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Introduction

In 2020, stomach cancer estimated over 1 million 
new cases and 769,000 related deaths worldwide, 
ranked as fourth in mortality and fifth as most common 
malignancy [1]. Although the AJCC staging system is 
usually used to direct treatment and predict prognosis, 
it has great shortcomings in precisely predicting the 
results of specific patients [2]. Improved customized 
treatment depends on advanced prediction model as 
stomach cancer is heterogeneous and the interaction of 
prognostic factors is complicated [3]. Healthcare might 
undergo a dramatic transformation if machine learning 
explores vast databases for patterns enhancing accuracy 
prediction [4-7]. Researcher interest has been sparked by 
deep learning’s ability to independently extract significant 
traits from raw data and expose complicated, nonlinear 
relationships [8–11]. 

However, the “black box” quality renders them opaque 
and challenging to grasp, which may restrict clinician 
confidence to adopt them. These issues can be addressed by 
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LIME (Local Interpretable Model-agnostic Explanations) 
and SHAP (Shapley Additive explanations). SHAP 
guarantees mathematically reasonable explanations by 
using game-theoretic ideas to divide feature contributions 
both locally and globally. LIME approximatively 
describes and explains complicated model activity using 
simpler surrogate model, for certain predictions. Since 
health care is a high-stakes sector, these approaches enable 
practitioners to better grasp how clinical, demographic 
and course of treatment affect survival rates [12, 13]. 
Though little is known about how effectively deep learning 
model predict survival in stomach cancer, they have been 
extensively applied in cancer research for things like 
digital histopathology, automated image interpretation, 
and biomarker identification [14–18]. Furthermore, 
limited research has been conducted to ensure these 
model’ interpretability through SHAP and LIME. The aim 
of the study is to build an intuitive deep learning model 
for predicting survival probabilities in stomach cancer 
patients, validating it with external data and merging 
SHAP and LIME to improve the therapeutic relevance 
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and reliability.

Materials and Methods

The AIIMS, Bhubaneswar Cancer Registry produced a 
dataset of 1,350 stomach cancer diagnosed between 2018 
and 2022 (21 to 95 years), we followed these patients all 
the way through 2024. Each participant was thoroughly 
briefed on the objectives of the study and the consent 
was taken (Figure 1). The raw data was selected from 
the database to ensure compatibility with deep learning 
techniques. The standardizing of continuous variables 
guaranteed homogeneity throughout the dataset, the 
one-hot encoding technique was utilized to numerically 
represent categorical variables. Data with unknown 
values were excluded from the study. The dataset was 
arranged using an output variable showing general 
survival status (coded as “Alive” or “Dead”) and input 
parameters (such as age, sex, treatment approaches, and 
other clinicopathological factors). The dataset was split ten 
times during training in order to assure strong performance 
and minimize bias (k-fold cross-validation). A Multilayer 
Perceptron (MLP) help to achieve the survival prediction. 
We found the ideal number of neurons and layers through 
hyper-parameter tuning with Python-based optimization 
methods. The design consists of 3 hidden layers with 48, 
64, and 16 neurons each and an input layer of 16 neurons. 
Every hidden layer captured nonlinear interactions using 
corrected linear unit (ReLU) activation functions. One 
output layer neuron assesses the survival probability of 
the “Alive” class using the Softmax activation function. 
This architecture was selected through iterative validating 
which finds a balance between model complexity, 
performance, and interpretability (Figure 2). Following 
every hidden layer, we used dropout regularization of 
50%, to guard against overfitting by ensuring the model 
was not overly dependent on any one feature. Using the 
Adam optimizer and a learning rate of 0.002, stable and 
effective convergence during training was attained. Cross 
entropy loss was chosen as the loss function as it offers a 
reasonable gauge of the variation between the actual and 
predicted probability of survival.

All of the many measures used to evaluate the 
model’s performance including precision, accuracy, 
sensitivity, specificity, F1 score, balanced accuracy, and 
Matthews Correlation Coefficient (MCC). Computing 
the Concordance Index (C-index) and the Area Under 
the Receiver Operating Characteristic (AUROC) allowed 
one to assess the model’s discriminative performance in 
survival analysis. Particularly in cases of survival studies, 
if datasets are imbalanced, these indicators provide a 
whole view of performance for the model. External 
validity of the model was evaluated using an independent 
dataset of a Geographically Distinct Hospital (Hi-Tech 
Medical College & Hospital). For this group, all pre-
processing systems and assessment tools were reproduced. 
The performance evaluation of metrics was validated with 
external datasets so as to evaluate how well the model 
suited to various patient groups and healthcare situations, 
and not confined to the AIIMS dataset.

LIME and SHAP two model agnostic interpretability 

techniques were merged to address the “black-box” feature 
of deep learning model. LIME was applied to modify 
input characteristics and explain about their influence 
on predictions and therefore enabling explanations at the 
instance level. This was done to highlight how the survival 
probability prediction is affected by elements like age, 
cancer stage, chemotherapy, socioeconomic status, tumor 
differentiation, and patient habits. Simultaneously, by 
quantifying the contributions of local and global variables, 
SHAP values provide a comprehensive picture of the 
elements significantly influencing the projections of the 
model. The linking of complex computational findings 
with clinical insights, these approaches of interpretability 
increase confidence and enable more customized treatment 
strategie.

All data analysis was done using Python (version 
3.10) included into the Visual Studio Code environment. 
The deep learning model was developed with Tensor 
Flow and Keras frameworks. Grid search were used for 
hyper parameters optimization. Statistical evaluations 
including cross-valuation and performance metric 
computations were frequently conducted to the trained and 
external validation datasets in order to ensure a complete 
assessment of the performance of the model.

Results

Model performance of the trained data with validation 
cohorts help to determine the generalizability and 
robustness of clinical research prediction model. Using 
demographic, clinical, and outcome-related criteria, this 
article compares the trained dataset (n=1,350) with the 
validation dataset (n=388). It underscores the need of 
careful recalibration for broader applicability and the 
necessity of these variants for model transferability. The 
distribution of age shows a clear demographic trend in 
Table 1. Higher proportion of “Old Adult (60–79)” (44.6%) 
are included in the trained dataset than in the validation 
dataset, which mostly consists of “Middle Age (40–59)” 
patients (52.5%). Men make 62% of the trained group 
and 64.9% of the validation group, so the sex ratio stays 
unchanged. Important clinical factors displaying clear 
consistency throughout the datasets which includes stage 
of cancer, the co-morbidity, and the treatment approaches. 
The capacity of the model to generalize throughout the 
multiple patient health states which is supported by the 
homogeneity of the fraction of comorbid disorders (17.3% 
in trained vs. 18.5% in validation). Comparatively, the 
proportion of Stage IV diagnosis (49.3% in trained vs. 
46.3% in validation) suggests that the degree of the 
disease remained the same. The patterns of treatment vary 
as Chemotherapy application is equal (76.6% in trained 
vs 75.2% in validation) but the surgical intervention is 
less common (10.6% in trained vs 6.1% in validation). 
The cohorts mostly comprise of data from rural areas. 
The validation group comprises more Non-BPL patients 
(54.6%) than the trained cohort, which has 49.3%. The 
generalizing capacity of the model is supported by the 
fact that lifestyle elements, including alcohol and tobacco 
usage, show no considerable difference (36% in validation 
vs. 34.6% in trained). Survival model particularly in 



Asian Pacific Journal of Cancer Prevention, Vol 26 2671

DOI:10.31557/APJCP.2025.26.7.2669
AI Interpretability in Stomach Cancer

Variable Aiims,Bhubaneswar Hi-Tech Medical College & Hospital
Age Young Adult(19-39) 144 (10.6%) 28 (7.2%)

Middle Age (40-59) 585 (43.3%) 204 (52.5%)
Old Adult (60-79) 603 (44.6%) 144 (37.1%)
Elderly (80>) 18 (1.3%) 12 (3%)

Sex Female 513 (38%) 136 (35%)
Male 837 (62%) 252 (64.9%)

Coomorbidity Condition 234 (17.3) 72(18.5%)
NA 1116 (82.6) 312 (80.4%)

Settlement Urban 297 (22%) 104 (26.8%)
Rural 1053 (78%) 284 (73.1%)

Socioeconomic Status Bpl  684 (50.6%) 176 (45.3%)
Non-BPL 666  (49.3%) 212 (54.6%)

Habbit Usage 468 (34.6%) 140 (36%)
NA 882 (65.3%) 248 (63.9%)

Stage I 27 (2%) 4 (1%)
II 189 (14%) 72 (18.5%)
III 468 (34.6%) 132 (34%)
IV 666 (49.3%) 180 (46.3%)

Differentiation Well 63 (4.6%) 12 (3%)
Moderate 459 (34%) 160 (41.2%)
Poor 828 (61.3) 216 (55.6%)

LVI Positive 144 (10.6%) 32 (8.2%)
Negative 1206 (89.3%) 356 (91.7%)

PNI Positive 153 (11.3%) 40 (10.3%)
Negative 1197 (88.6%) 348 (89.6%)

Surgery Yes 144 (10.6%) 24 (6.1%)
No 1206 (89.3%) 364 (93.8%)

Chemotherapy Yes 1035 (76.6%) 292 (75.2%)
No 315 (23.3%) 96 (24.7%)

Radiation Yes 18 (1.3%) 4 (1%)
No 1332 (98.6%) 384 (98.9%)

HER 2 Positve 144 (10.6%) 24 (6.1%)
Negative 1206 (89.3%) 364 (93.8%)

MSI Positve 63 (4.6%) 20 (5.1%)
Negative 1287 (95.3%) 368 (94.8% )

Survival Time 365 Days 216 (16%) 68 (17.5%)
365-730 Days 360 (26.6%) 48 (12.3%)
730-1095 Days 144 (10.6%) 60 (15.4%)
1095-1460 Days 558 (41.3%) 192 (49.4%)
> 1460 Days 72 (5.3%) 20 (5.1%)

Event Dead 549 (40.6%) 72 (18.5%)
Alive 801(59.3%) 316 (81.4%)

Table 1. Comparison of Clinical and Demographic Characteristics Between AIIMS Bhubaneswar and Hi-Tech Medical 
College & Hospital Cohorts (2018–2022)  

cancer prediction. 
In Conclusion, our study has constructed and validated 

a deep learning model for predicting survival in stomach 
cancer patients. Strong prediction performance of the 
model makes it therapeutically relevant. Combining 
SHAP with LIME improves model interpretability 

thereby providing the evidence to trust AI- driven model 
Settlement, treatment modalities, and socioeconomic 
level are among the key survival elements. Even though 
the model performs well, differences in how well it 
generalizes across datasets highlight the need for ongoing 
study, better data balancing strategies, and external 
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Figure 1. Workflow for Deep Learning-Based Predictive Modeling and Explainable AI Using Clinical Data from 
AIIMS Bhubaneswar (2018–2022) 

contexts with limited resources should provide priority 
to socioeconomic inequalities. The percentage of 
patients whose survival span “365–730 days” is greater 
in the trained dataset (26.6% vs. 12.3% in the validation 
cohort). The proportion of patients surviving “1095-
1460 days” is higher in the validation dataset (49.4% 
vs. 41.3% in trained). Furthermore, the death’s in the 
trained set (40.6%) and the validation cohort (18.5%) 
clearly indicates probable variations reflecting possible 
changes in patient characteristics, cancer development, 
or medication efficacy. Moving from the trained set 
to the validation set brings the accuracy from 0.911 to 
0.855 (Table 2). However, the model’s continual of stable 
precision 0.941 against 0.945 represent its accuracy 
in identifying affirmative cases. On the other hand, 
sensitivity spans 0.905 to 0.873, suggesting that some 
real positive occurrences could have been missed in the 
validation sample. The fact that the balanced accuracy 

is roughly the same (0.838 to 0.965) and the F1 score 
is really good (0.923 vs. 0.907) imply that the model 
can handle slightly imbalanced survival outcome. The 
great discriminative power of the model is confirmed by 
several experiments. Model high discriminative power is 
further supported by the concordance index (ranging from 
0.923 to 0.936) and the auroc curve score (ranging from 
0.93 to 0.94), so implying that the model can strongly 
be reliable for predicting patient’s survival. Though 
accuracy declines, it stays within an anticipated range 
(usually 5–10%), therefore confirming the generalizability. 
Even in an independent validation cohort, the model’s 
robustness and capacity in survival prediction are shown 
by the continuous strength of important metrics including 
AUROC and F1-score.
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Figure 2. Layered Architecture of Deep Neural Network Model for Clinical Outcome Prediction 

Figure 3. Individual Patient Prediction Interpretation Using LIME: Probability of Survival with Key Contributing 
Features 

Discussion

Deep learning models have regularly surpassed 
traditional and alternative AI-based survival prediction 
approaches; yet, their opaque “black-box” character has 
hindered their extensive clinical use [19-20]. Personalized 
treatment planning is still difficult without artificial 
intelligence interpretability as every patient shows 
different patterns of disease development and therapeutic 
responses. The open views of model predictions, 
methods like SHAP and LIME help to overcome this 
restriction. Studies show that by raising openness 
and physician confidence in model predictions, these 
approaches improve the therapeutic value of artificial 
intelligence [13, 21-23]. Most artificial intelligence 
studies on stomach cancer prediction have concentrated 
on contrasting many machine learning models, therefore 
overlooking interpretability, which is crucial for clinical 
decision-making. Furthermore, existing publications 

validated on internal datasets and lack external validation, 
therefore restricting generalizability and raising questions 
regarding robustness over different populations [24-25]. 
AI models remain challenging to apply in normal clinical 
practice without interpretability and external evaluation. 
Our deep learning model can augment the TNM staging 
system by combining SHAP and LIME, therefore giving 
doctors a strong tool for survival prediction and tailored 
treatment planning.

Local Interpretable Model-Agnostic Explanations, or 
LIME, examine input data to evaluate how it influences 
certain predictions. For example, in one occasion a 
patient with Stage III cancer, male gender, and a history 
of treatment had a 95% estimated survival probability 
(Figure 3). LIME found three most important factors 
affecting this prediction to be tumor stage, age, and 
treatment. Through feature significance on both local and 
global levels, SHAP (Shapley Additive Explanations) 
improves interpretability. Patients in rural locations who 
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Performance Matrix Trained 
Model

External 
Validation

Accuracy 0.911 0.855
Sensititivity 0.905 0.873
Specificity 0.918 0.777
Precision 0.941 0.945
Negative Predictive Value 0.871 0.583
False Positive Rate 0.081 0.222
False Discovery Rate 0.058 0.054
False Negative Rate 0.094 0.126
F1 Score 0.923 0.907
Matthews Correlation Co-Efficent 0.818 0.586
Concordance Index 0.923 0.936
Balanced Accuracy 0.838 0.825
Auroc Score 0.93 0.94

Table.2 Performance Metrics of the Deep Learning 
Model on Internal Training and External Validation 
Datasets

Figure 4 (b). SHAP Force Plot Showing Feature Contributions to High Predicted Risk in a Single Patient

Figure 4 (a). SHAP Force Plot Showing Feature Contributions to Low Predicted Risk in a Single Patient

Figure 5. Feature Importance Ranked by Mean SHAP Values in Predictive Clinical Model

completed chemotherapy and had better socioeconomic 
level showed lower risk scores (0.47, Figure 4), according 
to SHAP force plots. Whereas, urban individuals 
without treatment who had poor tumor differentiation 
had a noticeably greater death risk (0.99, Figure 4). 
These interpretability methods improve confidence in 
AI-driven survival predictions and promote tailored 
treatment regimens by tying computational results with 
clinical insights. Our model found three most important 
determinants of survival: socioeconomic level, treatment 
history, and tumor differentiation. SHAP summary graphs 
(Figure 5 and 6) also showed that settlement type, urban 
vs. rural had the maximum influence, therefore underlining 
the importance of healthcare accessibility in survival 
results. These results match other studies demonstrating 
that early cancer detection and thorough treatment plans 
increase survival rates [26-27]. Early-stage cancers 
greatly increase survival with surgical intervention; but, 
in advanced instances, especially with metastases, its 
advantages become less common. Early screening and 
new treatments are more easily available to patients from 
higher socioeconomic backgrounds or well-resourced 
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Figure 6. SHAP Summary Plot: Feature Contributions to Predicting Patient Outcome in Clinical Model 

healthcare environments, therefore improving their 
prognosis (2024). Consistent improvement in survival 
across all cancer stages by chemotherapy helps to lower 
tumor load and enhance surgical treatment [28-30]. These 
realizations support the need of customized treatment 
planning grounded on patient-specific criteria. Using 
AI-driven interpretability tools can help doctors alter 
chemotherapy regimens, change course of treatment, 
and scheduling surgical intervention to improve patient 
outcomes. Hospitals can approach precision oncology 
by combining artificial intelligence survival prediction 
with AJCC staging, therefore assuring that treatment 
strategies are customized not just to cancer stage but 
also to individual patient features, socioeconomic level, 
and treatment response. This hybrid strategy maximizes 
healthcare resource allocation, improves survival 
outcomes, and sharpens clinical decision-making. 
Explainable artificial intelligence techniques should be 
included into multidisciplinary team meetings (MDTs) 
involving surgeons, radiologists, and oncologists for actual 
adoption. By means of integrated dashboards, AI-powered 
visualizations including SHAP force charts can help in 
real-time patient monitoring, therefore enabling doctors 
to dynamically change treatment strategies. Improve risk 
assessment so that doctors may give high-risk patients 
top priority for extensive follow-ups. Such artificial 
intelligence-driven decision-support systems might lower 
mortality connected to cancer and enhance quality of life. 
The results show that we need public health strategies 
that are specific to the differences in cancer outcomes 
depending on where people live and how much money 
they have. It is important to have personalized healthcare 
treatments, better cancer screening infrastructure in rural 
areas, and fair access to chemotherapy and surgery. To 
close the gap in health between urban and rural areas, 

policymakers should use these findings in their national 
cancer control plans. Making sure that everyone has 
access to early diagnosis and high-quality treatment may 
greatly increase survival rates for people of all ages and 
backgrounds.

Although this research showed some encouraging 
results, it does have certain drawbacks. The dataset only 
includes variables from two hospitals, which might lead to 
selection bias and make the model less applicable to other 
types of patients. The model performance gets impacted 
by the difference of treatment regimens in between the 
two institutions, so there is a need of uniform clinical 
data integration. Further validation is needed in real-world 
clinical contexts to generalize the model in other patients 
and even the interpretability approaches can be further 
examined for decision-making. The expansion of the 
dataset to include multi-institutional and geographically 
varied populations can be the focus of future research 
to increase the robustness of the model. Although the 
model is quite good in predicting the survival outcome, 
the predictions and tailored treatment suggestions can be 
made more precise if there is an inclusion of genetic and 
molecular data into the model. Further research is needed 
in Learning methods which are necessary in to overcome 
data privacy and allow distributed artificial intelligence. 
Using digital twin technology, which creates virtual 
models that mimic how each patient reacts, is a potential 
area for future research. This might improve treatment 
planning by allowing for dynamic, individualized 
simulations, which would make the model more useful 
in treating stomach cancer. The longitudinal studies can 
be used to evaluate the effect of AI-driven predictions on 
decision making and patient survival outcome. Resolving 
these limitations in the future will help to clarify the effect 
of deep learning on precision oncology and stomach 
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validation across a range of demographics. model 
robustness, future developments should revolve around 
federated learning. The results show promise and will 
pave the path for more open and customized clinical 
decision-making for the treatment of stomach cancer 
by means of AI-driven precision oncology tools. Our 
work paves the road for the use of interpretable artificial 
intelligence in tailored cancer treatment with an aim of 
enhancing patient outcomes and more informed clinical 
decision-making for stomach cancer treatment. 
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