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Introduction

Cervical cancer is a major global health issue, 
especially in low- and middle-income countries (LMICs), 
where it ranks as the fourth most prevalent cancer among 
women. [1]. Persistent infection with high-risk human 
papillomavirus (HPV) types, particularly HPV-16 and 
HPV-18, is the main etiological factor responsible for 
around 70% of cases [2, 3]. Despite the existence of 
effective screening programs and HPV vaccination, 
disparities in access to these preventive measures result in 
elevated incidence and mortality rates in low- and middle-
income countries compared to high-income nations [4, 3]. 
Early detection via Pap smears and HPV testing has 
markedly decreased cervical cancer rates in areas with 
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strong healthcare systems. However, achieving global 
equity in prevention and treatment constitutes a significant 
public health challenge [5, 6, 3, 7]. Chemoradiotherapy 
is the primary treatment modality for cervical cancer. 
Chemotherapy for cervical cancer, typically utilizing 
cisplatin-based regimens, is constrained by notable 
drawbacks, such as systemic toxicity, drug resistance, 
and unintended effects on healthy tissues [8]. The side 
effects, including nephrotoxicity, myelosuppression, and 
gastrointestinal distress, frequently diminish patients’ 
quality of life and restrict treatment efficacy [9]. 

The negative consequences linked to chemotherapy 
highlight the need for safer alternatives. Numerous trials 
have been conducted to identify an effective treatment for 
cervical cancer by utilizing a combination of medications 
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that were originally developed for different therapeutic 
purposes rather than for cancer[10-15]. Along with this 
concept, Linagliptin and rivaroxaban are two examples of 
drugs that may possess anticancer properties. The selection 
criteria for these drugs were grounded in extensive 
pharmacokinetic studies and safety profiles, alongside 
demonstrated anticancer efficacy, as evidenced by multiple 
previous studies. 

Linagliptin, a dipeptidyl peptidase-4 (DPP-4) inhibitor 
commonly utilized in managing type 2 diabetes, has 
demonstrated potential anticancer properties in preclinical 
studies. It exerts antitumor effects by inhibiting cancer cell 
proliferation and inducing apoptosis by modulating key 
signaling pathways, such as PI3K/AKT and ERK, essential 
for tumor survival and growth [16]. Linagliptin has been 
shown to inhibit angiogenesis, an essential mechanism in 
tumor progression, through the downregulation of vascular 
endothelial growth factor (VEGF) expression [17]. In 
addition to its direct impact on cancer cells, linagliptin 
may improve immune-mediated tumor surveillance by 
increasing the activity of natural killer cells and cytotoxic 
T lymphocytes, thus enhancing antitumor immunity [18]. 

In contrast, Rivaroxaban, an oral anticoagulant 
that acts as a direct factor Xa inhibitor, has recently 
attracted interest for its potential anticancer properties 
and primary application in thromboembolic disorders. 
Preclinical studies indicate that rivaroxaban may impede 
cancer progression by targeting mechanisms like tumor-
associated thrombosis, which is associated with tumor 
growth and metastasis [19]. Additionally, Rivaroxaban 
has been demonstrated to decrease the expression of 
pro-inflammatory and pro-angiogenic factors, such 
as tissue factor (TF) and vascular endothelial growth 
factor (VEGF), thus restricting tumor angiogenesis and 
metastasis [20]. Recent evidence suggests that rivaroxaban 
may directly influence cancer cell survival by inducing 
apoptosis and inhibiting proliferation via the modulation 
of signaling pathways, including PI3K/AKT [21]. 
Additionally, its anticoagulant properties may lower the 
risk of venous thromboembolism associated with cancer, 
a prevalent complication among cancer patients [22]. 

Along with the hypothesis that suggested that 
understanding the MAPK-RAS pathway is critical for 
designing successful cancer therapies, the current study 
focuses on the role of the mixture in targeting this crucial 
pathway in cancer. 

The MAPK-RAS kinase signaling system regulates 
cell proliferation, differentiation, survival, and disruption, 
which are characteristic of many malignancies. RAS 
proteins, including KRAS, NRAS, and HRAS, function 
as molecular switches that activate the MAPK cascade, 
which includes RAF, MEK, and ERK kinases, to 
convey growth signals from cell surface receptors to the 
nucleus [23] . Mutations in RAS or upstream receptors, 
including EGFR, are commonly found in pancreatic, 
colorectal, and lung cancers. These mutations result in 
the constitutive activation of the MAPK pathway and 
subsequent uncontrolled cell proliferation [24].This 
hyperactivation facilitates tumorigenesis by enhancing 
cell cycle progression, inhibiting apoptosis, and promoting 
angiogenesis and metastasis [25]. Additionally, the 

MAPK pathway interacts with other oncogenic signaling 
networks, including PI3K/AKT, enhancing its pro-tumor 
effects [26]. Another critical member of the MAPK-RAS 
kinase pathway is p38 MAPK. This stress-responsive 
kinase plays a role in cancer by supporting tumor survival 
and metastasis in others [27-29].

Related to the crucial role of MAPK-RAS kinase 
signal protein in cancer, Multiple trials were performed to 
identify medications that can target these protein kinases, 
such as Vemurafenib [30],  Dabrafenib [31], Trametinib 
[32] , Cobimetinib [33], Sotorasib [34], Adagrasib [35], 
Erlotinib [36], Gefitinib [37] and Ralimetinib [38].

Incorporating existing marketed drugs for cancer 
therapy presents a promising strategy for developing 
effective cancer treatments. Several studies have been 
conducted on this topic, one of which has shown that 
the amygdalin—esomeprazole mixture effectively kills 
cervical cancer cells via a pattern of inhibition contingent 
upon the concentration of the medication and the incubation 
period [10, 11]. Another recent study demonstrated that 
the laetrile-vinblastine mixture significantly inhibited the 
proliferation of esophageal cancer, indicating a synergistic 
interaction between the components [39, 40]. A separate 
study indicates that the combination of ciprofloxacin and 
laetrile effectively inhibits the proliferation of esophageal 
cancer cells. [12]while another exhibited the ability of the 
linagliptin-metformin Combination to inhibit the Growth 
of the HeLa cancer Cell Line synergistically [14].

Despite numerous studies on this issue, they have not 
demonstrated the anticancer effects of the linagliptin-
rivaroxaban combination and its capacity to target mutant 
MAPK-RAS kinase signaling proteins. This study was 
conducted to address this topic.

This study explored the linagliptin-rivaroxaban 
mixture’s anticancer properties and its molecular 
anticancer mechanism by screening its ability to target 
the mutant MAPK-RAS kinase signal proteins.

Materials and Methods

Study medications
Linagliptin and rivaroxaban were sourced from 

Samarra Pharmaceutical Factory as raw materials. They 
were diluted in MEM medium to create a concentration 
ranging from 0.1 to 1,000 µg/ml for each linagliptin and 
rivaroxaban. The mixture’s concentration ranged from 
0.05 to 50 µg/ml for each medication, resulting in an 
overall concentration of 0.1 to 1,000 µg/ml. 

Cytotoxicity Assay
This cytotoxicity assay evaluates the anticancer 

properties of linagliptin, rivaroxaban, cisplatin, and the 
linagliptin-rivaroxaban combination on HeLa cancer cell 
lines. Furthermore, mixture cytotoxicity on the NHF cell 
line was detected to identify the mixture’s safety and 
determine whether any harmful impact of a product may 
arise from the mixture’s drug-pharmaceutical interaction. 

We intend to ascertain the drugs’ cytotoxic profile 
by evaluating cell viability in response to concentrations 
ranging from 0.1 to 100 µg/ml. This will aid in determining 
if these medications induce cell death, essential for 
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Selective toxicity index
This assay assessed the selective toxicity of the 

linagliptin-rivaroxaban combination and cisplatin against 
cancer cells at each incubation period (24 and 72 hours). 
The selective cytotoxicity index was calculated using the 
following mathematical equation after determining the 
IC50 levels for the mixture and cisplatin using cell growth 
curves for both HeLa and NHF cell lines [47].

Selective toxicity Index (SI)=(IC50 of normal cell 
lines)/(IC50 of cancer cell lines)

An SI score over 1.0 indicates a drug’s enhanced 
efficacy in targeting tumor cells relative to its toxicity 
towards normal cells.

Molecular docking
The chemical structures of linagliptin and rivaroxaban 

were precisely constructed with the ChemDraw program 
(Cambridge Soft, USA) and enhanced using Chem3D. 
Based on the outcomes of a pilot study exploring the 
chemical docking of linagliptin and rivaroxaban with the 
mutant RAS-MAPK kinase signalling proteins, based on 
the outcomes of the pilot study, the mutant p38 MAPK 
kinase and mutant RAS kinase signalling proteins were 
chosen. The molecular structures of mutant p38 MAPK 
(PDB: 5o8u) and mutant RAS (PDB: 7l0f) were obtained 
from the Protein Data Bank.

Protein structures were optimized and modified using 
AutoDock Tools. AutoDock Tools identified the optimal 
configuration of the ligands and generated a PDBQT 
file for them. Following optimization, the structures of 
the ligands (rivaroxaban and linagliptin) and the human 
mutant p38 MAPK and RAS kinase proteins were entered 
into AutoDock-Tools. The docking technique was then 
performed using the same application. The docking 
energy scores and binding interactions were evaluated 
utilizing BIOVIA Discovery Studio, UCSF Chimera, and 
AutoDock Vina [48, 49].

Drug combinations pattern assessment
Compusyn, a computational simulator, was utilized 

to determine the combination index (CI) and dose 
reduction index (DRI) scores. The evaluation of the 
CI score sought to assess the likelihood of synergistic, 
additive, or antagonistic interactions among the mixture’s 
components. Concentration-effect curves can demonstrate 
the percentage of cells displaying reduced growth 
concerning drug concentration, assessed after 24 and 72 
hours of treatment. CI values below 1 suggest synergistic 
impact, equal to 1 denote additivity, and beyond 1 reflect 
antagonism. 

The DRI score estimation quantifies the extent to 
which the concentration of each drug in a mixture can be 
lowered while preserving its cytotoxic efficacy. A DRI 
exceeding 1 signifies a favorable concentration reduction, 
while a DRI below 1 denotes an unfavorable concentration 
reduction. 

The combination and dose reduction index values were 
calculated using Compusyn software (Biosoft, Ferguson, 
MO, USA) [50, 51].

assessing anticancer efficacy and safety properties.

Cell Lines Used
Hela cell line: The cell line that originates from 

cervical cancer cells [41, 42].
NHF cell line: The cell line that originates from 

Normal human-derived adipose tissue [43].

Cell culture conditions
The cell lines were grown in MEM medium (US 

Biological, USA) as a growth-bolstering supply with 10% 
(v/v) fetal bovine serum (FBS) (Capricorn-Scientific, 
Germany) and fortified with 100 IU of penicillin and 
100 µg of streptomycin (Capricorn-Scientific, Germany) 
to avert bacterial contamination. They were incubated 
in a humidified atmosphere at 37°C. Exponentially 
proliferating cells were utilized for experimentation [44].

MTT cytotoxicity assay
This colourimetric assay relies on viable cells’ 

capacity to reduce yellow MTT to purple formazan 
crystals via mitochondrial dehydrogenases. In the MTT 
assay, cells are typically cultured in a 96-well plate and 
exposed to varying concentrations of the test compound. 
Following an incubation period, MTT is introduced to 
each well and incubated further. Viable cells convert 
MTT into formazan, which can be solubilized, and its 
concentration is quantified by measuring the absorbance 
at a specific wavelength using a spectrophotometer.

The quantity of formazan generated is directly related 
to the count of viable cells. Following treatment with 
the test substance, a reduction in formazan formation, 
and thus a drop in absorbance, signifies cytotoxicity. 
The half-maximal inhibitory concentration (IC50), the 
concentration of the test drugs that diminishes cell 
viability by 50%, can be derived from the dose-response 
curve [45]. 

Cells were inoculated at a density of 10,000 cells in 
a 96-well microplate and incubated at 37°C for 72 hours 
until monolayer confluence was attained. Cytotoxicity 
was assessed using the MTT test. The cells were 
subjected to various concentrations (0.1, 1, 10, 100, and 
1000 µg/ml) throughout six wells for each concentration 
of rivaroxaban, linagliptin, cisplatin, and the mixture. 
Several untreated wells were left without any treatment, 
representing a negative control. After 24 and 72 hours 
of treatment, 28 µL of MTT dye solution (2 mg/ml) was 
applied to each well. The incubation persisted for three 
hours. 100 μl of DMSO was administered to each well and 
incubated for 15 minutes. The optical density was assessed 
at 570 nm utilizing a microplate reader. The percentage 
of cytotoxicity was determined using the below equation.

Growth inhibition %= (optical density of control 
wells-optical density of treated wells)/(optical density of 
control wells)*100%

OD control is the mean optical density of untreated 
wells, and OD Sample is the optical density of treated 
wells [46].
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Ethical approval
This investigation does not include human or animal 

subjects within its scope.

Statistical Analysis
The cytotoxicity assay outcomes are expressed as 

mean ± standard deviation (SD). A one-way analysis of 
variance (ANOVA) was utilized to determine the variation 
among research groups. The paired t-test and LSD tests 
were employed to analyze the differences among separate 
groups. The study used SPSS version 20 for statistical 
analysis, setting the significance level at p < 0.05 [52].

Results

Cytotoxic study
Initially, we assessed the cytotoxicity of rivaroxaban 

and linagliptin singularly before evaluating the cytotoxic 
effects of their combination. This initial evaluation 
sought to elucidate the mechanisms of cytotoxicity and 
examine the interactions among the mixture components, 
specifically assessing whether these interactions 
demonstrate synergistic, antagonistic, or additive effects.

Linagliptin Cytotoxicity
The finding of Linagliptin cytotoxicity revealed its 

ability the reduce cervical cancer multiplication in a 
concentration- and time-dependent style, lessening the 
IC50 from 24 to 72 hours. Supported time-dependent 
cytotoxicity, Table 1.

Rivaroxaban cytotoxicity
The assessment of cytotoxicity for rivaroxaban 

revealed antiproliferative properties that varied with 
changes in incubation duration. With the fluctuation in 
the growth inhibition across the concentrations Table 2.

Cisplatin cytotoxicity
Cisplatin was selected as a positive control for 

comparative purposes. The cytotoxicity study indicated 
that the cytotoxic effects of cisplatin on each cell line were 
dependent on concentration and duration of exposure. 
Table 3.

(Linagliptin -Rivaroxaban) mixture cytotoxicity
The study results indicated that the combination of 

linagliptin and rivaroxaban inhibited the growth of human 
cervical cancer, with the mode of inhibition primarily 
influenced by the concentration of the mixture. Moreover, 
the mixture’s cytotoxicity on the NHF cell line was less 
pronounced than on the cancer cell line, indicating a 
favourable safety profile and selective toxicity towards 
cancer cells, Tables (4 and 5).

The comparison of cytotoxicity between the mixture 
and its ingredients and cisplatin revealed that the 
mixture exhibited more significant cytotoxicity at 
higher concentrations. Indicating a synergistic cytotoxic 
impact between the mixture ingredients. And as the best 
alternative to traditional chemotherapy, Supplementary 
Tables (1 and 2).

Concentration (µg/ml) Inhibition of cellular proliferation (mean ± SD a) P- value
24 hr. 72 hr.

0.1 D 1.00 ± 1.000 C 12.00 ± 2.000 0.001*
1 CD 8.00 ± 3.000 BC 23.00 ± 3.000 0.004*
10 BC 17.00 ± 2.000 AB 33.00 ± 4.000 0.003*
100 AB 20.00 ± 5.000 A 37.00 ± 1.000 0.004*
1000 A 30.33 ± 3.055 A 44.00 ± 4.000 0.009*
b LSD value 11.32 11.04 -
IC50 1861.5 µg/ml 1252.6 µg/ml -

a. standard deviation; b. least significant difference, statistically significant differences are shown by variations in capital letters within the same 
column; *, significant at (P<0.05)

Table 1. The Influence of Linagliptin on the Survival of Cervical Cancer Cells at 24 and 72 Hours

Concentration (µg/ml) Inhibition of cellular proliferation (mean ± SD a) P- value
24 hr. 72 hr.

0.1 D 5.00 ± 3.000 C 17.00 ± 1.000 0.003*
1 CD 9.00 ± 2.000 BC 22.00 ± 2.000 0.001*
10 BC 18.00 ± 3.000 B 32.00 ± 2.000 0.003*
100 A 29.00 ± 1.000 AB 44.00 ± 4.000 0.003*
1000 AB 26.00 ± 4.000 A 39.00 ± 5.000 0.007*
b LSD value 10.16 11.5 -
IC 50 2024.8 µg/ml 1239.7 µg/ml -

a. standard deviation; b. least significant difference, statistically significant differences are shown by variations in capital letters within the same 
column; *, significant at (P<0.05)

Table 2. The Influence of Rivaroxaban on the Survival of Cervical Cancer Cells at 24 and 72 Hours
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Figure 1. A 24-hour Growth Inhibition Comparison of Linagliptin, Esomeprazole, Cisplatin, and a Mixture

Concentration (µg/ml) Inhibition of cellular proliferation (mean ± SDa)
Hela cell line NHF cell line

24 hr. 72 hr. P- value 24 hr. 72 hr. P- value
0.1 D 0.00 ± 0.000 D 4.00 ± 2.000 0.026* C 3.00 ± 2.000 C 10.00 ± 5.000 0.088
1 D 1.00 ± 1.000 CD 10.00 ± 2.000 0.002* C 7.00 ± 2.000 C 21.00 ± 1.000 0.000*
10 C 8.00 ± 3.000 C 17.00 ± 1.000 0.012 C 14.00 ± 2.000 B 36.00 ± 3.000 0.000*
100 B 31.00 ± 1.000 B 36.00 ± 2.000 0.018 B 33.00 ± 3.000 A 50.00 ± 5.000 0.007*
1000 A 39.00 ± 1.000 A 52.00 ± 3.000 0.001* A 47.00 ± 6.000 A 63.00 ± 3.000 0.014
b LSD value 5.64 7.28 - 12.28 13.52 -
IC 50 1280.8 µg/ml 904.7 µg/ml - 1037.9 µg/ml 598.4 µg/ml -

Table 3. The Influence of Cisplatin on the Survival of Hela and NHF Cell Lines at 24 and 72 Hours

a. standard deviation; b. least significant difference, statistically significant differences are shown by variations in capital letters within the same 
column; *, significant at (P<0.05)

Concentration (µg/ml) Inhibition of cellular proliferation (mean ± SDa)
Hela cell line NHF cell line

24 hr. 72 hr. P- value 24 hr. 72 hr. P- value
0.1 D 4.00 ± 3.000 D 10.00 ± 2.000 0.045* D 0.00 ± 0.000 C 0.00 ± 0.000 N.S
1 CD 12.00 ± 3.000 CD 18.00 ± 3.000 0.045* CD 2.00 ± 1.000 BC 6.00 ± 1.000 0.008*
10 C 18.00 ± 4.000 BC 27.00 ± 4.000 0.051 BC 7.00 ± 2.000 AB 14.00 ± 4.000 0.053
100 B 33.00 ± 3.000 B 36.00 ± 2.000 0.223 AB 11.00 ± 1.000 A 18.00 ± 5.000 0.076
1000 A 57.00 ± 2.000 A 70.00 ± 3.000 0.003* A 14.00 ± 3.000 A 22.00 ± 2.000 0.018*
b LSD value 10.54 10.14 - 6.3 11.04 -
IC 50 805.3 µg/ml 579 µg/ml - 4541.7 µg/ml 2956.1 µg/ml -

a. standard deviation; b. least significant difference, statistically significant differences are shown by variations in capital letters within the same 
column; *, significant at (P<0.05)

Table 4. The Influence of Mixture on the Survival of HeLa and NHF Cell Lines at 24 and 72 Hours

Selective toxicity index assessment
The SI score for the linagliptin–rivaroxaban mixture 

was 5.63 and 5.1 at 24 and 72 hours, respectively, 
indicating that the mixture possessed a higher selectivity 
in targeting cancer cells than its impact on healthy cells, 
in contrast, the SI score for cisplatin was 0.81 and 0.66 
at 24 and 72 hours, exhibiting less selectivity in targeting 

cancer cells than its impact on healthy cells. 

Molecular docking studies
A computational molecular docking simulation was 

utilized to explore the affinity of the mixture ingredients 
(linagliptin and rivaroxaban) for binding with mutant Ras/
(MAPK) signal protein kinase. The finding demonstrated 
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Figure 2. A 72-Hour Growth Inhibition Comparison of Linagliptin, Esomeprazole, Cisplatin, and a Mixture

Figure 3. Comparison of Mixture with Cisplatin SI over 24 and 72 hours. (An SI greater than 1.0 indicates a drug's 
increased effectiveness against tumor cells relative to its toxicity towards normal cells). 

Concentration 
(µg/ml)

Inhibition of cellular proliferation (mean ± SDa)
24 hr. 72 hr.

Hela cell line NHF cell line P- value Hela cell line NHF cell line P- value
0.1 D 4.00 ± 3.000 D 0.00 ± 0.000 0.082 D 10.00 ± 2.000 C 0.00 ± 0.000 0.001*
1 CD 12.00 ± 3.000 CD 2.00 ± 1.000 0001* CD 18.00 ± 3.000 BC 6.00 ± 1.000 0.003*
10 C 18.00 ± 4.000 BC 7.00 ± 2.000 0.013* BC 27.00 ± 4.000 AB 14.00 ± 4.000 0.016*
100 B 33.00 ± 3.000 AB 11.00 ± 1.000 0.000* B 36.00 ± 2.000 A 18.00 ± 5.000 0.004*
1000 A 57.00 ± 2.000 A 14.00 ± 3.000 0.000* A 70.00 ± 3.000 A 22.00 ± 2.000 0.000*
b LSD value 10.54 6.3 - 10.14 11.04 -
IC 50 805.3 µg/ml 4541.7 µg/ml - 579 µg/ml 2956.1 µg/ml -

a. standard deviation; b. least significant difference, statistically significant differences are shown by variations in capital letters within the same 
column; *, significant at (P<0.05)

Table 5. Comparing the Impacts of the Mixture on the Growth of the Hela and NHF Cell Lines at the 24-and 72-hour 
Marks

that the best interaction of linagliptin was identified with 
mutant p38 MAPK (PDB code: 5o8u), yielding a docking 

score equal to (-7.9) kcal/mol. Meanwhile, rivaroxaban 
showed a higher affinity for interaction with Ras signal 
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Figure 4. 2D and 2D Structure for Human Mutant MAPK Binding Site with Linagliptin

Figure 5. 2D and 2D Structure for Human Mutant MAPK Binding Site with Ralimetinib

protein kinase (PDB code: 7l0f), yielding a docking score 
equal to (-8.7) kcal/mol. The study utilized AutoDock tools 
version 1.5.7, BIOVIA Discovery Studio UCSF Chimera, 
and AutoDock Vina [53]. 

Analysis of molecular docking for the interaction of 
linagliptin with mutant p38 MAPK was conducted. Five 
“conventional hydrogen bonds” with the ASN A:159, 
LYS A:165, ARG A:49, and two LEU A:108 amino acid 
residues at 2.24 Å, 2.70 Å, 2.51 Å, 2.48 Å, 2.48 Å of 
distance formed subsequently. One “carbon-hydrogen 
bond” constricts with HIS A:107 amino acid residues 
at 3.33 Å of distance. Two “pi-cation bonds” formed 
with the HIS A:107 amino acid residues at a 4.96 Å and 
4.44 Å distance, respectively. Three “pi-cation; pi-donor 
hydrogen bonds” with LYS A:165 and two HIS A:107 
amino acid residues at 2.21 Å, 2.39 Å, and 2.81 Å of 
distance. Subsequently. Two “pi-pi-T-shaped bonds” 
with two HIS A:107 amino acid residues at a 4.41 Å and 
4.77 Å distance, respectively. Finally, one “alkyl bond” 
constricts with PRO A:351 amino acid residues at 4.51 Å 
of distance, Figure 1.

For comparative purposes, a molecular docking 
study assessed the interaction between Ralimetinib, a 

“ p38 MAPK inhibitor.” [54], and mutant p38 MAPK, 
resulting in a docking score of -8.7 kcal/mol for binding 
and presenting. One “halogen (fluorine) bond” constricts 
with GLU A:71 amino acid residues at 3.39 Å of distance. 
One “pi-sigma bond” constricts with LEU A:74 amino 
acid residues at 3.46 Å of distance. One “amid-pi stacked 
bond” constricts with ARG A:70 amino acid residues at a 
5.17 Å distance. Two “alkyl bond” constraints with LEU 
A:74 and MET A:78 amino acid residues at 4.47 Å and 
4.94 Å of distance, respectively. Finally, one “pi-alkyl 
bond” constricts with ARG A:194 amino acid residues at 
a 4.95 Å distance, Figure 2. 

Regarding the other mixture ingredient, “rivaroxaban,” 
Analysis of molecular docking for interaction with 
mutant RAS yielded one “conventional hydrogen bond” 
constricted with ASN A:116 amino acid residues at 2.30 
Å of distance. Three “carbon-hydrogen bonds” constrict 
with two GLY A:15, SER A:17, and GLU A:31 amino 
acid residues at 3.47 Å, 3.52 Å, and 3.32 Å distances, 
respectively. One “pi-sigma bond” constricted with 
VAL A:29 amino acid residues at 3.59 Å of distance. 
One “pi-sulfur bond” constricted with PHE A:28 amino 
acid residues at 5.56 Å of distance. One “pi-pi-T-shaped 
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bond” with two PHE A:28 amino acid residues at a 5.07 
Å distance. Two “alkyl bonds” with LEU A:120 and LYS 
A:147 amino acid residues at a 4.67 Å and 4.98 Å distance, 
respectively. Finally, three “pi-alkyl bound” with ALA 
A:18, LYS A:117, and LYS A:147 amino acid residues at 
5.32 Å, 4.42 Å, and 4.69 Å distance, respectively. Figure 3.

A molecular docking study assessed the interaction 
between Sotorasib, a RAS inhibitor, for comparative 
purposes. [55] And mutant RAS, resulting in a docking 
score of (-6.2) kcal/mol for binding and presenting. Two 
“conventional hydrogen bonds” constricted with GLY 
A:60 and GLY A:62 amino acid residues at 2.43 Å, 2.84 Å 
of distance. One “carbon-hydrogen bond” constricts with 
GLY A:63 at 3.26 Å of distance. Three “halogen (fluorine) 
bonds” constrict with two GLU A:62 and GLU A:63 amino 
acid residues at 3.09 Å, 3.69 Å of distance. And finally, 
one “pi-alkyl bond” constricts with ALA A:59 amino acid 
residues at 4.83 Å of distance, Figure 4. 

To explain the effectiveness of the mixture’s ability 
to target mutant p38 MAPK and RAS kinase signal 
proteins, their docking scores were compared with those 
of standard medications that target MAPK and RAS 
kinase signal proteins. The comparison showed that the 
docking score of linagliptin was relatively close to that 
of Ralimetinib (a standard mutant p38 MAPK inhibitor). 
In contrast, the docking score of rivaroxaban was higher 
than that of Sotorasib (a standard RAS kinase inhibitor), 
Supplementary Table 3, Figure 5 and Supplementary 
Figures 1, 2.

Identifying the Maximizing Efficacy
The study findings suggested a possible synergistic 

impact among the mixture components, resulting in the 
following consequences. Following a 24-hour incubation, 
the interaction of linagliptin and rivaroxaban demonstrated 
a Very Strong Synergism at 0.1, 1, 100, and 1,000 μg/
ml concentrations. While 10 μg/ml concentrations 
demonstrate a Strong Synergism Supplementary Table 4 
and Supplementary Figure 3.

After 72-hour incubation, the pattern of the linagliptin-
rivaroxaban mixture showed a Strong Antagonism, Very 
Strong Antagonism, Moderate Synergism, Synergism, 
and Very Strong Synergism at 0.1,1, 10,100, and 1,000 
μg/ml concentrations. Subsequently, Supplementary 
Table 5 and Supplementary Figure 4. The dose reduction 
index outcomes demonstrated that the concentrations of 
the drugs in the mixture necessary to induce cytotoxicity 
were lower than those required when used separately 
(Supplementary Figure 5). The decline was observed after 
24 hours of incubation, except for the lower rivaroxaban 
concentration. At 72 hours of incubation, a decline was 
observed at 5.50 and 500 μg/ml concentrations for both 
rivaroxaban and linagliptin. Supplementary Tables 3 and 
4; Figures 3 and 4).

Discussion

Reevaluating existing marketed drugs for cancer 
therapy represents an effort to identify effective anticancer 
alternatives. Along with this aspect, the present study 
focused on exploring the anticancer properties of a mixture 

of the antidiabetic “linagliptin “ with the anticoagulant 
“rivaroxaban.” The selection of these medications is 
motivated by findings from various previous studies 
suggesting each one possesses anti-cancer properties. 
Furthermore, each medication was thoroughly examined 
for its pharmacokinetics and safety profile.

The results of the MTT cytotoxicity assay indicated 
that the linagliptin-rivaroxaban combination exhibited 
an inhibitory effect on cervical cancer proliferation while 
demonstrating reduced cytotoxicity towards normal cell 
lines. The combination showed enhanced anticancer 
efficacy compared to cisplatin cytotoxicity and the mixture 
of medications. The combination index score indicates 
that the two drugs act synergistically. Furthermore, from 
a safety standpoint and regarding the dosage reduction 
index, the results suggest that the mixture presents a lower 
likelihood of unwanted effects than its components. The 
mixture’s safety is also corroborated by its advantageous 
selectivity index score, signifying that it exhibits selective 
toxicity towards cancer cells relative to healthy cells.  

The mixture’s anticancer properties can be elucidated 
via two avenues: first, by examining the proposed 
anticancer mechanisms of each constituent in several 
previous studies, and second, by the novel anticancer 
mechanism proposed by the current molecular docking 
study.

Several studies have been conducted regarding 
linagliptin’s anticancer properties. Linagliptin showed the 
ability to minimize the proliferation of human bone cancer 
cell lines [57]. And inhibits the survival, proliferation, and 
invasion of Glioblastoma cancer cells via a pattern that 
primarily depends on incubation periods, suggesting that 
linagliptin’s anticancer impact correlates with its effects 
on specific cell cycle stages. [58]Furthermore, Linagliptin 
could activate cell cycle arrest at low doses in the G2/M 
phase, while at high doses, it arrested both the G2/M and 
S phases [58]. Another suggested mechanism regarding 
linagliptin’s anticancer properties is supposed to be its 
ability to interact highly with Cyclin-Dependent Kinase 
1 (CDK1), an essential protein in cell cycle control. 
many substrate proteins were phosphorylated by CDK1, 
including histones H1, laminin, and Rbis. On the other 
hand, Linagliptin exhibited a significant antiproliferative 
impact via selective targeting of Aurora kinase B and 
CDK1, leading to a decline in the phosphorylation of Rb 
and a lowering in the production of Bcl-2 2 [58]. Aurora 
kinase B is an essential kinase for cell division regulation 
[59]. 

In contrast, Multiple studies were conducted to evaluate 
the anticancer properties of rivaroxaban. One study 
indicated that rivaroxaban could reduce cancer growth 
invasion in fibrosarcoma mice via A proposed mechanism 
that enhances immunity against cancer, specifically 
through increased infiltration of dendritic and cytotoxic 
T-cells [60]. In another study, Rivaroxaban demonstrates 
a synergistic effect with immunotherapy, resulting in a 
greater inhibition of cancer growth compared to the impact 
of immunotherapy alone. Rivaroxaban activated CD103 + 
F4/80 - CCR7 + dendritic cells and GrB + cytotoxic CD8+ 
T cells specifically within the tumor microenvironment 
[61, 62]. A separate study indicates that rivaroxaban 
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exhibits an antiangiogenic effect in a dose-dependent 
manner, with a score of 0.7 observed at a concentration of 
10−4 μmol/l [63]. In contrast, A separate study indicated 
that while the direct oral anticoagulants rivaroxaban and 
dabigatran effectively inhibited coagulation, they did not 
impede cancer orthotopic growth and metastasis [64].

In contrast to linagliptin’s cytotoxicity pattern, which 
exhibited a linear dose-response curve, rivaroxaban’s curve 
was non-linear. This biphasic response can be explained 
through the hormesis and dose-response relationships. 
At low doses, specific agents may stimulate protective 
cellular mechanisms, such as DNA repair or antioxidant 
responses, inhibiting cancer development. Conversely, 
high doses can overwhelm these mechanisms, causing 
DNA damage, genomic instability, and carcinogenesis 
[65].

Furthermore, in addition to the anticancer mechanisms 
elucidated earlier, the current study examines novel 
anticancer mechanisms for each linagliptin and 
rivaroxaban, as demonstrated by the findings of the 
molecular docking study, suggesting their affinity to target 
p38 MAPK, RAS kinase signal protein, particularly the 
mutant types. 

The RAS-MAPK signalling pathway is a key 
regulator of cellular processes, including proliferation, 
differentiation, survival, and apoptosis. Dysregulation 
of this pathway is a characteristic feature of cancer [66].

p38 MAPKs regulate stress responses, inflammation, 
and cell survival, playing roles in cancer by promoting 
progression, metastasis, and therapy resistance by 
modulating EMT, the tumor microenvironment, and 
survival pathways [67, 68]. RAS proteins (KRAS, NRAS, 
HRAS) are small GTPases that function as molecular 
switches. Gain-of-function mutations in RAS genes 
occur in roughly 30% of all human cancers, including 
pancreatic, colorectal, and lung cancers [69]. Mutations 
result in the constitutive activation of the MAPK cascade, 
comprising RAF, MEK, and ERK kinases, thereby 
promoting unregulated cell growth and tumor progression 
[69]. For instance, BRAF mutations, especially V600E, 
are common in melanoma and lead to the hyperactivation 
of downstream signalling pathways [70]. Targeting 
components of the RAS-MAPK pathway, including 
BRAF and MEK inhibitors, has demonstrated potential 
in treating several cancer types, such as melanoma and 
non-small cell lung cancer. However, mutation incidence 
may develop, and Resistance mechanisms diminish the 
efficacy of these medications [71]. For this reason, the 
present study focuses on the ability of drugs in the mixture 
to target the mutant form of MAPK and RAS kinase signal 
proteins. Combinatorial therapies and novel inhibitors 
targeting upstream regulators or downstream effectors 
are being explored to overcome resistance and improve 
outcomes [72]. Comprehending the complex dynamics 
of RAS-MAPK signaling is essential for formulating 
successful cancer therapies and personalized treatment 
approaches [73].

The significant function of MAPK and RAS kinase 
signaling proteins in cancer designates them as potential 
targets for effective cancer therapies. As a result of 

Targeting, p38 MAPKs show potential in overcoming 
resistance and inhibiting metastasis. Several trials 
were performed to identify p38 MAPK inhibitors as 
doramapimod [74], Talmapimod [75] ,  Ralimetinib [38] , 
Neflamapimod [76] Along with this line, several attempts 
were made to identify an agent, such as Sotorasib, that 
can target the RAS kinase protein. [34], Adagrasib  [35] 
and GDC-6036 [77]. Despite identifying multiple p38 
MAPK and RAS kinase inhibitors, challenges persist in 
their application, including Toxicity and Side Effects, 
the emergence of resistance, Limited Efficacy in Certain 
Cancers, Narrow Spectrum of Activity, and High Cost. 
[78-81]

The findings from the molecular docking study 
suggest that the linagliptin-rivaroxaban combination 
acts through a dual mechanism, particularly by targeting 
cancer cells via the mutant form of p38 MAPK and RAS 
kinase signaling protein. This mechanism clarifies the 
synergistic interaction among the mixture’s components. 
The study has limitations, including laboratory validation 
concerning the molecular study, due to several factors, 
such as financial obstacles.

In conclusion, this study aimed to identify an effective 
and safe anticancer option by focusing on repurposing a 
marking agent (linagliptin and rivaroxaban) for cancer 
treatment. MTT assay findings indicate that the linagliptin-
rivaroxaban mixture significantly inhibits the growth of 
cervical cancer compared to cisplatin, linagliptin, and 
rivaroxaban cytotoxicity. Linagliptin and rivaroxaban 
act synergistically in the mixture, as indicated by the 
combination index score, particularly after 24 hours of 
incubation and at high concentrations following 72 hours 
of incubation.

From a safety perspective, the concentrations of 
the drugs in the mixture that induce cytotoxicity were 
low compared to when used solely, suggesting that the 
mixture possesses a low propensity for adverse effects. The 
mixture exhibits a favorable selectivity index, indicating 
it’s selectively targeting cancer cells relative to healthy 
cells. Moreover, the study explores a novel anticancer 
mechanism of the mixture, representing a dual targeting 
of two essential kinase signaling proteins in the MAPK-
RAS pathway by the mixture. Via p38 MAPK targeting 
by linagliptin and RAS kinase targeting by rivaroxaban, 
with molecular docking scores of -7.9 and -8.7 kcal/mol, 
respectively. This mechanism clarifies the synesthetic 
effects resulting from a complementary anticancer 
mechanism.  

Regarding all these findings. Linagliptin-rivaroxaban 
mixture presents an effective and safer alternative for 
cervical cancer treatment, particularly concerning their 
established pharmacokinetic and safety profiles. a further 
study regarding the in vivo study and clinical study was 
recommended. 
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