cancer subtypes. 
For instance, the DAVID database is frequently used for 
GO and KEGG pathway enrichment analysis of various 
single natural compounds, natural products derived 
from plants, or TCMs. It is also applied to study their 
potential to enhance the efficacy of conventional drugs 
when used in combination for breast cancer treatment 
(Supplementary Table 1). Examples include compounds 
such as [10]-Gingerol, Naringenin, CKI, Oleanolic 
acid with tamoxifen, Paeoniflorin with tamoxifen, and 
Berberine combined with tamoxifen [19, 23, 29, 88, 89]. 
This is because DAVID offers a complete set of functional 
annotation tools that enables researchers to interpret the 
biological significance of large gene lists, integrating 
information from various functional annotation sources. 
However, DAVID also has limitations, such as offering 
less interactive and less visually engaging representations 
of analysis results compared to tools like WebGestalt or 
ShinyGO [90].

WebGestalt is a bioinformatics platform used for 
gene functional analysis, including GO, KEGG pathway 
analysis, and GSEA of omics-based datasets [91,92]. 
However, it offers fewer options for advanced analysis 
or parameter customization compared to tools such as 
Bioconductor. This platform has been used to analyze 

various single natural compounds or natural products 
derived from plants, either individually or in combination, 
to enhance the sensitivity of conventional drugs in breast 
cancer treatment (Supplementary Table 1). Examples 
include the use of Tangeretin alone or in combination with 
tamoxifen, as well as borneol with trastuzumab, and other 
compounds such as Hesperetin, Hesperidin, Naringenin, 
and Nobiletin [93–99].

ShinyGO is a web-based tool designed for gene 
annotation analysis, including GO and pathway analysis 
such as KEGG, while also providing interactive 
visualization of analysis results through graphs and 
functional networks. This allows users to explore results 
in real time with interactive and visually appealing graph 
representations. However, ShinyGO is limited in flexibility 
compared to R-based tools like clusterProfiler, particularly 
for analyzing more complex analysis [92]. There are two 
studies that have employed ShinyGo in the GO and KEGG 
pathway analysis stages, including research on Aporphine 
Alkaloid and Epigallocatechin gallate (EGCG), as well 
as Epicatechin (EC), Epigallocatechin (EGC), and 
Epicatechin gallate (ECG) [100,101].

In addition, several databases, web servers, or software 
tools are commonly used in GO and KEGG pathway 
analysis (Table 1). The GO Database provides structured 
information on gene function, biological processes, 
and cellular components. However, it has limitations 
when applied to complex analyses, as it requires a good 
knowledge of GO terminology and bioinformatics [102]. 
Disease Ontology Semantic Enrichment (DOSE) is used 
to visualize the association of genes with diseases based 
on the disease ontology database. It is suitable for rapid 
GO and pathway enrichment analysis, as it provides 
live graphical representation of the results. However, it 
requires knowledge of genomic analysis and proficiency 
in R programming [103]. The KEGG Database integrates 
information on biological pathways, drugs, and genomes, 
supporting pathway analysis relevant to breast cancer. 
However, accurate gene annotation is essential to avoid 
misinterpretation of pathways, and access to the full data 
requires a subscription [104]. Metascape is an online tool 
used for genomic data analysis, including GO and KEGG, 
offering visualization and clustering features. However, 
its analysis results depend on the frequency and accuracy 
of database updates [105].

Signaling Network Open Resources provides 
signaling pathway interaction data relevant to cancer, 
including GO and KEGG enrichment results, along with 
access to various genetic interaction datasets. However, 
regular data updates are necessary to maintain accuracy 
[106]. Enrichr is a web-based tool designed for genetic 
analysis, allowing for quick and easy enrichment of GO, 
KEGG, and other pathways. It is particularly suitable for 
rapid initial analysis, as it requires no programming skills 
and offers clear, easy-to-interpret outputs. However, it 
lacks the flexibility of R-based tools for more in-depth 
analysis, and its results depend on database updates, which 
may not always include the most recent information [107].

CluePedia and ClueGO, which are Cytoscape plugins, 
can also be used for the visualization and analysis of 
biological pathway networks. These tools support PPI 
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analysis and visualization of GO networks. However, they 
may be challenging to use without a good understanding 
of genetic pathways [108, 109]. Srplot is a web-based 
tool designed for visualizing gene expression, survival 
data, and pathway analysis. It integrates omics-based 
data to provide insights into gene-expression patterns, 
survival outcomes, and their association with functional 
annotations such as GO. Although Srplot can display the 
association of genes and biological processes, it may not 
be as comprehensive as GO-specific databases like DAVID 
or Bioconductor [110].

Protein Analysis Through Evolutionary Relationships 
(PANTHER) offers genetic analysis, including GO and 
KEGG enrichment, as well as PPI mapping across multiple 
species. However, database updates are required to ensure 
result accuracy [111]. Biological Annotation Tool for 
Molecular mechanism of Traditional Chinese Medicine 
(BATMAN-TCM) is a web-based tool that integrates 
omics-based data, including gene expression, protein-
protein interactions, and pathway databases such as GO 
and KEGG. It facilitates the identification of molecular 
mechanisms, potential targets, and related pathways 
in TCM applications. BATMAN-TCM is particularly 
useful for exploring the biological functions of herbal 
medicines and identifying potential biomarkers for drug 
development. However, its data limitations may restrict 
its application to certain species or disease conditions, 
which means it may not always provide relevant results 
for all studies [84]. Harmonizome provides easy access to 
thousands of genetic datasets, including GO and KEGG 
annotations, and protein-protein interactions, making it a 
user-friendly platform for data exploration. However, its 
data may not always reflect the latest findings and may 
lack the depth of detailed analysis available in specialized 
tools [112].

ClusterProfiler, DOSE, GSEABase, and GSVA are 
tools within Bioconductor that provide R-based analysis 
for GO and KEGG pathway enrichment, each offering 
specific strengths and limitations. ClusterProfiler delivers 
high flexibility in analysis and advanced visualization; 
however, it requires a steep learning curve and a basic 
understanding of R programming. DOSE is more 
user-friendly for performing quick GO and pathway 
enrichment analysis, although it also presents a steep 
learning curve and offers limited flexibility. GSEABase 
provides high flexibility in gene-expression analysis and 
allows for customization of settings, but it demands strong 
knowledge of R programming and genomic analysis, and 
its are highly dependent on the quality of the input data. 
GSVA enables unsupervised pathway analysis, making 
it effective for evaluating time-series data; however, its 
performance relies on accurate annotation and it may lack 
sensitivity in detecting small changes.

GO and KEGG pathway analysis play a crucial role 
in understanding the molecular complexity of breast 
cancer. The use of databases such as DAVID, along 
with web servers and other bioinformatics software, 
assist researchers in identifying biological pathways 
and potential target genes that could serve as the basis 
for developing new therapies across various subtypes of 
breast cancer. Notably, the pathways identified through 

these analyses, including apoptosis, NF-B, and hormone 
signaling pathways, may become key focal points in future 
drug development and therapeutic strategies.

PPI Network and Hub Gene Selection
Proteins play a vital role in determining biological 

functions, as most cellular activities are regulated through 
interactions between proteins. Understanding these 
protein-protein interactions is essential for understanding 
their roles within the cell. PPI analysis also enables more 
accurate predictions of potential interactions between 
proteins, facilitating interaction mapping [113]. This 
approach not only helps to validate experimental results 
but also assists in selecting potential targets for further 
investigation. Additionally, PPI analysis allows for 
the exploration of protein interactions across multiple 
levels, ranging from metabolic pathways and cellular 
processes to the organism as a whole [114]. Molecular 
interaction networks provide valuable visualization of 
complex cellular processes, which are often difficult to 
interpret due to their complexity. Cancer-specific PPIs 
are also useful in linking and mapping both common 
and rare mutations, demonstrating that key mutations in 
breast cancer can significantly alter interaction patterns 
[115]. Through PPI network analysis, utilizing omics-
based databases and software tools such as STRING, 
Cytoscape, and GeneMANIA (Table 1), researchers have 
identified hub genes. These include proteins characterized 
by a high degree of connectivity within the network and 
their involvement in many interactions, suggesting their 
central role in the biological processes underlying cancer. 
In the context of breast cancer, PPI networks have been 
employed to investigate the effects of various single 
natural compounds, plant-derived natural products, and 
TCMs. Furthermore, these networks have been used 
to assess the potential of such compounds to enhance 
the effectiveness of conventional drugs when used in 
combination for breast cancer treatment (Supplementary 
Table 1).

The Search Tool for the Retrieval of Interacting 
Genes/Proteins (STRING) is a database that provides a 
comprehensive resource for both known and predicted 
protein-protein interactions [63]. STRING is widely used 
for mapping protein-protein interactions and is often 
complemented by Cytoscape software to further analyze 
hub genes within a study [116]. Cytoscape is a powerful 
tool for visualizing molecular interaction networks, 
integrating gene-expression profiles and other datasets, 
and identifying hub genes based on specific parameters. 
It enables users to construct interaction networks between 
chemical compounds and biological targets. Additionally, 
this software facilitates the analysis of the significance of 
nodes within the network using parameters such as degree, 
betweenness, and closeness centrality. It also supports 
the integration of data from multiple sources, enabling 
more in-depth analysis, while its interactive visualizations 
help simplify the understanding of complex biological 
networks [116].

Various single natural compounds, plant-derived 
natural products, and TCMs, along with their effects 
on enhancing the efficacy of conventional drugs when 
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used in combination for breast cancer treatment, have 
been studied using STRING for mapping protein-protein 
interactions, followed by Cytoscape for hub gene 
analysis. These compounds include anhydroicaritin, 
propolis, cardiac glycosides from Vernonia amygdalina, 
schisandrin, Hesperetin, Curcumin, Zingiber officinale 
(Ginger) and Allium sativum (Garlic) extract, Xiaoyaosan, 
CKI, Si-Wu-Tang, and combinations such as Tangeretin 
with tamoxifen, borneol with tamoxifen, and Honokiol 
with trastuzumab [11, 19, 22, 28, 39, 40, 42, 46, 48, 
93, 117–120]. STRING provides extensive and reliable 
interaction data, while Cytoscape offers in-depth network 
analysis and visualization tools. The combination of both 
platforms enable detailed analysis using network metrics 
such as, degree, closeness, and betweenness to identify 
key genes within biological systems. However, optimal 
analysis in Cytoscape often requires additional plugins, 
such as cytoHubba, for optimal functionality, requiring 
users to develop proficiency in both tools for effective 
analysis.

GeneMANIA is a Cytoscape plugin that enables rapid 
gene function prediction using a guilt-by-association 
approach. It identifies genes related to a query set by 
leveraging extensive functional interaction networks from 
various organisms, with each prediction traceable to its 
source network [121]. Some of the natural compounds 
analyzed using GeneMANIA include the combination 
of honokiol with tamoxifen, and γ-Mangostin with 
doxorubicin for the TNBC subtype, to map PPIs through 
extensive data integration capabilities and additional 
gene predictions. Its main advantages lie in its ease of 
use and predictive functionality, making it a popular 
choice in bioinformatics. However, the results require 
experimental validation, and in-depth analysis often 
requires complementary tools such as Cytoscape in the 
context of cancer.

PPI network analysis provides a powerful method 
for understanding the complex molecular mechanisms 
involved in breast cancer. By focusing on hub genes 
and using a combination of tools such as STRING and 
Cytoscape, researchers can identify potential therapeutic 
targets. This highlights the utility of this approach in 
identifying promising single natural compounds and 
natural products derived from plants or TCMs, as well as 
their ability to enhance the effectiveness of conventional 
drugs when combined in the treatment of breast cancer and 
its associated gene targets across various subtypes. This 
approach is crucial in the development of more precision 
medicine, where treatment is tailored based to the specific 
molecular profile of a patient’s breast cancer.

Genetic Alteration
Genetic alteration allows researchers to understand 

how specific genetic mutations affect gene expression 
and molecular pathways, and how they contribute to 
the development of or resistance to breast cancer [23]. 
Omics-based databases or web servers used for genetic 
alteration analysis, such as cBioPortal and Tumor Immune 
Estimation Resource (TIMER) (Table 1), enable in-depth 
exploration of mutations, copy number variations (CNVs), 
and other changes in the profiles of breast cancer patients. 

These omics-based databases or web servers can analyze 
large-scale clinical data from various sources; such as, 
cBioPortal is frequently used to investigate the effects of 
various single natural compounds and natural products 
derived from plants or TCM, as well as their ability to 
enhance the efficacy of conventional drugs when used in 
combination for breast cancer treatment and their effects 
on breast cancer subtypes (Supplementary Table 1).

cBioPortal offers interactive visualization of genetic 
data, including mutations and gene expression, to uncover 
associations with drug resistance [122]. For example, 
the combination of tangeretin and tamoxifen utilized 
cBioPortal to identify specific genetic alterations linked 
to critical molecular pathways in breast cancer [93]. This 
analysis enabled researchers to map genes involved in 
the therapeutic response, particularly in distinct subtypes. 
Similar studies involved the combination of Honokiol and 
trastuzumab focused on the HER2+ subtype, examining 
the HER2 signaling pathway in which genes such as 
ERBB2 are frequently amplified or mutated, presenting 
potential targets for combination therapy [48]. Other 
research, including the combination of borneol and 
tamoxifen, employed cBioPortal to investigate genetic 
changes associated with estrogen signaling pathways 
in the luminal A subtype [22]. Additionally, brazilin, 
studied in the HER2+ subtype, demonstrated potential in 
modulating key genes such as CCND1 and ERBB2 [123]. 
In TNBC, analyses of compounds like cannabidiol analogs 
and cardiac glycosides from Vernonia amygdalina using 
cBioPortal aimed to identify mutations in genes that could 
be targeted therapeutically [11].

While tools like cBioPortal provide extensive data on 
genetic alterations, some compounds, such as curcumin 
and epigallocatechin gallate (EGCG) [28, 101], are 
not directly linked to genetic analyses. However, their 
investigation is often complemented by PPI data from 
tools like STRING, which help connect genetic alterations 
to relevant biological pathways. A major limitation of these 
studies is that not all compounds or their combinations 
have complete data on specific gene mutations. However, 
the focus on PPI networks and molecular pathways still 
continues to offer valuable insights into the therapeutic 
potential of these compounds. By utilizing tools like 
cBioPortal, this research significantly contributes to 
identifying potential target genes, such as ERBB2 in 
HER2+ subtypes and PIK3CA in various breast cancer 
subtypes. This approach supports the development of more 
targeted and effective cancer therapies.

TIMER, used to analyze the correlation between gene 
mutations and immune cell infiltration in tumor tissue, 
plays a vital role in understanding the immune response 
to cancer, especially in subtypes like TNBC. It is used to 
study the interaction between tumor cells and the immune 
system within the tumor microenvironment. The web 
server also maps gene expression and its associations with 
genetic mutations [124]. Quercetin, a well-known natural 
compound, has been extensively studied for its potential 
therapeutic effects, particularly in cancer treatment.

TIMER is another valuable resource used alongside 
cBioPortal to investigate the relationship between 
genetic alterations and immune cells within the tumor 
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microenvironment. This platform enables researchers 
to understand how gene-expression changes, such as 
those influenced by Quercetin, affect the infiltration and 
activity of immune cells like T cells and macrophages. In 
Quercetin-related studies, TIMER can demonstrate how 
genetic alterations might modulate immune responses, 
potentially enhancing the compound’s efficacy by 
promoting an immune-stimulatory environment. Study 
findings revealed that genes such as MYC, CXCL10, 
CXCL11, and E2F1 showed differential expressions 
across tumor types and were associated with immune 
cell abundance [125]. Analysis using cBioPortal also 
revealed that these genes exhibited significant CNVs 
and were linked to patient survival. TIMER was used in 
conjugation with Quercetin to examine the relationship 
between immune infiltration and various factors, including 
gene expression, clinical outcomes, somatic mutations, 
and alterations in somatic copy number.

However, there are certain limitations in the use of 
TIMER. For instance, the results generated by TIMER 
may not be fully applicable to all cancer types or animal 
models due to the limited tumor populations included 
in its database, which restricts the generalizability of 
the findings in every clinical context. Additionally, the 
accuracy of TIMER’s results is highly dependent on 
the quality and quantity of gene-expression data in the 
underlying database. Variability in data samples, such as 
differences in quality and quantity from diverse sources, 
can affect the precision of immune cell infiltration 
estimates provided by the TIMER algorithm. By using 
TIMER and cBioPortal, researchers were able to identify 
connections between genetic alterations and immune 
responses, offering deeper insights into the molecular 
mechanisms underlying breast cancer and uncovering 
potential new therapeutic targets [125]. Overall, the 
combined use of cBioPortal and TIMER in analyzing 
Quercetin’s genetic alterations highlights the significance 
of these tools in cancer research. They enhance our 
understanding of the genetic landscape influenced by 
natural compounds, thereby supporting the development 
of more precise and targeted cancer therapies.

Survival Analysis
Survival analysis refers to the ability of a factor to 

predict the progression or outcome of a disease or medical 
condition. In early-stage breast cancer patients, survival 
analysis of a gene is conducted to determine whether 
that gene can serve as an indicator for predicting patient 
survival [126]. Bioinformatics approaches used in survival 
analysis aid in forecasting patient outcomes based on 
genetic and clinical data. Some of the commonly used 
omics-based databases or web servers for this analysis 
include Kaplan-Meier Plotter, Breast Cancer Gene-
Expression Miner (bc-GenExMiner), Gene-Expression 
Profiling Interactive Analysis (GEPIA), and OncoLnc 
(Table 1).

Kaplan-Meier Plotter is the most widely used tool for 
examining survival analysis in relation to various single 
natural compounds and natural products derived from 
plants or TCMs, as well as their ability to enhance the 
efficacy of conventional drugs when used in combination 

for breast cancer treatment and their effects on different 
breast cancer subtypes (Supplementary Table 1). This 
web server enables researchers to generate survival plots 
based on gene-expression levels. It allows comparison of 
patient survival across varying expression levels of genes 
and assists in identifying prognostic biomarkers [127].

Kaplan-Meier Plotter is primarily used to assess the 
survival analysis of gene expression in cancer patients, 
based on survival data such as overall survival and relapse-
free survival. It is employed to examine the relationship 
between specific gene-expression levels and clinical 
outcomes following treatment. Some of the compounds 
studied using this web server include Tangeretin and 
tamoxifen, which were evaluated for their combined 
effect on breast cancer patients. Findings indicated 
that this combination could improve survival in TNBC 
patients [93]. Survival analysis using Kaplan-Meier 
Plotter also demonstrated that borneol, when combined 
with tamoxifen, improved survival rates in patients with 
the luminal A subtype, suggesting the potential of borneol 
as a co-chemotherapeutic agent in treating luminal A 
breast cancer [22]. Additionally, Kaplan-Meier Plotter 
showed that the combination of Honokiol and trastuzumab 
enhanced survival in patients with the HER2+ subtype 
of breast cancer (48). Several other natural products, 
such as schisandrin, Hesperetin, Curcumin, Cremastra 
appendiculata, [10]-Gingerol, Cardiac glycosides from 
Vernonia amygdalina, Xiaoyaosan have also been studied 
using Kaplan-Meier Plotter to evaluate their potential to 
improve survival in patients with specific breast cancer 
subtypes [11, 28, 29, 39, 117, 128, 129]. While the 
platforms offers Kaplan-Meier graphs to visualize the 
relationship between gene expression and survival, as 
well as insights into multigene interaction, the results must 
be confirmed with other studies or additional data as this 
platform only uses limited public data.

The Breast Cancer Gene-Expression Miner (bc-
GenExMiner) also provides access to gene-expression data 
specific to breast cancer, enabling survival analysis based 
on gene-expression profiles. Data generated from this web 
server is often used to identify genes with potential as 
therapeutic targets. The Breast Cancer Gene-Expression 
Miner is designed to explore the expression of specific 
genes across various breast cancer datasets and correlate 
them with clinical outcomes. This platform focuses on 
analyzing gene-expression based on the molecular subtype 
and clinical status of the patient [130]. One compound 
studied using this web server was anhydroicaritin, 
which was analyzed to determine its relationship with 
gene expression in breast cancer [42]. Although it offers 
tools for Kaplan-Meier survival analysis and multigene 
analysis, the reliability of the results depends on the 
quality and relevance of the data available on the platform. 
Therefore, further validation through clinical studies is 
necessary to confirm the findings.

GEPIA provides a tool for gene-expression analysis 
utilizing data from TCGA and GTEx. It enables users to 
visualize differences in gene expression across various 
cancer subtypes and examine their relationship with 
prognosis. GEPIA is also a bioinformatics web server used 
to assess gene expression and perform survival analysis 
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on RNA-seq data derived from TCGA. It facilitates the 
exploration of correlations between gene expression 
and clinical outcomes [131]. Ten studies have employed 
this web server to conduct survival analysis involving 
various single natural compounds and natural products 
derived from plants or TCM in both unspecified breast 
cancer subtypes and TNBC subtypes (Supplementary 
Table 1). CKI, a TCM, has been evaluated using GEPIA, 
showing that it may enhance survival in breast cancer 
patients [19, 46]. Cannabidiol analogs, Flos daturae, 
Syringin, and Salvia miltiorrhiza were also analyzed using 
a combination of GEPIA and Km-plotter to enrich the 
survival data obtained [25, 132, 133]. Although GEPIA 
provides gene-expression analysis across various cancers, 
including breast cancer from TCGA and the Genotype-
Tissue Expression (GTEx) project, the data may not 
always capture patient variability outside of these datasets.

OncoLnc is another web server that offers insights into 
the relationship between gene expression and survival, 
integrating TCGA data to support in-depth analyses [134]. 
One study employed Oncloc in the survival analysis 
of breast cancer patients, specifically examining the 
combination of PGV-1 and Piperine [135]. While it allows 
exploration the gene expression-survival relationships and 
gene interactions, offering Kaplan-Meier plots, heatmaps, 
and expression visualizations, the findings still require 
further validation, as the conclusions depend solely on 
TCGA data, which may not fully represent broader patient 
populations.

Survival analysis plays a vital role in breast cancer 
management by offering critical insights into prognosis 
and treatment response. By using various omics-based 
databases or web servers such as Kaplan-Meier Plotter and 
GEPIA, researchers can assess the effects of individual 
natural compounds and plant-derived or TCM. These tools 
also help evaluate how such compounds, when combined 
with conventional therapies, influence gene expression 
and clinical outcomes, aiding in the identification of 
potential prognostic biomarkers. The data generated 
from these analyses may contribute to the development 
of more personalized and effective treatments for breast 
cancer patients.

Conclusions and Future Direction
The use of omics-based databases, web servers, 

and software in bioinformatics approaches is essential 
for identifying target genes in breast cancer treatment. 
These tools enable in-depth and large-scale data analysis, 
facilitating the study of gene-expression patterns, 
mutations, predicting gene-target interaction predictions, 
and genetic changes relevant to specific diseases. This 
supports rational drug design prior to laboratory validation. 
Advances in sequencing technologies and sophisticated 
analytical algorithms have led to more accurate and in-
depth data interpretation, accelerating the discovery of 
novel biomarkers and the identification of more specific 
drug targets. Additionally, network simulation models 
contribute to target gene discovery by predicting the 
impact of new therapies on complex biological networks.

Bioinformatics and omics-based approaches have 
proven effective in identifying potential target genes 

for breast cancer therapy using anticancer agents from 
single natural compounds and natural products derived 
from plants or TCMs. The integration of bioinformatics 
methods with various omics-based databases, web servers, 
or software facilitates a deeper understanding of the 
molecular mechanisms underlying therapeutic responses 
and the enhancement of conventional drug efficacy when 
used in combination. The application of data mining, GO 
and KEGG pathway analyses, PPI network and hub gene 
analysis, genetic alteration, and survival analysis enables 
a more comprehensive examination of gene functions and 
interactions. This review outlines the features, advantages, 
and limitations of various omics-based databases, web 
servers, and software used in the search for potential 
target genes in breast cancer therapy. Such knowledge 
aids researchers in selecting the most suitable database for 
their investigations, accelerates the discovery of anticancer 
agents for breast cancer treatment, and enables validation 
in preclinical models, both in vitro and in vivo, to ensure 
clinical relevance.
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