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Introduction

Prostate cancer, responsible for around 15% of cancer 
cases in men, is the most prevalent cancer in 112 countries 
as of 2020, the second most diagnosed globally, and 
the fifth leading cause of cancer-related deaths, with a 
mortality rate of 6.8% [1-3]. The Lancet Commission 
predicts that the annual number of new prostate cancer 
cases will increase from 1.4 million in 2020 to 2.9 million 
globally by 2040 [2]. In India, PCa ranks third among the 
cancer sites observed in males with a cumulative risk of 1 
in 125 men [4]. Although prostate cancer is reported to be 
less prevalent in India compared to Western countries [2], 
recent data from 25 population-based the cancer registries 
in India show a rise in prostate cancer incidence [5]. In 
India, prostate cancer is often diagnosed at late stages, 
with 85% of patients diagnosed at Stage III-IV compared 
to only 15% in the USA [6]. Among Indian migrants to 
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America, the incidence of pT3 Prostate cancer, seminal 
vesicle extension, and mortality is notably higher than in 
Caucasians [7, 8].

In terms of treatment, only localized and loco-regional 
prostate cancer (often termed Castration-Sensitive 
Prostate Cancer-CSPC) is potentially curable, whereas 
distant metastasis to bone or soft tissue (often termed 
Castration-Resistant Prostate Cancer-CRPC) renders it 
incurable with current therapeutics [2, 9]. Although non-
metastatic prostate cancer (M0 PCa) has an excellent 
prognosis, the 5-year survival rate rapidly drops to just 
31% when it advances to a metastatic stage (M1 PCa) 
[10]. Prostatectomy and radiotherapy remain mainstay 
therapeutic options for CSPCs (Castration-Sensitive 
Prostate Cancers) [10]. For non-metastatic Castration-
Resistant Prostate Cancers (nmCRPCs), which develop 
from localized tumors, treatment includes use of Androgen 
Pathway Inhibitors (APIs). Although Prostatectomy, APIs 
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(such as enzalutamide), and ADT have been shown to 
improve survival and quality of life in localized CSPCs, 
they lead to the development of nmCRPCs or metastatic 
CRPCs (mCRPCs) due to resistance [8, 11]. In contrast, 
managing these advanced stages require a robust treatment 
regimen that includes Docetaxel, Cabazitaxel, APIs, and 
PARP inhibitors (PARPi) to slow the progression of PCa 
[9]. mCRPCs are typically highly aggressive, and exhibit 
resistence to existing standard treatment, with patients 
dying within 2-4 years [12-14]. Thus, there is an urgent 
need to investigate treatment options for mCRPCs [15].

Metabolic reprogramming in cancer progression is 
recognized as a one of the hallmarks cancer [16-18]. Lipid 
Metabolic Reprogramming (LMR) is implicated in many 
cancers including, metastatic PCa [14]. Progressively 
increasing rate of de novo fatty acid synthes is obesrved 
in PCa,which is at its peak [19-21]. A new strategy for 
treating mCRPC involves inhibiting ACC1 and blocking 
exogenous fatty acid uptake to prevent cancer cells from 
compensating for reduced lipogenesis [22, 23]. Single-
cell RNA sequencing of mCRPC tumors has shown 
SREBPs as crucial targets, with their inhibition resulting 
into regulation of PC3 cell growth [24]. Clinical data has 
shown that PPARγ levels increase with the progression of 
PCa which may become reliant on PPARγ for lipogenesis 
and mitochondrial biogenesis [25]. Therefore, targeting 
PPARγ could be a promising therapeutic strategy for 
preventing the development of PCa. Suppressing fatty 
acid uptake, mediated through CD36 (usually gained or 
amplified), has shown therapeutic effect in preclinical 
models of PCa [26]. PPARγ promotes PCa by activating 
lipid signaling pathways, which include de novo fatty 
acid and cholesterol production, lipid transport, and lipid 
breakdown through both androgen receptor-dependent 
and independent mechanisms [25]. Around 27% of 
patients with castration-resistant PCa, amplification 
and overexpression of PPARγ gene, particularly in AR-
negative cell lines such as DU145 and PC-3 [27], has been 
obesrved. Gene expression analysis shows that ACLY, 
ACC, and FASN are significantly elevated in the PCa 
compared to the normal prostate tissue [21]. Inhibiting 
FASN reduces intracellular de novo fatty acids and causes 
malonyl-CoA build up, which inhibits fatty acid oxidation 
by blocking CPT1 [28]. Moreover, the genetic deletion 
of FASN reduces the invasive potential of PCa driven by 
of PTEN loss [29].

Lignans, the plant-derived polyphenolic compounds, 
exhibit anticancer activity by inhibiting cancer cell 
proliferation, inducing apoptosis, and reducing tumor 
angiogenesis and metastasis [30]. One of the plant-
derived lignan-Matairesinol (MA), has been reported 
to exert cytotoxic activity against leukemia [31], 
breast [32, 33], pancreatic [34], and prostate cancers 
[35, 36]. MA has also exhibited anti-inflammatory 
[37], immunomodulatory [38], and anti-angiogenic 
[39] properties in a range of in vitro and / in vivo 
models. We have recently shown that MA reduced the 
viability of breast and prostate cancer cell lines and 
regulated Histone Deacetylase 8 (HDAC8) activity [40]. 
Recently, MA nanoparticles have been shown to restore 
chemosensitivity of colorectal cancer preclinical models 

by lipid reprogramming [41]. While MA has demonstrated 
anti-cancer activity against various cancers, its potential 
to target lipid reprogramming in PCa remains unexplored. 
In the present study, we have elucidated the therapeutic 
potential of MA in both in vitro (Pca cell line,PC3) and 
in silico model. From this integrated approach, we found 
that MA induced lipid reprogramming in the PC3 prostate 
cancer model (CRPC) and led to apoptosis.

Materials and Methods

Chemicals and reagents
Fetal bovine serum (FBS), Ham’s F12 nutrient 

mix, streptomycin, and penicillin were procured from 
Gibco (USA). Matairesinol (HPLC grade, purity 
≥85 %), Glutamine, Carbonyl cyanide 4-(trifluoromethoxy) 
phenylhydrazone (FCCP), 5,5′,6,6′-Tetrachloro-1,1′,3,3′ 
tetraethyl-imidacarbocyanine iodide (JC1), Fatostatin and 
KiCqStart™ primers were purchased from Sigma-Aldrich 
(USA). Nile red, TRI Reagent™, dNTP mix, Oligo(dT), 
RNaseOUT™, and DTT were purchased from Invitrogen 
(USA). M-MuLV Reverse Dithiothreitol Transcriptase was 
procured from Genei, India. TB Green Premix Ex Taq 
II (Tli RNaseH Plus). qPCR Master Mix was procured 
from Takara, Japan. Trypsin 0.25% Solution and all other 
common reagents were procured from HiMedia, India. 
Cell-culture and molecular biology grade plasticware were 
purchased from Eppendorf (Germany).

Cell culture
The PC-3 cell line, a poorly differentiated AR-negative 

mCRPC model [42, 43], was obtained from the National 
Centre for Cell Science (NCCS) in Pune, India. The cells 
were cultured in Ham’s F12 nutrient mix, supplemented 
with 10% fetal bovine serum (FBS), 100 U/ml penicillin-
streptomycin, and 2 mM L-glutamine. The culture was 
maintained in a humidified incubator at 37°C with 5% 
CO2.

Cell growth/Trypan blue dye exclusion assay
The effect of MA on cell growth of PC-3 cells was 

evaluated by Trypan blue dye exclusion assay [44]. 
PC-3 Cells (1×105 cells/ml) were seeded in 24-well 
plates and incubated for 24h, followed by treatment PCa 
with different concentrations (0-200 µM) of MA for 
24, 48, and 72 h. The cells were harvested, stained with 
Trypan Blue, and manually assessed for viability using a 
hemocytometer.

Mitochondrial membrane potential assay (Δψm)
The effect of MA on apoptosis of PC-3 cells was 

evaluated by using JC-1 dye as described previously [45]. 
Briefly, cells were seeded at a density of 1x104 cells/well 
in a 96-black well plate for 24 h, followed by treatment 
with different concentrations (0-200 µM) of MA. FCCP 
(20 µM) was used as a positive control. Subsequently, JC-1 
dye staining was performed on the PC3 cells. In brief, the 
cells were washed twice with 1X PBS and treated with 
0.5 µg/ml JC-1 dye. They were then incubated in a CO2 
incubator in the dark for 30 min. Following this, the cells 
were washed twice more with 1X PBS. After adding 100 
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of thirteen structures of SHBG at the Protein Data Bank 
(PDB), the entry, 6PYA [51], containing the protein with 
the ligand 3-[(1H-imidazol-1-yl) methyl]-2-phenyl-1H-
indole and resolved at 1.71 Å, was chosen. This structure 
was chosen considering its higher resolution and co-
crystallization with ligands somewhat similar in topology 
to MA. The protein was prepared by deleting all water 

µL of 1X PBS to each well, the fluorescence intensity was 
measured at 590/520 nm using a fluorescence microplate 
reader. Fluorescence readings were taken in a Fluostar 
Omega microplate reader (BMG Labtech), Germany at 
520 nm (monomers) and 590 nm (J-aggregates). Values 
were expressed as the ratio of aggregate to monomer 
fluorescence intensity, normalized to the untreated cells.

Quantitative real-time PCR (qPCR)
Relative gene expression of genes involved in lipid 

reprogramming was evaluated in PC3 cells treated with 
MA (0-100 µM) for 24 h. Briefly, Total RNA was isolated 
from the untreated (C) and MA-treated PC-3 cells by 
using TRI Reagent® following the manufacturer’s 
instructions. The 5 μg of total RNA was used for cDNA 
synthesis and subjected to qPCR analysis for evaluation 
of relative gene expression of genes at the mRNA level, 
using Kicqstart SYBR green primers on 7500-Fast Real-
Time PCR System (Applied Biosystems™) (Table 1). 
qPCR conditions included initial denaturation for 30 s 
at 95°C, and 40 cycles, each consisting of 3 s at 95°C 
(denaturation), and 30 s at 60°C (annealing and extension) 
with extension optimum at 68°C. The relative mRNA 
expression levels for each target gene were calculated with 
β-actin as internal control using the 2-ΔΔCt method [46].

Nile red staining
Nile red staining was performed to assess the effect 

of MA on intracellular lipid levels. For this cells were 
seeded at a density of 3 x 104 cells per well on coverslips 
in a 6-well plate and incubated overnight at 37°C with 
5% CO2. After 24 h, the cells were treated with varying 
concentrations of MA (0-100 µM), including a control 
group of untreated cells. The following day, the cells 
were washed with 0.1 M PBS (pH 7.4) and fixed with 
10% formaldehyde in 0.1 M PBS (pH 7.4) for 15 min. 
The cells were then stained with Nile red solution (0.1 
µg/ml in 150 mM NaCl) for 10 min at room temperature. 
Nuclei were counterstained with DAPI, and the coverslips 
were subsequently mounted onto glass slides for analysis. 
All microscopic fluorescent images were captured using 
the Olympus IX73 microscope (at 600X magnification) 
equipped with a Hamamatsu CMOS camera and its 
proprietary imaging software, CellSens (v 4.3).

Target Identification and Prediction of Ligand Binding 
Pose

Putative targets of MA were collected from BindingDB 
[47], PubChem [48], and DrugBank databases [49]. 
Standard Data File (SDF) was downloaded, and a 
canonical SMILES string (COC1=C(C=CC(=C1)
CC2COC(=O)C2CC3=CC(=C(C=C3)O)OC)O) for MA 
(PubChem CID: 119205) was obtained and independently 
uploaded to the aforementioned servers. The default 
settings were used for all parameters. Consensus results 
pooled from the servers indicated two targets, Sex 
hormone-binding globulin (SHBG) and Dehydrogenase/
Reductase 4 Like 2 (DHRS4L2), henceforth referred to 
as DHRS4. 

Molecular docking was performed using Autodock 
4.2 [50] to predict the binding of MA with SHBG. Out 

Table 1. List of KiCqStart™ Primers Used
S.N. Gene Sequence (5’à3’)
1 CYCS F- AAGAACAAAGGCATCATCTG

R- GCTATTAAGTCTGCCCTTTC
2 CASP9 F- CTCTACTTTCCCAGGTTTTG

R- TTTCACCGAAACAGCATTAG
3 CASP3 F- AAAGCACTGGAATGACATC

R- CGCATCAATTCCACAATTTC
4 PPARG F- AAAGAAGCCAACACTAAACC

R- TGGTCATTTCGTTAAAGGC
5 SREBF1 F- AATCTGGGTTTTGTGTCTTC

R- AAAAGTTGTGTACCTTGTGG
6 ACC F- CAGTGAAGGCTTATGTTTGG

R- CGTCATATGGATGATGGAATC
7 ACLY F- GGTTCATTGGACACTATCTTG

R- CGTCATATGGATGATGGAATC
8 FASN F- CAATACAGATGGCTTCAAGG

R- GATGTATTCAAATGACTCAGGG
9 SCD F-CAGAGGAGGTACTACAAACC

R- ATAAGGACGATATCCGAAGAG
10 SREBF2 F- CAGCAGGTCAATCATAAACTG

R- GGACATTCTGATTAAAGTCCTC
11 HMGCR F- ACTTCGTGTTCATGACTTTC

R- GACATAATCATCTTGACCCTC
12 LXR F- CATGACCGACTGATGTTC

R- CAAACACTTGCTCTGAGTG
13 ABCA1 F- GTGTTTCTGGATGAACCC

R- TTCCATTGACCATGATTGC
14 ELOVL6 F- AGTATATTCGGTGCTCTTCG

R- TTAGCACAAATGCATAAGCC
15 LIPE F- CTATGCTGGTGCAAAGAC

R- CTCCAGGAAGGAGTTGAG
16 ACSL1 F- TGAGTGGGTGATTATTGAAC

R- GTTGACTATGTACGTGATGG
17 CPT1A F- ACGGGGATTATAAGTCAAGG

R- CACAGCAAGTGAAAATCAAC
18 SLC25A1 F- ATGTTCGAGTTCCTCAGC

R- ACTTCACCTTGATGGTCTC
19 SHBG F- GACTCAGGCAGAATTCAATC

R- AACACCACCTTTTGATCTTG
20 DHRS4L2 F- ATCGATATCCTAGTCTCCAATG

R- TAATGTCCAGAGTCTTGTCC
21 β-actin F-GATCAAGATCATTGCTCCTC

R-TTGTCAAGAAAGGGTGTAAC
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molecules and adding hydrogens as well as Gasteiger 
charges. The binding site of SHBG was defined based on 
the co-crystallized ligand. A grid box with dimensions 
48 X 42 X 40 with a 0.375 Å spacing and center at 
-13.188, -23.564, and -7.570 Å was prepared. Docking 
runs (100) with a population size of 300 and 2,500,000 
energy evaluations were performed with other algorithm 
parameters being kept as default. The pose with the lowest 
score was considered the best-docked pose.

The protein DHRS4 has only one entry in the PDB, 
3O4R (unpublished), solved at a resolution of 1.7 Å. 
This entry is a complex of the protein and the cofactor 
NADP. The entry 2BGM [52], is a co-crystal structure of 
a related plant protein, secoisolariciresinol dehydrogenase 
with MA. The two proteins were superimposed and the 
coordinates of MA were copied from 2BGM to 3O4R. 
To refine the complex, the Standard Dynamics Cascade, 
in the absence of solvent, as implemented in Discovery 
Studio 2017, was implemented. Molecular Mechanics 
Force Field (MMFF) parameters were used for protein 
and ligand. This protocol includes energy minimization 
(1000 steps Steepest Descent (SD), 2000 steps Adopted 
Basis Newton-Raphson (ABNR)), stepwise heating up 
to 300 K, 10ps of equilibration, and 10ps of a production 
run. The last frame of the co-complex was considered as 
ligand pose with protein.

Statistical analysis
All the assays mentioned were performed in triplicates 

and expressed as Mean ± Standard Deviation (Mean ± SD). 
A p-value of p<0.05 was considered to be statistically 
significant. For qPCR, each reaction was performed in 
triplicates. Data were analyzed by one-way ANOVA 
followed by Tukey’s multiple comparison test which was 

employed for the p-value determination using GraphPad 
Prism 6.0 (GraphPad Software, Inc., San Diego, CA). 
All bar and line plots were generated in GraphPad Prism.

Results

MA reduced cell growth and induced apoptosis in PC-3 
cells via the intrinsic pathway 

In an earlier report, we demonstrated that MA 
decreased the viability of PC3 cells [30]. In this study, 
we demonstrate that MA inhibited the growth rate of 
PC-3 cells in both a dose- and time-dependent manner 
(Figure 1a). At 200 µM, MA decreased mitochondrial 
membrane potential by 1.52-fold (p<0.05) after 24 h, 
indicative of apoptosis (Figure 1b). This observation 
was further corroborated by a significant upregulation in 
the mRNA expression levels of cytochrome c (43.4-fold; 
p<0.001), caspase 3 (18.7-fold; p<0.001), and caspase 9 
(8.7-fold; p<0.001) (Figure 1c). These results suggested 
that MA induces apoptosis in PC-3 cells through an 
intrinsic, mitochondrial-dependent pathway.

MA reprograms lipid metabolism 
To confirm the mechanism of action of MA in the 

regulation of lipid metabolism in PCa, the effect of MA 
was studied on the genes involved in lipogenesis (fatty 
acid and cholesterol synthesis), lipid transport, and lipid 
catabolism (lipolysis and fatty acid oxidation).

MA regulated key genes involved in fatty acid and 
cholesterol synthesis and their efflux 

MA significantly decreased the mRNA expression 
of PPARγ by 5.2-fold (p<0.001) at 100 µM (Figure 2a). 
Additionally, MA reduced the mRNA levels of key fatty 

Figure 1. MA Decreased Cell Growth and Induced Apoptosis in PC3 Cells. After treatment of PC3 cells with MA, 
decrease in (a) Growth kinetics and (b) Mitochondrial membrane potential was observed. MA increased the mRNA 
expression of apoptosis-related genes (c) Cyt c, Caspase 9, and Caspase 3. Data has been represented as Mean ± standard 
deviation; n = 6. ***p < 0.001, **p < 0.01, *p < 0.05
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acid biosynthesis genes: sterol regulatory element-binding 
protein 1 (SREBP1) by 3.1-fold (p<0.01), acetyl-CoA 
carboxylase (ACC) by 2.6-fold (p<0.001), ATP citrate 
lyase (ACLY) by 2-fold (p<0.001), fatty acid synthase 
(FASN) by 4.3-fold (p<0.001), and stearoyl CoA 
desaturase 1 (SCD1) by 2-fold (p<0.05) compared to 
untreated PC-3 cells. These findings were corroborated 
by a similar reduction in SREBP1 expression (3.7-fold; 
p<0.001) with Fatostatin (3 µM), a specific SREBP 
inhibitor. Furthermore, MA decreased the mRNA 
expression of cholesterol biosynthesis genes: sterol 
regulatory element-binding protein 2 (SREBP2) by 10.75-
fold (p<0.001) and 3-hydroxy-3-methylglutaryl-CoA 
reductase (HMGCR) by 4.75-fold (p<0.001) at 100 µM 
(Figure 2b), with SREBP2 expression also reduced by 2.2-
fold (p<0.01) upon Fatostatin treatment. Conversely, MA 
increased the mRNA levels of Liver X receptor (LxR) and 
ATP-binding cassette transporter (ABCA) by 1.5-fold and 
1.2-fold (p<0.05), respectively (Figure 2c). Additionally, 
MA reduced intracellular lipid accumulation in the form of 
lipid droplets compared to untreated controls (Figure 2d).

MA regulates fatty acid elongation and lipid catabolism 
At 100 µM, MA significantly decreased the mRNA 

levels of long-chain fatty acid synthesis genes, including 
ELOVL6 (7.3-fold; p<0.001), LIPE1 (1.6-fold; p<0.01), 
and ACSL1 (2.4-fold; p>0.05), compared to untreated cells 
(Figure 3a). Additionally, MA at the same concentration 
reduced the mRNA levels of genes involved in lipid 
utilization, such as CPT1A (6.2-fold; p<0.001) and 
SLC25A1 (2.6-fold; p<0.001) (Figure 3b). Thus, MA 
downregulated the key genes involved in lipid catabolism 
at mRNA levels.

In silico and in vitro validation revealed that MA regulates 
SHBG and DHRS4 expression

The data thus far indicate that MA regulates lipid 
metabolism by targeting pathways involved in fatty acid 
and cholesterol synthesis. To further elucidate the primary 
target of matairesinol, in silico and in vitro validation was 
performed.

SHBG and DHRS4 identified as a target for MA
SMILES format file of the ligand was uploaded 

to BindingDB [35] and PubChem [34] to identify the 
validated targets of MA, both the resources having 
curated experimental binding data of proteins and small 
molecules. PubChem showed MA to be active against 
SHBG with an IC50 of 0.3 µM for the displacement of 5 
alpha-dihydrotestosterone and BindingDB showed SHBG 
as a target. Drugbank enlisted DHRS4 as a target for MA 
with unknown pharmacological action. 

Matairesinol interacted with SHBG and DHRS4 proteins 
and reduced their mRNA expression

Molecular docking using AutoDock 4.2 was conducted 
to elucidate the binding interactions of matairesinol 
(MA) with sex hormone-binding globulin (SHBG). MA 
exhibited a docking score of -6.35 with SHBG. Detailed 
analysis of the interactions (Figure 4a and 4b) revealed 
that the carbonyl group of the butyrolactone moiety of MA 
interacts with the backbone NH of Met 107. Additionally, 
the two terminal benzene rings of MA form van der Waals 
(vDW) interactions with Phe 67, Val 105, Val 112, Ile 
141, Leu 171, and Met 139. MA displayed a Tanimoto 
coefficient of 0.5 in comparison with estradiol, which 
co-crystallized with SHBG (PDB ID: 6PYF). While 
estradiol engaged in vDW interactions with Phe 67, Val 

Figure 2. MA Regulated Key Genes Involved in Fatty Acid and Cholesterol Synthesis. MA reduced the mRNA 
expression of genes involved in (a) de novo fatty acid synthesis, (b) de novo cholesterol synthesis and (c) lipid 
transport. Relative mRNA expression was measured in comparison to an untreated control, and β-actin was used as 
an internal control. F-Fatostatin. Each bar represents the mean ± standard deviation; n = 6. ***p < 0.001, **p < 0.01, 
*p < 0.05. Nile Red staining of lipid droplets showed that (d) MA reduced intracellular lipid accumulation in the cells. 
Representative images from one experiment have been shown
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Figure 3. MA Regulated Fatty Acid Elongation and Lipid Catabolism. MA decreased mRNA expression of (a) lipolysis 
and (b) fatty acid oxidation genes. Relative mRNA expression was measured in comparison to an untreated control, 
and β-actin was used as an internal control. Each bar represents the mean ± standard deviation; n = 6. ***p < 0.001, 
**p < 0.01, *p < 0.05

105, Val 112, Ile 141, and Leu 171, the hydrogen bonding 
patterns differed due to variations in chemical groups.

For dehydrogenase/reductase member 4-like 2 
(DHRS4), co-crystallized with MA (PDB ID: 
2BGM), structural alignment with secoisolariciresinol 
dehydrogenase and subsequent refinement of the MA 
ligand placement through molecular dynamics revealed 
that the hydroxyl groups of MA 2-methoxy phenol rings 
form hydrogen bonds with Pro 121, Ile 170, and Ser 174. 
The carbonyl group of the butyrolactone moiety interacts 
with Ser 176, while the aromatic rings engage in vDW 
interactions with Ile 170, Phe 179, Leu 214, Phe 219, 
and Leu 223. These interactions closely resemble those 
observed in the crystal structure of the plant protein. These 
docking results align with gene expression studies, which 
demonstrated that MA downregulates SHBG (1.32-fold; 
p<0.001) and DHRS4 (1.83-fold; p<0.001) expression 
(Figure 4e and 4f).

Discussion

Prostate cancer (PCa), a complex and multi-faceted 
disease, although having a good prognosis in the localized 
stage poses, significant challenges in treating its metastatic 
forms. In PCa, tumor cells undergo adaptions to survive 
in deficient levels of serum testosterone, known as the 
castration level in most patients, and eventually progress to 
develop mCRPC [53]. Stronger of AR signaling inhibition 
through APIs has led to enhance dedifferentiation of 
mCRPC into AR-negative disease, which is unresponsive 
to AR signaling inhibition and lacks a consensus on 
treatment [54, 55]. Thus, due to the scarcity of alternative 
therapies, the discovery of new druggable targets/pathways 
is urgently needed to improve clinical outcomes in PCa. To 
target AR-negative mCRPC, strategies may include either 
inducing AR re-expression (restoring chemosensitivity 
toward APIs) or directly targeting the AR-negative cells. 

In AR negative PC3 cells, reduced fatty acid uptake 
through inhibition of CD36 decreased its proliferation, 
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Figure 4. Matairesinol Interacted with SHBG and DHRS4 Proteins. The 2D and 3D binding interaction profile of MA 
with SHBG (a and b, respectively) and DHRS4 (c and d, respectively) has been shown. Correspondingly, MA reduced 
mRNA expression of SHBG (e) and DHRS4 (f). The dark green lines in panels a and c indicate hydrogen bonds; the 
light green indicates van der Waals interactions; the pink lines indicate alkyl and pi-alkyl interactions; and the yellow 
line indicates pi-sulfur interaction. mRNA expression was quantified relative to untreated control and β-actin was used 
as an internal control. Each bar represents the mean ± standard deviation; n = 6. ***p < 0.001, **p < 0.01, *p < 0.05 

indicating that the lipid pathway plays an important role 
in its regulation [26]. Inhibition of de novo lipogenesis (by 
direct activation of AMPK) in PC3 (AR-negative mCRPC 
cell line) along with LNCaP (AR-positive mCRPC cell 
line) has been shown to induce mitotic arrest and apoptosis 
albeit to a lesser extent [56]. These studies indicate that 
even though AR-negative mCRPCs lack active AR 
function, they may still rely on de novo lipogenesis. 
Instead, they may utilize alternative pathways to sustain 
lipid metabolism and support tumor growth that need to 
be explored. In this line, various phytochemicals such as 

shown to induce anticancer activity in AR-negative PCa 
cell lines by targeting lipid metabolism. valproic acid [57], 
Celestrol [58], Citral [59], Tannic acid [60], Wogonin [61], 
Icaariin and Curcumol [62] have been. 

In our earlier study, we have shown that MA reduced 
the viability of breast (MCF-7 and MDA-MB-231) and 
the prostate cancer cell lines (LNCaP and PC-3) with 
high selectivity relative to the normal cell lines [40, 
36]. Recently, it was shown that MA exhibited anti-
clonogenic and anti-migratory effects against PC3 [36]. 
Various lignans, including MA, have been reported to 
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downregulate anti-apoptotic proteins [63, 35, 64]. In 
the current study, we have observed a dose-dependent 
decrease in PC-3 cell growth at 24 h, 48 h, and 72 h. 
Further, MA treatment decreased the mitochondrial 
membrane potential of the cells and increased mRNA 
expression of cytochrome c, caspase 9, and caspase 3. 
Decrease in mitochondrial membrane potential triggers 
the release of cytochrome c from the mitochondria to the 
cytosol, leading to the activation of caspases and induction 
of apoptosis [65-67]. Thus, this indicated that MA induced 
apoptosis in PC-3 cells through activation of cytochrome 
C and caspases.

Truncation of the tricarboxylic acid (TCA) cycle in the 
normal prostate epithelial cells leads to zinc accumulation 
through inhibition of enzyme m-aconitase, which converts 
citrate to isocitrate [23]. However, reactivation of the 
TCA cycle in PCa cells leads to oxidation of citrate which 
further gets converted to acetyl CoA for de novo lipid 
synthesis. Thus, PCa cells display lipogenic phenotype 
and enhanced lipid metabolism than the normal cells 
[23]. The in vitro models of PCa cell lines, including PC3 
consistently show higher lipid levels compared to the 
non-neoplastic prostate cells [68]. In the present study, It 
was observed that MA treatment altered the mRNA levels 
of the genes involved in the lipid metabolism pathway. 
Inhibition of de novo fatty acid and cholesterol synthesis, 
after MA treatment, is evident by downregulation of 
mRNA levels of PPARγ, SREBP-1, ACC, ACLY, FASN, 
SREBP2, and HMGCR. PPARγ plays an oncogenic 
role in the development and progression of PCa and 
presents an increased severity of castration resistance 
[25]. In patients with low PTEN expression, PPARγ is 
correlated with prostate cancer grade and associated with 
worse disease-specific survival, while PPARγ inhibition 
suppressed tumor growth in vivo by downregulating lipid 
synthesis [69]. SREBPs regulate de novo fatty acid and 
cholesterol biosynthesis through interaction with cis-
acting Sterol Regulatory Element (SRE) present in the 
promoter regions of genes associated with these pathways 
[70]. SREBP-1 is associated with the activation of genes 
involved in de novo fatty acid synthesis, including ACC, 
ACLY, and FASN. A study has shown that mCRPC tumors 
identified SREBPs as crucial targets, with their inhibition 
shown to be significantly effective in the PC3 cell model 
[24]. These findings imply that MA might have inhibited 
the growth of the PC3 cell line by reducing intracellular 
fatty acid levels. 

Assessment of databases such as Oncomine and 
cBIOPORTAL has revealed the upregulation of several 
genes associated with fatty acid synthesis (ACC, ACLY, 
and FASN), fatty acid desaturation (SCD1), a long chain 
fatty acyl-CoA synthetases- ACSL-1, ACSL-3, ACSL-5), 
fatty acid elongation (ELOVL5, 6, 7), fatty acid oxidation 
(CPT1 and ECl2), and cholesterol synthesis (HMGCR) in 
PCa especially metastatic disease as compared to normal 
epithelial tissue [71]. Various enzymes involved in fatty 
acid production have been linked to the development of 
PCa [72]. Inhibiting ACLY in PCa cells activates AMPK, 
which suppresses AR levels and inhibits cell proliferation, 
revealing a feedback loop among AMPK, ACLY, and AR 
[73]. ACC1 and FASN are reported to be overexpressed 

in prostatic intraepithelial neoplasia (early-stage) and PCa 
(advanced-stage) [74]. SCD is involved in the desaturation 
of saturated fatty acids (SFAs) to Δ9-monounsaturated 
fatty acids (MUFAs)- stearic (18:0) and palmitic acid 
(16:0) to oleic (18:1) and palmitoleic acid (16:1). These 
SFA and MUFA are basic components of cell membrane 
and serve as energy and signaling molecules. SCD1 
expression is found to be associated with the activation 
of cancer-stem cells (CSCs) markers such as ALDH1A1, 
Oct4, and Nanog via regulation of Hippo signaling and 
the Wnt-β-catenin signaling pathways [75]. Overall, SCD 
has been shown to increase ferroptosis and apoptosis 
while inhibiting cancer cell proliferation, migration, and 
invasion [76].

SREBP-2 regulates HMGCR, a rate-limiting enzyme 
and cholesterogenesis checkpoint, to mediate cholesterol 
biosynthesis. Cholesterol levels are controlled within 
the cell through uptake, synthesis, and efflux [77]. MA 
treatment resulted in a significant increase in LXR mRNA 
levels with SREBP2 downregulation. The expression 
of the ABCA1 and ABCG1- LXR downstream genes 
implicated in cholesterol efflux [78] was also significantly 
increased post-MA treatment. PCa cells exhibited 
increased SREBP-2 activity while decreasing LXR 
activity, resulting into higher cholesterol levels. LXR 
heterodimerizes with the retinoid X receptor (RXR) and 
prevents cholesterol accumulation [79]. These findings 
imply that MA inhibited the growth of the PC-3 cell line 
by reducing intracellular cholesterol levels.

In comparison to the normal adult mammalian tissues, 
cancer cells have a higher number of lipid droplets (LDs) 
due to increased lipid uptake and de novo lipogenesis 
[80]. LDs are cellular organelles composed of neutral 
fatty acids and cholesterol esters [80-82]. LDs are central 
to cellular lipid and energy homeostasis and support 
cancer cell proliferation, migration, and survival by 
mitigating cellular stress and supplying substrates for 
membrane lipid synthesis and β-oxidation [83, 84]. In this 
study, we found that MA reduced the intracellular lipid 
accumulation in PC3 cells. Generally, cancer cells lacking 
LDs are more prone to apoptosis [80]. One of the studies 
reported an accumulation of cholesteryl esters in human 
tissues displaying high-grade and metastatic PCa [85], 
whereas their reduction in PCa (especially in PC3 cell 
line) inhibited cell proliferation, apoptosis, and migration 
[86]. The reduction in lipid droplet accumulation in MA-
treated PC3 cells may have contributed to the inhibition 
of proliferation and induction of apoptosis, warranting 
further specific investigation. 

In addition to lipogenesis, lipolysis, and lipid 
oxidation have also been shown to be elevated in various 
human cancers [87]. Lipolysis is a process involving the 
breakdown of triglycerides stored in the lipid droplets 
to free fatty acids. Lipid oxidation is the metabolic 
process in which free fatty acids are broken down to 
generate energy in the form of ATP. In this study, MA 
was found to downregulate the mRNA levels of the key 
genes involved in fatty acid oxidation (CPT, SLC25A1), 
fatty acid elongation and lipolysis (ELOVL6, LIPE, 
ACSL1). In mCRPC, the expression of ACSL and CPT1 
is increased, and inhibition of ACSL1 has been shown 
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to decrease lipid droplet accumulation, mitochondrial 
respiration, β-oxidation, and ATP production by regulating 
CPT1 activity [89-90]. CPT1A amplification in mCRPC, 
leads to excess acetyl-CoA production, driving histone 
acetylation, tumor growth, and therapy resistance [91]. MA 
downregulated CPT1A and ACSL1 mRNA expression, 
potentially reducing PCa cell growth and resensitizing 
them to therapy. ELOVL6 is a long-chain fatty-Acyl 
elongase. Enhanced ELOVL6 expression is reported to be 
associated with tumor progression [92]. Lipase E (LIPE), 
also termed hormone-sensitive lipase (HSL), is involved 
in the release of free fatty acids from diacylglycerol and 
long-chain fatty acyl-CoA synthetases [93]. SLC25A1 
helps maintain cytoplasmic citrate levels, which positively 
modulate ACC, a key enzyme in fatty acid synthesis, 
and is upregulated in various cancers to promote tumor 
growth [94]. Downregulation of CPT1A and SLC25A1 
by MA could result in a low citrate concentration, thereby 
affecting the lipid metabolism pathway. The overall data 
suggested that MA exhibited therapeutic potential to 
modulate the lipid oxidation process, which serves as an 
important part of cancer metabolic reprogramming and is 
yet to be fully explored in PCa therapeutics.

Target identification using BindingDB, PubChem, 
and DrugBank suggested SHBG and DHRS4L2 as 
validated targets of MA, based on the experimental data 
deposited in these databases. This was further validated 
by in vitro studies, displaying downregulation of mRNA 
expression of SHBG and DHRS4 in PC3 cell line post-
MA treatment. SHBG is a 90 KD glycoprotein, a nuclear 
hormone receptor superfamily member. It binds to sex 

hormones testosterone and estradiol, with a higher 
affinity for 5 alpha-dihydrotestosterone (DHT), and 
plays a role in the transport of DHT inside prostate cells, 
which act as a precursor for PCa. It further stimulates 
the expression of AR-regulated genes associated with 
de novo lipogenesis pathway such as PPARγ and its 
downstream transcription factors, SREBP1 and SREBP2 
[95, 51]. DHRS4 is an oxidoreductase enzyme that is 
involved in retinol metabolism and fatty acid breakdown. 
It converts 9-cis retinol to metabolically active form, All 
cis-retinol, which is a ligand for LxR/RxR receptors that 
activates downstream PPARγ signaling pathway [96]. Our 
computational studies revealed that MA is bound to the 
active site of both SHBG and DHRS4, the latter being 
structurally similar to the plant protein, secoisolariciresinol 
dehydrogenase. Both the proteins belong to the Plant 
short-chain dehydrogenase (SDR) superfamily and have 
an α/β domain structure, including the dinucleotide-
binding Rossmann fold. Thus, this binding MA to 
SHBG and DHRS4 resulted into downregulates the de 
novo lipogenesis pathway that fatty acid and cholesterol 
synthesis, thereby downmodulating downstream 
effectors of PPARγ signaling (Scheme 1). This resulted 
in decreased mRNA expression of genes involved in lipid 
reprogramming, ultimately inducing apoptosis through 
mitochondrial membrane depolarization, characterized by 
the release of caspase 3 and 9. Thus, MA could potentiate 
the regulation of lipid metabolism, which could in effect 
halt prostate cancer progression.

Metabolic reprogramming is one of the hallmarks 
of the malignant phenotype in cancer. In PCa, de novo 

Scheme 1. Schematic Representation of Matairesinol-Induced Apoptosis via Lipid Metabolism Reprogramming in 
AR-Independent Prostate Cancer Cells- PC3 
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fatty acid synthesis pathway plays a key role in cell 
membrane biosynthesis, allowing rapid proliferation, 
providing energy during metabolic stress conditions, and 
inhibiting apoptosis. Alternatively, de novo cholesterol 
synthesis is associated with internal androgen production 
to sustain activation of signaling pathways that promote 
invasion and metastasis of PCa cells. The present report 
has elucidated the potential of the plant lignan, MA, 
rewiring the lipid metabolism reprogramming in PCa 
cells through suppression of de novo lipogenesis pathway, 
which includes fatty acid and cholesterol synthesis, fatty 
acid oxidation, lipolysis, decrease in lipid accumulation 
in lipid droplets and induction of apoptosis through the 
intrinsic pathway. However, further detailed studies are 
warranted to confirm the mechanistic endpoints of MA, 
to promote it as a potential drug candidate against lipid 
reprogramming in prostate cancer.
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