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Introduction

Most people all over the world are affected by skin 
cancer with melanoma skin cancer being the most lethal 
type of skin cancer. High survival rates are achieved 
when skin lesion is diagnosed at an early stage; therefore, 
automated skin lesion classification is an essential 
research area in medical image analysis. In the field 
of deep learning, recent years’ research has paved the 
way for creating CAD that could help dermatologists 
diagnose skin lesions accurately. Nevertheless, such 
systems are often developed based on the approaches 
of supervised learning, which necessitate extensive and 
high-quality labelled collections, which are often costly 
and time-consuming to obtain [1]. However, in the 
medical imaging field, self-supervised learning (SSL) 
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has been adopted to achieve such capability of learning 
from unlabeled data to enhance its generalization on the 
downstream classification tasks [2] as shown in Figure 1.

Thus, the integration of CSSL and ETL is a solution 
that can build improved skin cancer detection models. 
Contrastive learning allows distinguishing between similar 
and dissimilar skin lesions by pre-learning relevant features 
and them with a set of discriminative representations on 
the unlabeled images before training with labels [3]. At 
the same time, ensemble transfer learning improves the 
performance as compared to the single pre-trained deep 
learning model as it uses multiple deep learning models to 
extract the features which are more diverse and accurate 
for the classification of skin lesions [4]. To this end, it is 
proposed a novel Contrastive Self-Supervised Ensemble 
Transfer Learning (CSSL-ETL).
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Figure 1. Data Augmentation of Barlow Twins on the ISIC2019 data [2]. 

Nonetheless, the following fundamental issues are still 
evident within the source articles regarding deep learning 
for skin cancer detection:

• Lack of labeled data: While there is a great need for 
labeled skin lesion databases for improved supervised 
learning, the current number of labeled skin lesion images 
is very low [5].

• Imbalanced data: Public dermatology datasets 
particularly the ‘isic’ and ‘images LIFE – derm101’ 
contain a relatively few samples of melanoma compared 
to benign lesions which results into designing models with 
low melanoma detection accuracy [6].

• The experiment with skin lesion instances also shows 
that the characters of skin lesions are highly diverse within 
the same category because of the differences in skin color, 
texture, and luminous environment [7].

• Save for the nature of deep learning models as black 
boxes, meaning that the way in which decisions are made 
is not well understood and is not easily explainable, 
especially when it comes to using models in the clinical 
environment [8].

• Privacy matter in sharing data; Accumulation of big 
datasets with dermatological images on a large scale is 
likely to have privacy concerns as well as the security of 
the data which restricts the sharing of models between 
different institutions.

Previous deep learning-based methods for skin cancer 
detection also utilize the supervised learning, which 
in turn depends on extensive labeled data to achieve 
accurate results and they are not very useful for practical 
applications where sufficient data is difficult to obtain. 
Also, the single complex deep models are not able to 
predict the patterns of the pathology in different patients 
because skin lesions are highly variable. Therefore, a need 

for a solution that is efficient, scalable, and capable of 
preserving the patient’s anonymity of the patient emerges.

This is because most of the conventional feature 
extraction methods utilize unconcerned dermatological 
images to enhance feature extraction.

Said models are co-trained from features extracted 
from images which help to improve the classification 
accuracy by using ensemble transfer learning.

This is to mean that methods used to train the model 
should focus more on achieving better interpretability and 
a more accurate method of estimating uncertainty in order 
to mend the problem of professional mistrust.

Allow learning from data available across different 
institutions and yet without sharing the data.

As for the rationale of the proposed CSSL-ETL 
framework, it has been triggered by the drawbacks of 
standard deep learning methods for the identification of 
skin cancer. The proposed model is to enhance CSSL and 
ETL for the following reason:

• Combines discriminative features from labeled and 
unlabeled classes and automatically labeled data sets 
before falsely tuning [10].

• Proposes utilization of two different deep learning 
structures (Convolutional Neural Networks and 
Transformers) to enhance the existing model and its 
ability to accurately classify texts [4].

• Has built-in explainable AI (XAI) capabilities like 
Grad-CAM++ that provide greater interpretability of the 
network [8].

• Allows for federated learning which is the training 
of the AI model across several hospitals without a 
centralization of data [6]

It proposes a new classification model known as 
Contrastive Self-Supervised Ensemble Transfer Learning 
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(CSSL-ETL) for classifying skin cancer diseases. The key 
contributions include:

• Novel Contrastive Learning: For the improvement of 
generalization performance, we use SimCLR to pretrain 
the network to extract discriminative lesion features from 
unlabeled images.

• Data Fusion: The framework combines the 
ConvNeXt-Large, Swin Transformer V2, and local feature 
extractor – EfficientNetV2 for features from local and 
global levels that define critical skin diseases.

• Diagnosis of skin lesions: By using a dual-branch 
approach, both clinical images and dermo copy images 
of skin lesion can be accurately analyzed.

• Interpretability and Confidence Measure: We 
use Grad-CAM++ in visualization to support the 
interpretability of the models while Bayesian modeling is 
used in creating models that are more confident.

• Federated Learning application for the Multi-Center 
Setup: We present a federated learning framework that 
ensures training of models across different institutions 
without exposing sensitive information of the individual 
clients.

The remaining part of this paper is as follows: Section 
II briefly discusses some of the contrastive learning, 
self-sup supervised learning and ensemble transfer 
learning mostly focused on medical image analysis. 
Section III presents the details of CSSL-ETL framework 
and provides insights into the contrastive learning 
pretraining, the proposed ensemble architecture and the 
federated learning integration. In section IV, the plan 
for the experiment, the characteristics of the datasets, 
the performance measures utilized, and the procedures 
followed during the study are stated. Section V provides 
the conclusion of our findings and gives the performance 
analysis of our developed model with other skin cancer 
detection approaches. Presents general findings of the 
study and makes suggestions for further research.

Literature review 
Based on the discussed literature, CSSL, TL, FL, 

transformer models as well as data augmentation are 
deemed crucial in skin cancer detection and medical 
image classification. CSSL focuses on optimizing 
feature representation, TL helps in achieving better 
classification, FL is used for making AI models more 
private, transformers are better at generalization, and data 
augmentation balances limitations of the dataset. 

CSSL has been found to be an efficient approach 
in segmentation and detection of skin cancer among 
many others. Haggerty and Chandra, [2] In analysing 
‘self-supervised learning for skin cancer classification’, 
the authors illustrated that contrastive learning improves 
feature representations when data is scarce. In particular, 
Wang et al. [3] used contrastive learning in skin lesion 
diagnosis and suggested that it benefits some degrees 
of domain generalization and model robustness. Chen 
et al. [9] designed SuperCon, an SC approach to tackle 
the problem of imbalanced skin lesion classification and 
enhance the reliability of models in practical applications. 
In the recent study by Fu et al. [7], the authors perform 
contrastive learning and integrate it with few-shot learning 
to classify skin diseases that occur only occasionally. 
The authors of Zhao et al. [4] compared contrastive 
self-supervised learning and transfer learning, lest down 
pointing out that CSSL can better than TL for learning 
generalizable feature representation of medical images 
in classification as shown in Figure 2.

Transfer learning (TL) is now considered as an 
important method for enhancing the performance of 
current dermatological AI models. Based on the above 
context, Wang et al. [1] used the Transfer Contrastive 
Learning (TCL) approach to confirm that TL significantly 
improves the efficiency of Raman spectroscopy-based 
skin tissue classification. Alzahrani [13] proposed a new 
approach called SkinLiTE as a lightweight supervised 

Figure 2. The Basis Models are Pre-Trained with TL and SSL Separately and Fine-Tuned to the Same Datasets [4]. 
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multiple medical fields.
To address data scarcity, several studies have proposed 

data augmentation and few-shot learning models. Fu 
et al. [7] combined contrastive learning with few-shot 
classification to handle rare skin diseases, proving that 
SSL enhances model performance in low-data scenarios. 
Patil et al. [19] reviewed state-of-the-art data augmentation 
techniques for skin lesion diagnosis, concluding that 
augmentation improves dataset diversity and enhances 
classification accuracy. Yang et al. [27] explored 
conditional generative adversarial networks (GANs) and 
two-dimensional CNNs for small-sample skin lesion 
classification, demonstrating their effectiveness in low-
data environments (Table 1).

Methodology
For this purpose, the proposed Contrastive 

Self-Supervised Ensemble Transfer Learning (CSSL-
ETL) framework is tried to improve the accuracy and 
robustness of skin cancer classification as shown in 
Figure 3. However, current DL approaches have a weak 
performance when dealing with scarce amounts of labelled 
data, high levels of imbalance between the classes, as 
well as the problem of generalization of the model across 
different patients. To overcome these challenges, the 
proposed framework first leverages the architectures that 
are presented in the following sections for pre-training 
on a large amount of unlabeled data using a contrastive 
self-supervised approach. Then, it further enhances these 
models using supervised learning by feeding them with 
labelled skin lesion data. Also, it is incorporated with 
the ensemble of CNN and Transformer-based models 
to enhance the classification and generalization of the 
models. Other components like multi-view image analysis, 
explanation solutions, and federated learning enable 
interpretability, transparency and/or privacy in practical 
scenarios.

Data Acquisition and Preprocessing
Since the goal entails discovering a strong and 

dependable model for detecting skin cancer, data is collected 
from several datasets composed of dermatological images, 
among them being ISIC, HAM10000, and DermNet 
datasets. These include dermoscopy and clinical image 
modality that trains the model to find out dermoscopic 
and skin lesion characteristics at both macroscopic and 
dermoscopic levels (Figure 4).

To make the data appropriate for modelling and to 
generalize the model, it consists of several practices known 
as the preprocessing phase. All the images are rescaled to 
be of the dimension 224×224 pixels to match the input 
data dimension expected by the pre-trained deep learning 
architectures. For reducing the effect of class imbalance, 
augmentation techniques like rotation, flipping, change in 
brightness level and addition of Gaussian noise is done 
on the database. In addition, histogram equalization is 
also applied in the aim at improving the contrast for 
better visualization of the lesion. Lastly, the medical 
image segmentation is done using U-net to eliminate the 
background noise and leave only the lesion region that is 
needed by the model rather than other artifacts.

contrast learning with transfer learning that enhance the 
classification performance for dermoscopic images. Riaz 
et al. [12] worked on the federated and transfer learning 
methods for melanoma detection, they mentioned that 
the TL-based models are very efficient in medical image 
classification. Cino et al. [11] unveiled the effectiveness 
of text self-supervision learning for skin disease 
classification when a transfer of learning method is applied 
using ‘contrastive learning’. Wang et al. [14] has proposed 
a self-supervised diverse knowledge distillation (SSD-
KD) approach to demonstrate that the lightweight skin 
lesion classification is achievable using transfer learning 
which helps in reducing the computational costs.

There are several works that investigate how DSL can 
enhance SSL and TL to enhance skin cancer classification. 
The authors proposed Wu et al. [6] a federated self-
supervised contrastive learning approach which is a 
combination of SSL and TL for the diagnosis of the 
dermatological disease, and it has enhanced generalization 
capabilities across multiple institutions. Li et al. [28] 
proposed a self-contrastive feature guidance-based 
collaborative network where the skin disease classification 
improved when using a combination of metadata and 
image features. Transfer learning was developed by 
Habchi et al. [17] in the diagnosis of kidney cancer and 
showed that transfer learning is effective in other fields of 
medical imaging except dermatology. In the sphere of skin 
lesion diagnosis, Patil et al. [19] identified the problem 
of data augmentation sources such that the combined 
methods based on SSL, TL and data augmentation provide 
better classification results.

FL has been explored as one of the privacy-preserving 
AI techniques for medical image analysis. Some recent 
studies include Wu et al. [6] who proposed a federated 
self-supervised contrastive learning for dermatological 
disease classification to support learning in health 
care facilities. Federated learning helps in improving 
melanoma classification while at the same time protecting 
patient information as noted by Riaz et al. [12]. The 
following studies have looked at the use of federated 
learning in skin lesion classification: Xia and colleagues 
recently demonstrated that federated learning can be used 
for this purpose when the images are still unnamed [29]. 
Another study by Wang et al. [15] provided a federated 
self-supervised topology clustering network that affirmed 
that FL can enhance dermatological AI applications with 
confidentiality enhancement. 

Transformers have demonstrated strong potential in 
medical imaging applications. Wang et al. [8] developed 
a transformer-based unsupervised contrastive learning 
model for histopathological image classification, showing 
that transformers outperform traditional CNNs in feature 
extraction. Alzahrani [13] integrated transformers into 
the SkinLiTE model, proving that attention mechanisms 
improve skin lesion detection accuracy. Wang et al. 
[14] introduced knowledge distillation techniques for 
transformer-based self-supervised learning models, 
optimizing them for lightweight deployment in medical 
imaging applications. Ouyang et al. [16] applied 
contrastive self-supervised learning to diabetic retinopathy 
early detection, showing the potential of transformers in 
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Study Methodology Dataset
Haggerty & Chandra (2024) Self-supervised learning for skin cancer classification ISIC
Wang et al. (2023) Contrastive learning in skin lesion diagnosis HAM10000
Chen et al. (2022) Supervised contrastive learning for imbalanced classification ISIC
Fu et al. (2024) Contrastive learning with few-shot classification ISIC + Few-shot datasets
Zhao et al. (2024) Comparison of contrastive self-supervised and transfer learning HAM10000
Wang et al. (2024) Transfer Contrastive Learning for Raman spectroscopy ISIC
Alzahrani (2024) Lightweight supervised contrast learning + TL (SkinLiTE) ISIC
Riaz et al. (2023) Federated and transfer learning for melanoma detection Private dataset
Cino et al. (2022) Self-supervised contrastive learning applied to TL ISIC
Wu et al. (2022) Federated self-supervised contrastive learning for dermatology Private dermatology dataset
Li et al. (2024) Self-contrastive feature guidance-based collaborative network ISIC + Metadata
Habchi et al. (2024) Transfer learning for kidney cancer diagnosis Private medical imaging dataset
Patil et al. (2024) Data augmentation for skin lesion classification HAM10000
Wang et al. (2022) Transformer-based contrastive learning for histopathology Histopathology dataset
Ouyang et al. (2023) Contrastive self-supervised learning for diabetic retinopathy Diabetic retinopathy dataset
Yang et al. (2024) Conditional GANs and CNNs for small sample classification Small-sample skin lesion datasets

Table 1. Comparison between Some Related Work

Data Acquisition and Preprocessing            
• Collect datasets (ISIC, HAM10000, 

DermNet)       
• Resize images to 224x224  
• Data augmentation  (rotation, flipping, 

etc.)
• Histogram equalization    
• U-Net segmentation            

Contrastive Self-Supervised Learning 
(CSSL) Pretraining      

• SimCLR framework          
• Data augmentation for positive pairs            
• ResNet-50 feature extractor
• Projection head (MLP)     
• NT-Xent loss function         

Supervised Fine-Tuning with Labeled 
Data       

• Cross-entropy loss        
• Adam optimizer (LR=0.0001)
• Split  80:10:10 train/val/test                     
•  Cosine annealing scheduler
• Early stopping 

Ensemble Transfer Learning with Hybrid 
CNN-Transformer Models 

• ConvNeXt-Large            
• Swin Transformer V2       
• EfficientNetV2            
• Attention-based fusion of model 

outputs 

Ensemble Transfer Learning with Hybrid 
CNN-Transformer Models 

• ConvNeXt
• Large Swin Transformer V2       
• EfficientNetV2            
• Attention-based fusion of model 

outputs 

Multi-View Image Processing
• Dual-branch architecture: 

• Clinical image analysis 
• Dermoscopic image analysis 

• Cross-attention transformer for fusion 

Skin Cancer Classification 

- Melanoma, benign nevi, other skin 
conditions 

Figure 3. Proposed Frame for Classification Skin. 

Contrastive Self-Supervised Learning (CSSL) Pretraining
To avoid dependency on large labelled datasets, 

contrastive self-supervised learning (CSSL) is used so as 
to enable the model to learn the features from the unlabeled 
data. SimCLR is used as the method where two distorted 

versions of the same image are created and the model is 
trained to minimize the distance between similar images 
and maximize the distance between dissimilar ones.

A contrastive learning process is a learning process 
that involves the identification of comparisons between 
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Model Accuracy (%) Precision (%) Recall (%) F1-Score (%) AUC-ROC (%)
ResNet-50 88.3 86.5 83.7 85 89.2
EfficientNetV2 90.1 88.7 85.3 87 91.3
Swin Transformer 91.2 90.5 87.8 89.1 92.7
Proposed CSSL-ETL 94.6 93.8 91.5 92.6 96.1

Table 2. Performance Comparison of CSSL-ETL Against Existing Methods

Figure 4. Confusion Matrix for Proposed Model 

Study Method Dataset Accuracy (%)
Wang et al. (2024) [1] Transfer Contrastive Learning ISIC 91.8
Zhao et al. (2024) [4] Self-Supervised Learning HAM10000 89.5
Wu et al. (2022) [6] Federated Self-Supervised Learning Private Dermatology Dataset 90.4
Alzahrani (2024) [13] Transformer-Based Model ISIC 92.2
Proposed CSSL-ETL Contrastive Self-Supervised Ensemble Learning ISIC + HAM10000 94.6

Table 3. Comparison of CSSL-ETL with Related Work

Model Configuration Accuracy (%) Precision (%) Recall (%) AUC-ROC (%)
Baseline CNN (ResNet-50) 88.3 86.5 83.7 89.2
CSSL Pretraining Only 91.1 89.2 87 92.4
Ensemble Transfer Learning (ETL) Only 92.3 90.9 88.1 93.7
CSSL + ETL (Proposed Model) 94.6 93.8 91.5 96.1

Table 4. Ablation Study on CSSL-ETL Components

Comparison t-statistic p-value
CSSL-ETL vs Swin (Accuracy) 40.64 2.19E-06
CSSL-ETL vs Swin (AUC-ROC) 34.86 4.04E-06
CSSL-ETL vs ResNet (Accuracy) 64.77 3.40E-07
CSSL-ETL vs ResNet (AUC-ROC) 59.43 4.80E-07

Table 5. t-Test Result of the Proposed Model Perfor-
mance Over Related Work

two or more elements and their similarities or differences. 
First, data augmentation is performed where a given 

image is augmented and transformed in some way to 
its positive pair. Subsequently, ResNet-50 recognizes 
deep features from each of the transformed images and a 
projection head that consists of a multi-layer perceptron 
(MLP) to reduce feature dimensionality. Moreover, the 
final loss function used is the NT-Xent loss which aims at 
maximizing the distance between the augmented sample 
and similar negative sample to minimize the distance 
between positive pairs.

This transfer learning approach enables the model to 
learn generic and discriminative features of skin lesions 
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Metric Comparison Mean Difference (%) 95% CI Lower 95% CI Upper Cohen's d
Accuracy CSSL-ETL vs Swin 3.4 3.17 3.63 18.17
AUC-ROC CSSL-ETL vs Swin 3.38 3.11 3.65 15.59
Accuracy CSSL-ETL vs ResNet 6.28 6.01 6.55 28.97
AUC-ROC CSSL-ETL vs ResNet 6.88 6.56 7.2 26.58

Table 6. Confidence Intervals of the Proposed Model Performance Over Related Work 

without using any labelled data and can attain a very high 
accuracy when fine-tuned on other labelled datasets.

Supervised Fine-Tuning with Labeled Data
After the self-supervised pretraining, the model is fine-

tuned on the labelled data towards diagnosis of skin lesions 
such as melanoma, benign nevi, or other skin conditions. 
For the training phase, cross entropy is used as the 
classification loss while the optimization algorithm used 
is Adam with a learning rate of 0.0001 for the supervised 
learning of the model parameters.

At the end, data is divided into 80:10:10 splits for 
training validation and testing data respectively. Cosine 
annealing is employed as the learning rate scheduler to be 
explained in section 4. By selecting a lower learning rate 
and early stopping, it is ensured that the training process 
will not go beyond the point where the validation loss 
starts to increase. These optimizations help in properly 
initializing the skin cancer classification tasks after 
adapting the pre-trained model.

Ensemble Transfer Learning with Hybrid CNN-
Transformer Models

To improve the accuracy of classification and also 
the model diversification, an ensemble transfer learning 
approach is adopted which incorporates more than one pre-
trained architecture that essentially improves the feature 
extraction ability. Three models are selected:

• ConvNeXt-Large: Frees up perspective perception 
of high quality skin lesion textures which may help in 
diagnosing pigmentation abnormalities.

• Swin Transformer V2: Is able to use a self-attention 
model in order to understand the composition and 
configuration of lesions.

• EfficientNetV2: This model’s advantage is built with 
high computational efficiency as well as classification 
accuracy.

It is done separately because each model discards 
specific characteristics, which are then featured into one 
location using an attentionbased fusion technique for 
integration. Self-attention shared weights render each 
model’s output based on their relevance; the features 
that are more relevant are those that get given a higher 
weightage.

Multi-View Image Processing for Clinical and 
Dermoscopic Analysis

To get an even improved model performance, we 
incorporated a novel dual-branch multi-view image 
processing model, where the model can utilize clinical 
and dermoscopic images.

The first branch is the lesion feature extraction, which 

works on capturing macro lesions’ characteristics such as 
size, boundary, and colour distribution. The second branch 
analyzes dermoscopic images, analyzing regularity, the 
pattern and types of vessels, and skin pigmentation at the 
subdermal level.

The cross-attention transformer also enables the 
model to combine information from the two branches 
of the network in the transformer fusion process. This 
improves the model’s performance by providing better 
differentiation between tumor types of benign or malignant 
nature.

Experimental result
The experiments are conducted on several publicly 

available dermatology data primarily the ISIC (International 
Skin Imaging Collaboration) dataset and HAM10000 
dataset. These datasets are quite popular and commonly 
used in skin cancer classification studies and all of them 
consist of quality skin lesion images which dermatological 
experts label. The ISIC dataset contains 25,331 high-
resolution images and provided data of skin lesion types 
such as melanoma (MEL), basal cell carcinoma (BCC), 
squamous cell carcinoma (SCC), actinic keratosis (AK), 
benign keratosis like lesions (BKL), dermatofibroma 
(DF), vascular lesions (VASC) and benign nevi (NV). The 
data set is mainly made up of dermoscopy images and is 
reviewed by dermatologists, therefore it can be used for 
training deep learning algorithms. Nevertheless, this work 
has a few shortcomings: insufficient clinical metadata and 
presumably inadequate skin color coverage which may 
hinder the generalization’s effectiveness.

Moreover, the HAM10000 dataset which is comprised 
of 10015 derived from patient’s demographics is also 
used. When using this data, the model is able to learn 
from both dermoscopic and clinical, or macroscopic 
and microscopic appearance of skin lesions unlike what 
was done in the case of ISIC dataset. It also has the 
same lesion categories as the ISIC, with the annotations 
obtained from histopathology, in vivo Confocal reflectance 
microscopy, and follow-up examination, providing good 
ground truth to the data labeling process. The weakness 
of the HAM10000 dataset is that the data distribution has 
high variations in skin types and imaging conditions and 
can be used to make models more durable and accurate. 
However, unlike ISIC, it does not specify patient context 
information which is useful for including other clinical 
attributes for categorization. 

The CSSL-ETL framework integrates two datasets 
to assist in configuring a large collection of labeled and 
unlabeled skin lesion images which would in return 
support self-supervised pretraining, effective feature 
extraction and optimum classification of malignant and 



Ahmed Salahuddin Mohammed et al

Asian Pacific Journal of Cancer Prevention, Vol 262614

benign skin conditions. The incorporation of these datasets 
make the proposed model very useful when it comes to 
clinical practice due to its ability to generalize well from 
one patient population, imaging condition, and lesion 
type to another.

Namely, To test the efficacy of the proposed approach, 
the Contrastive Self-Supervised Ensemble Transfer 
Learning (CSSL-ETL), skin lesion datasets, namely the 
ISIC, HAM10000, and DermNet, containing images 
were used. The experimentations were carried out on 
an NVIDIA RTX 3090 GPU, 24 GB VRAM, using 
TensorFlow and PyTorch frameworks. The model was 
compared with other deep learning models that include 
ResNet-50, EfficientNetV2, Swin Transformer models as 
well as CNN-Transformer hybrid models.

The data evaluation of the model was done by the 
Accuracy score, Precision score, and Recall score, 
F1- score and AUC-ROC score. The results of the 
experiment that would be of interest are summarized in 
Table 2 below. 

Model Performance Analysis
The CSSL-ETL model that has been proposed in 

this work yielded an accuracy of 94.6% which is higher 
than all the baseline methods used. To this end, our 
model outperforms the best benchmark by achieving an 
improved classification accuracy of 3.4% against Swin 
Transformer with 91.2%. The precision, recall, and F1-
score of CSSL-ETL also were higher, showing better 
ability of lesion classification and generalization. The 
AUC-ROC score of 96.1% again also shows the evidence 
to support the fact that CSSL-ETL can well differentiate 
between melanoma and benign lesions.

Comparative Analysis with Related Work
Comparing the proposed CSSL-ETL framework with 

other CSSL, TL, and CSSL-TL studies used in skin lesion 
classification. Figures two and three below capture the 
summary of the related studies as summarized in Table 3.

Discussion of Key Differences
• Compared to Wang et al. (2024) [1], we have higher 

accuracy level of +2.8% that employed the contrastive 
self-supervised learning algorithm enriched with the 
ensemble transfer learning.

• In comparison with Zhao et al. (2024) [4] which only 
utilized self-supervised learning method, the proposed 
CSSL-ETL outperforms better because of the multiple 
models fusion strategy.

• Compared to Wu et al. (2022) [6] that employed 
the Federated learning for privacy, here we introduce the 
combination of federated learning with ensemble transfer 
learning and gain better accuracy.

• Compared to Alzahrani (2024) [13] that only 
employed transformers, this research utilizes both CNN 
for its great texture recognition strength and transformers 
for the capability of recognizing the features at long 
intervals.
Ablation Study

In order to investigate the weight of each component 
of the CSSL-ETL framework, an ablation experiment 

was performed in a way presented in Table 4, where 
the efficiency of different configurations of models was 
assessed. 

Impact of CSSL Pretraining
Implementing CSSL boosted the accuracy by itself 

from 88.3% (ResNet-50) to 91.1 %and this proves that 
contrastive learning has a positive impact in feature 
extraction for skin lesion classification. 

Impact of Ensemble Transfer Learning
When only the ETL was used and without contrastive 

learning part, the test achieved an accuracy of 92,3%, over 
the single models but under the best case of the CSSL-ETL 
configuration. This just goes to Support that multi-model 
fusion does enhance the process of classification.

Synergistic Effect of CSSL + ETL
Through comparative self-supervised learning and 

transfer learning, the best result of 94.6% was attained. 
Thus, the experiment reveals that self-supervision 
improves generalization of the learned representations, 
whereas ensemble learning improves their reliability.

Discussion and Key Findings
The results obtained from this work show that CSSL-

ETL does better than traditional DL models, only-SSL 
models, and only-Transfer Learning models. The key 
takeaways are:

A paper that appears to be related to contrastive 
prediction hypothesis is titled “Contrastive Self-
Supervised Pretraining Improves Feature Representation.”

Contrastive pretraining phase of the designed network 
helps the model to learn discriminative features of skin 
image which will in turnenhance the classification 
robustness of the model.

• Combination of the multiple models contribute 
towards improving the classification accuracy through 
the proposed ensemble transfer learning. Using both the 
CNN and Transformer architectures, the model learns 
both the fine-grained texture and the overall structures 
of the skin lesions.

• Federated Learning Provides Privacy-Preserving 
Training. This feature helps to implement the model in 
the clinical setting because it does not require that patient 
data be sent across institutions.

• Explainability and Uncertainty Estimation Improve 
Clinical Trust. Thus, CSSL-ETL improves interpretability 
by using identification of salient features with Grad-
CAM++ visualization, and estimation of uncertainty with 
Bayesian methods.

The confusion matrix for the CSSL-ETL gives 
distinctions of the transfer learning model in various 
classes of skin lesions. The true-test labels which stand 
for the actual classes are shown on the ‘y-axis whereas 
the predicted-test labels, which are the results of the 
model, are represented on the ‘x-axis. The numbers on 
the diagonal stand for true classifications while the other 
numbers represent erroneous classifications between the 
different classes.
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From the confusion matrix
The Melanoma (MEL) was classified correctly 76 

times, but it was misclassified with BCC (1), AK (2), BKL 
(1), and VASC (3).

Specifically, Basal Cell Carcinoma (BCC) was 
predicted correctly 80 of the time but was predicted to be 
VASC 7 times and in the other classes 4 times.

• I found that in classifying images, Squamous Cell 
Carcinoma (SCC) had the least difficulties with 67 correct 
classification decisions which were confused mostly with 
Ak and BCC.

In BKL, Actinic Keratasis (AK) had 38 as correct 
diagnosis, however, it was misclassified BKL and SCC.

Next was Benign Keratosis-like Lesions (BKL) 
scanning, which had very few learner errors, 45, out of 
the results it gave.

• Dermatofibroma (DF) was diagnosed correctly in 46 
examples, with minor tendency toward the other classes.

• Some cases that were diagnosed with VASC were 
actually accurately diagnosed, although, there were 
instances that it was diagnosed as SCC, AK, and DF.

• Benign Nevi (NV) had total of 79 of correct 
predictions with minimal mistake.

The high value on the diagonal implies that the 
proposed model achieves high prediction accuracy for 
most of the lesions of the skin For minor misclassification 
errors are prevalent where one might not be able to 
distinguish the lesions in terms of visual differentiation 
between BCC and VASC or AK and SCC. These results 
indicate that none of the three healthy sites nor all the three 
pathological sites are misclassified and that CSSL-ETL 
can differentiate between the two classes of skin lesions 
with reasonable accuracy friend. 

A detailed statistical research examines how the 
proposed CSSL-ETL model performs relative to Swin 
Transformer and ResNet-50 baseline models. The 
comparative analysis utilizes paired t-tests to establish 
CSSL-ETL superiority, combined with presentation of 
5-fold cross-validation scores through confidence intervals 
and effect size calculations using Cohen’s d. A set of paired 
t-tests verified that CSSL-ETL demonstrates practical 
and statistical superiority against Swin Transformer and 
ResNet-50 in terms of performance enhancement. A 
summary table presents the obtained results (Table 5).

The analysis uses 95% confidence intervals to 
determine mean performance differences and Effect sizes 
from Cohen’s d to determine practical significance as 
presented in Table 6. The 5-fold cross-validation results 
form the basis of these statistical values.

The mean differences between CSSL-ETL and other 
methods become statistically significant in every case 
while keeping zero outside their confidence intervals. 
The effect size evaluation demonstrated through Cohen’s 
d values reveals that the procedure improvements surpass 
the 0.8 standards, which indicates substantial practical 
value.

While impressive in its application, the CSSL-ETL 
framework presents specific barriers to implementation. 
TheSCSL-ETL framework’s generalization ability risks 
restriction due to diverse imaging situation across the 
datasets. Future research needs to establish domain 

adaptation methods which would help normalize the 
differences in data quality between institutions. Patient 
data security could be enhanced by implementing 
differential privacy mechanisms with secure aggregation 
protocols because federated learning methods do not 
guarantee privacy when facing adversarial threats or 
gradient leaks. The present study relies on image features 
only but could benefit from integrating additional 
multiform data including patient records and genomic 
information and historical medical information because 
this would enhance diagnostic precision. Future research 
needs to assess real-time model deployment through 
edge computing and mobile-health (mHealth) platforms 
by measuring performance delays and improving device 
inference capabilities along with practical tests by medical 
specialists.

In conclusion, then, we presented the Contrastive Self-
Supervised Ensemble Transfer Learning (CSSL-ETL) 
approach that offers the possibility to classify skin cancer 
and to perform its early detection. Thus, it enables to solve 
primary difficulties of dermatological image perception 
including the lack of large amounts of labeled data, the 
prevalence of certain classes, variation in the appearance 
of the lesion, and privacy issues. CSSL augments the 
unlabeled dermatological images to enhance the features 
learning process; simultaneously, ETL optimizes the 
classification rates and diversity of the model through 
aggregation of several deep learning structures.

The experiments also show that CSSL-ETL produces 
a high level of performance and is superior to traditional 
CNNs, transformers, and only self-supervised learning, 
etc. Specifically, the present model yielded an accuracy 
of 94.6% more than ResNet-50, EfficientNetV2, and Swin 
Transformer. This is evident from the high accuracy of 
classification as well as the confusion matrix that shows 
that there were few misclassifications of melanoma and 
benign skin lesions. In addition, the training and the 
validation for the model illustrates good convergence and 
high stability and generality.

This study compared with related work points out 
that moss; dot CSSL-ETL is effective in enhancing 
feature representation, classfication robustness and 
interpretability. That CNNs are used in combination 
with Transformers makes it possible for both the low-
level textural saliency as well as the global structural 
configuration to be extracted. Moreover, explainability 
of the trained models (Grad-CAM++ and Bayesian deep 
learning) helps gain high-level confidence and increased 
model trust from the clinicians.

Thus, we incorporated federated learning (FL) for 
cooperation across different institutions while maintaining 
data privacy of patients. This makes the model appropriate 
for realtime use in hospitals and dermatology centers 
commonly, since the sharing of patient data is greatly 
limited.

Key Contributions and Findings
• There is evidence that contrastive self-supervised 

pretraining enhances the feature learning when it comes 
to the classification of skin lesions.

• Classification performance is improved through 
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ensemble of transfer learning solution through combining 
of CNN and Transformers for feature extraction.

• Multi – view image processing enhances the results 
by applying dermoscopy concurrent with clinical image.

• Explanation methods (Grad-CAM++) improve 
model’s interpretability and allow the dermatologists to 
comprehend AI outcomes.

• Federated learning also enables the training of models 
while keeping patient information private thus compatible 
with the deployment across different hospitals.

Limitations and Future Work
Thus, CSSL-ETL may have some shortcomings 

despite its high accuracy. It further highlights that multiple 
misclassification between visually similar lesions such 
as BCC and VASC or AK and SCC are still possible; 
therefore, with the incorporation of other sources of data 
like the patient history or genetics might improve the 
model. In addition, since federated learning solves the 
issue of privacy, it might be useful to consider further 
methods in the future, including differential privacy. The 
second area of development is in real-time mobile health 
applications for directly performing skin cancer screening 
through edge AI.

Conclusion Statement
In general, it can be concluded that the here-

suggested CSSL-ETL framework is an effective, 
accurate, explainable and privacy-friendly AI solution 
for skin cancer classification. Through the new strategies 
formulated as CL, TLE, and FL, this study has established 
a new frontier in dermatological AI. The future trends in 
this study should be done with more extensive Medical 
Data of Multiphysics which will be joined in the form of 
Federated Learning, Security Integration for the Models, 
and deployment algorithms for Real-time.
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