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Introduction

Cancer remains one of the leading causes of death 
worldwide, with early and accurate diagnosis being 
critical for favorable patient outcomes [1,2]. Traditional 
cancer diagnosis and treatment planning rely heavily on 
the expertise of pathologists, radiologists, and oncologists 
who must interpret complex medical imagery, genomic 
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data, and clinical parameters to make life-altering 
decisions. However, this human-centered approach faces 
significant challenges including inter-observer variability, 
time constraints, and the increasing complexity of modern 
cancer care that demands integration of multiple data 
modalities [3,4]. The emergence of artificial intelligence 
(AI), particularly deep learning technologies, has offered 
unprecedented opportunities to address these challenges 
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by automating pattern recognition, reducing diagnostic 
variability, and accelerating clinical decision-making 
processes [5].

The computational demands of modern AI applications 
in oncology have necessitated the adoption of specialized 
hardware accelerators, with graphics processing units 
(GPUs) emerging as the dominant platform for training 
and deploying deep learning models in cancer research 
[6,7]. Unlike traditional central processing units that excel 
at sequential processing, GPUs provide massively parallel 
computational architectures that can simultaneously 
process thousands of operations, making them ideally 
suited for the matrix computations fundamental to neural 
network training and inference [8,9]. This computational 
advantage has enabled researchers to tackle previously 
intractable problems in cancer diagnosis and treatment, 
from analyzing high-resolution histopathological images 
to processing complex genomic datasets containing 
millions of genetic variants [10].

Recent developments in GPU-accelerated cancer AI 
have demonstrated remarkable success across multiple 
clinical domains (Table 1). Researchers at The University 
of Texas MD Anderson Cancer Institute have developed 
automated tumor contouring systems for radiation 
therapy planning that leverage NVIDIA Tesla GPUs 
to precisely identify tumor boundaries and optimize 
radiation dose delivery [11]. This advancement addresses 
a critical clinical challenge where manual contouring 
is both time-intensive and subject to significant inter-

physician variability, particularly in complex anatomical 
regions such as head and neck cancers where precision is 
paramount to avoid damage to healthy tissue. Similarly, 
investigators at the University of Queensland have 
utilized GPU-accelerated supercomputers to create deep 
learning systems capable of diagnosing skin cancer from 
histology slides with accuracy matching that of trained 
pathologists [12]. The speed advantages afforded by 
GPU acceleration have proven transformative for clinical 
implementation of AI tools. Training times that previously 
required weeks or months using conventional computing 
infrastructure can now be completed in minutes or hours 
using GPU-accelerated systems [12]. This dramatic 
reduction in computational time has enabled rapid iteration 
and refinement of AI models, allowing researchers 
to explore larger parameter spaces, test multiple 
architectural approaches, and validate their systems more 
comprehensively. The University of Queensland team 
reported training their convolutional neural network on 
30,000 histology images in approximately 15 minutes 
using NVIDIA Tesla V100 GPUs, a task that would have 
been prohibitively time-consuming using traditional 
computing approaches [13,14].

Beyond diagnostic applications, GPU-optimized AI 
systems are revolutionizing cancer treatment planning 
and therapeutic decision-making (Table 2). Advanced 
genomic analysis platforms now utilize deep learning to 
identify cancer types based on genetic variations, with 
some systems achieving accuracy rates exceeding 94% for 

Tool/Platform Primary 
Application

Institution/
Developer

GPU Technology Key Features Performance 
Improvements

NVIDIA AI 
Enterprise

Cone-beam 
CT image 
reconstruction and 
tumor targeting

Netherlands 
Cancer 
Institute (NKI)

NVIDIA GPU 
with VMware 
vSphere

Real-time radiotherapy 
treatment adaptation, 
precision tumor targeting, 
reduced radiation exposure

Enhanced accuracy 
in smaller tumor 
localization, improved 
treatment planning

GPU-Accelerated 
ML Framework

Cancer genomics 
research and 
biomarker 
identification

Research 
(Abill Robert)

GPU parallel 
processing

Large-scale genomic data 
analysis, genetic mutation 
identification, predictive 
modeling

Significantly expedited 
genomic data processing, 
improved prediction 
accuracy

CUDA-Enabled 
Registration 
Algorithm

Real-time lung 
tumor tracking for 
MRI

Clinical 
research

NVIDIA Tesla 
K40c GPU

Automated radiation 
therapy, mobile tumor 
boundary tracking

5x computational 
acceleration over CPU, 
average Dice score of 0.87

NVIDIA Clara 
Platform

Comprehensive 
healthcare AI 
applications

NVIDIA NVIDIA GPU 
acceleration

Medical imaging, 
genomics, NLP, drug 
discovery, smart hospitals

Accelerated AI 
development across 
multiple medical domains

MONAI Core/
Label

Medical imaging 
AI development

NVIDIA Clara 
ecosystem

NVIDIA GPU 15 pre-trained models 
for CT, MR, Pathology, 
Endoscopy

Streamlined AI model 
development and 
deployment

NVIDIA 
BioNeMo

Drug discovery 
and molecular 
modeling

NVIDIA Multi-GPU 
scaling (1000s of 
GPUs)

Generative AI, Large 
Language Models for drug 
discovery

Optimized scaling 
for biomolecular data 
processing

QuPath with DJL Digital pathology 
image analysis

Open-source 
community

NVIDIA GPU 
(Windows/
Linux)

Deep learning for 
pathology image analysis

Enhanced performance for 
pathology workflows

PathAI Platform AI-powered 
pathology 
diagnosis

PathAI HPC GPU 
infrastructure

Objective pathology 
analysis, data-driven 
diagnostics

3-4x processing speed 
increase, reduced 
operating costs

AI, Artificial Intelligence; CT, Computed Tomography; DJL, Deep Java Library; GPU, Graphics Processing Unit; HPC, High-Performance 
Computing; ML, Machine Learning; MONAI, Medical Open Network for AI; MRI, Magnetic Resonance Imaging; NLP, Natural Language 
Processing; NKI, Netherlands Cancer Institute. 

Table 1. GPU-Optimized AI Tools in Cancer Applications
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Application Area Performance Improvement Specific Metrics
Cancer Genomics and Computational Biology 8x to 65x speed improvement Processing acceleration over traditional methods
Medical Imaging Reconstruction Up to 100x faster processing Compared to CPU-based systems
Cone-Beam CT Reconstruction 77-130 seconds Using NVIDIA Tesla C1060 GPU
System Delay Optimization (90 frames) 26% improvement Overall system performance
System Delay Optimization (120 frames) 39% improvement Scaled performance gains
Reconstruction Delay (90 frames) 2.1x improvement Processing time reduction
Reconstruction Delay (120 frames) 3.3x improvement Enhanced processing efficiency
Maximum Reconstruction Improvement Up to 66x faster When projection acquisition delay dominates

Table 2. Performance Improvements in Cancer Research Applications Using GPU-Accelerated AI Systems

distinguishing between multiple cancer types and healthy 
tissues [15]. These genomic deep learning approaches 
analyze complex patterns of mutations across oncogenes 
and tumor suppressor genes, providing insights that could 
enable earlier detection through circulating tumor DNA 
monitoring and more precise therapeutic targeting [16,17]. 
The integration of GPU-accelerated AI tools into clinical 
workflows represents a paradigm shift toward precision 
oncology, where treatment decisions are increasingly 
informed by data-driven insights rather than solely 
relying on subjective clinical assessment [18]. Modern 
multidisciplinary cancer conferences are beginning to 
incorporate AI-generated treatment recommendations 
that consider comprehensive patient data including 
histopathological features, genomic profiles, and clinical 
parameters [19,20]. These systems demonstrate the 
potential for AI to serve not as a replacement for clinical 
expertise but as a powerful augmentation tool that 
enhances physician decision-making capabilities and 
reduces the cognitive burden associated with complex 
oncological cases.

This review aims to provide a comprehensive analysis 
of the current state and future potential of GPU-optimized 
AI tools in cancer research and clinical practice, examining 
their applications across the entire cancer care continuum 
from early detection through treatment planning and 
outcome prediction. We systematically evaluate the 
computational advantages of GPU acceleration in enabling 
real-time processing of complex medical data, assess the 
clinical performance and validation status of existing AI 
systems, and identify key challenges and opportunities for 
expanding the adoption of these technologies in routine 
oncological practice. Additionally, this review synthesizes 
emerging trends in AI-driven cancer care, including the 
integration of multi-modal data sources, the development 
of explainable AI systems for clinical decision support, 
and the potential for GPU-accelerated platforms to 
democratize access to advanced diagnostic capabilities 
across diverse healthcare settings.

Medical Imaging and Radiological Applications 
Advanced Imaging Analysis and Cone-Beam Computed 
Tomography for Tumor Detection

GPU-accelerated AI has revolutionized medical 
imaging analysis in oncology, particularly in areas 
requiring rapid processing of high-resolution image data 
[21]. The Netherlands Cancer Institute has pioneered the 
use of NVIDIA AI Enterprise software for enhancing 
cone-beam computed tomography (CBCT) imaging 
in radiation therapy applications. This implementation 
addresses the critical need for precise tumor targeting 
during radiotherapy by enabling real-time adaptation of 
treatment plans to account for anatomical changes that 
occur between treatment sessions. Unlike traditional CT 
scanners that capture data in slices, CBCT systems use 
cone-shaped X-ray beams to generate comprehensive 
three-dimensional images, which require substantial 
computational resources for accurate reconstruction and 
analysis [5,22,23].

The computational demands of modern medical 
imaging have driven widespread adoption of GPU-
based processing systems. Groundbreaking research 
has demonstrated that GPU-based fast cone beam CT 
reconstruction algorithms can achieve reconstruction 
times ranging from 77 to 130 seconds on an NVIDIA 
Tesla C1060 GPU card, representing approximately 
100 times faster processing compared to similar 
iterative reconstruction approaches. These performance 
improvements enable clinical implementation of 
advanced reconstruction techniques that were previously 
computationally prohibitive in real-time clinical 
environments. The reconstruction efficiency extends 
beyond speed improvements to encompass significant 
dose reduction capabilities. As shown in Table 3, 
advanced GPU algorithms have proven that as few as 20-
40 x-ray projections are sufficient to reconstruct images 
with satisfactory quality for image-guided radiation 
therapy (IGRT), compared to conventional protocols 
requiring approximately 360 projections. Furthermore, 
these systems can operate effectively under scanning 

Imaging Parameter Traditional Protocol GPU-Optimized Protocol Reduction Factor
X-ray Projections Required 360 projections 20-40 projections 9x to 18x reduction
Radiation Exposure 0.4 mA s/projection 0.1 mA s/projection 4x dose reduction
Overall Dose Reduction Baseline Optimized protocol 36-72x reduction
Cost Reduction Baseline GPU implementation Up to 85% savings

Table 3. Radiation Dose Reduction and Clinical Safety Improvements with GPU-Optimized Protocols
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These networks utilize dilated convolution techniques 
combined with atrous spatial pyramid pooling for multi-
level aggregation, enabling effective segmentation 
of glands displaying varying shapes and sizes across 
different cancer grades. The high-resolution processing 
requirements necessitate substantial GPU memory 
resources, as dilated convolution over original image 
sizes requires significantly more parameters compared to 
down-sampled implementations [32].

Uncertainty Quantification and Clinical Decision Support
Advanced GPU-accelerated systems incorporate 

uncertainty quantification mechanisms that apply 
random transformations to input images for generating 
predictive distributions4. This approach yields superior 
segmentation results while enabling identification of areas 
with high uncertainty, such as regions with dense nuclei 
or imaging artifacts, which can be clinically informative 
for pathologists4. The uncertainty measures are utilized to 
rank images requiring prioritized pathologist annotation, 
optimizing workflow efficiency in clinical settings [32].

Radiomics and Radiogenomics Integration
Quantitative Feature Extraction and Analysis

The emerging fields of radiomics and radiogenomics 
represent a paradigm shift in cancer imaging, leveraging 
GPU-powered AI systems to extract quantitative 
features from medical images that correlate with genetic 
and molecular characteristics of tumors [33–35]. 
These approaches enable the identification of imaging 
biomarkers that can inform treatment decisions and 
predict patient outcomes. GPU-based systems excel in 
this domain due to their ability to process the massive 
datasets required for extracting and analyzing hundreds 
of quantitative features from each medical image [22]. 
Modern GPU implementations in radiomics applications 
utilize advanced hardware specifications including 
NVIDIA A100 GPUs with up to 80GB memory capacity 
and 624 TFLOPS FP16 Tensor Core performance 
[36]. Professional-grade workstation cards such as the 
NVIDIA RTX A6000 provide 10,752 CUDA cores 
with 48GB GDDR6 memory and 768GB/sec memory 
bandwidth, enabling comprehensive analysis of high-
resolution medical imaging datasets. These hardware 
specifications support the sophisticated parallel processing 
requirements for radiomics feature extraction, which can 
involve analyzing thousands of quantitative parameters 
simultaneously across multiple image modalities [37,38]. 
The cuRadiomics framework exemplifies GPU-accelerated 
radiomic feature extraction platforms that leverage 
CUDA parallel processing for enhanced computational 
efficiency. These systems enable extraction of texture, 
shape, and intensity-based features from medical images 
at unprecedented scales, supporting the development of 
predictive models for cancer diagnosis, prognosis, and 
treatment response. The parallel processing capabilities of 
modern graphics processors allow researchers to perform 
complex mathematical operations on large image datasets 
simultaneously, significantly reducing the time required 
for comprehensive radiomics analyses [39,40].

protocols with radiation exposure as low as 0.1 mA s/
projection, compared to the current widely used full-fan 
head and neck scanning protocol of approximately 0.4 
mA s/projection [24,25]. This represents an overall dose 
reduction of 36-72 times while maintaining diagnostic 
image quality.

Performance Optimization and System Integration
Advanced GPU parallel acceleration techniques 

have enabled further optimization of medical imaging 
workflows through sophisticated system architectures 
[26–28]. Research demonstrates that when 90 frames of 
projections are utilized for reconstruction, GPU-based 
systems achieve a 26% improvement in overall system 
delay and a 2.1-fold improvement in reconstruction 
delay. When the number of projection frames increases 
to 120, these improvements scale to 39% and 3.3 times 
respectively. In scenarios where projection acquisition 
delay dominates the imaging chain, reconstruction 
processes can be almost completely hidden, yielding 
reconstruction delay improvements of up to 66 times. The 
filtered back projection (FDK) algorithm implementation 
with GPU parallel acceleration has proven particularly 
effective for real-time clinical 3D imaging acquisition. 
These systems utilize distributed architectures connected 
via TCP/IP protocols, making full use of projection 
acquisition consumption to hide reconstruction delays 
and further improve overall system performance. 
The geometric symmetry optimization within GPU 
implementations enhances computational efficiency while 
maintaining reconstruction accuracy [29,30].

Histopathological Image Analysis and Deep Learning 
Applications
Gland Segmentation and Cancer Grading

The application of GPU-accelerated deep learning in 
histopathological image analysis has achieved significant 
breakthroughs in cancer diagnosis and grading. The 
GlaS@MICCAI’2015 Gland Segmentation dataset, 
which serves as a benchmark for automated cancer 
detection systems, consists of 165 images containing 
1,530 labeled glandular objects derived from 16 H&E-
stained histological sections of stage T3 or T4 colorectal 
adenocarcinoma. These sections represent samples from 
different patients processed on various occasions, ensuring 
high inter-subject variability in both stain distribution 
and tissue architecture. The digitization process for 
these histological samples utilizes high-resolution 
Zeiss MIRAX MIDI Slide Scanners with initial pixel 
resolution of 0.465µm, subsequently rescaled to 0.620µm 
(equivalent to 20× objective magnification). A total of 
52 visual fields from both malignant and benign areas 
across the entire set of whole-slide images were selected 
to cover the widest possible variety of tissue architectures. 
Expert pathologists grade each visual field as either 
benign or malignant according to overall glandular 
architecture, providing ground truth annotations for 
automatic segmentation algorithms [31]. GPU-based deep 
learning networks for gland segmentation incorporate 
minimal information loss (MIL) units that retain maximal 
information essential for accurate boundary delineation. 
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Digital Pathology and Histological Analysis
As shown in Table 4, the digital pathology sector 

has emerged as a rapidly expanding market driven by 
technological advancements and increasing demand for 
precision diagnostics [41–43]. Current market analysis 
indicates the global digital pathology market reached 
approximately $990 million in 2024, with projections 
showing continued robust growth at 14% annually over 
the next five years, expected to reach $1.94 billion by 
2029. This growth trajectory represents a significant 
acceleration from previous estimates, with alternative 
projections suggesting the market will expand from 
$740.26 million in 2021 to $1738.82 million by 2028 
[44–46]. The market has demonstrated remarkable year-
over-year growth rates of 37.3%, 31.4%, and 27.3% 
over three consecutive recent years, indicating sustained 
momentum in adoption across healthcare institutions.

Market Dynamics and Institutional Adoption
Digital pathology represents one of the most 

computationally intensive applications of GPU-
accelerated AI in cancer research, requiring substantial 
storage infrastructure and processing capabilities to 
handle the enormous datasets generated by modern 
pathology scanners [47]. As shown in Table 5, the 
institutional adoption landscape reveals that hospitals 
lead the market with 36.5% of digital pathology 
equipment utilization, followed by diagnostic laboratories, 
biotechnology companies, and academic institutions 
[48–50]. This distribution reflects the primary clinical 
applications driving market expansion, particularly in 
environments where high-volume diagnostic workflows 

demand enhanced efficiency and accuracy. As shown in 
Table 6, a typical implementation for a large pathology 
facility includes approximately 25 pathologists working 
with 9 high-throughput scanners that generate around 
1,800 slides per day, resulting in approximately 1.1 
petabytes of data annually [50,51]. Each individual 
slide scan averages 2.5 gigabytes in size and must be 
retained for extended periods, often seven years or more, 
necessitating sophisticated data management and tiered 
storage solutions [50,52]. The scale of data generation 
becomes even more pronounced when considering that a 
single square centimeter of tissue requires 2.7 gigabytes 
for the base image at 20x optical magnification with 0.33 
micrometers per pixel resolution. When accounting for the 
pyramid file structure used in digital pathology systems, 
this increases to approximately 3.5 gigabytes per square 
centimeter of tissue [50, 53, 54].
Technical Infrastructure and Processing Requirements

The computational demands of digital pathology 
extend beyond storage to encompass significant processing 
capabilities [55–57]. The AI inference process for digital 
pathology analysis requires over 100 gigabytes of GPU 
memory, typically necessitating multi-GPU systems to 
handle the computational load effectively. These systems 
perform automated detection and analysis of various 
cancer types, including breast cancer, gastric cancer, 
and lymph node metastasis detection. The technical 
specifications reveal that with 40x magnification and five 
focal planes, a single pathology case can generate up to 
one terabyte of data [48]. However, advanced compression 
techniques using JPG2000 can achieve approximately 
30:1 compression ratios, reducing storage requirements 

Metric 2021 2024 2028 2029 Growth Rate
Market Value (Primary Projection) - $990 million - $1.94 billion 14% annually
Market Value (Alternative Projection) $740.26 million - $1738.82 million - Variable
Year-over-Year Growth Rate - 37.3% 31.4% 27.3% Decreasing trend

Table 4. Digital Pathology Market Size and Growth Projections

Institution Type Market Share Primary Applications
Hospitals 36.5% High-volume diagnostic workflows
Diagnostic Laboratories Second largest Specialized testing services
Biotechnology Companies Third largest Research and development
Academic Institutions Fourth largest Research and education

Table 5. Institutional Adoption Distribution in Digital Pathology

Parameter Measurement Scale Annual Requirements
Pathologists per Facility 25 Large facility -
High-throughput Scanners 9 Per facility -
Daily Slide Processing 1,800 slides Per day -
Annual Data Generation 1.1 petabytes Per facility Continuous growth
Average Slide Size 2.5 gigabytes Per slide Standard resolution
Data per Square Centimeter (20x) 2.7 gigabytes Base image High resolution
Data with Pyramid Structure 3.5 gigabytes Per square centimeter Complete file structure

Table 6. Digital Pathology Data Storage Requirements
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Implementation Scale Data Volume Storage Needs Processing Requirements
Single Pathology Case (40x, 5 focal planes) Up to 1 terabyte High-performance storage Multi-GPU systems
Major Medical Center (80,000 cases/year) 138 terabytes annually Tiered storage architecture Over 100GB GPU memory
Compression Efficiency (JPG2000) 30:1 ratio Reduced storage requirements Maintained diagnostic quality
Data Retention Period 7+ years Long-term storage Regulatory compliance

Table 7. Large-Scale Implementation Requirements for Digital Pathology

to more manageable levels while maintaining diagnostic 
quality [58, 59]. Large-scale implementations demonstrate 
the infrastructure requirements necessary for clinical 
deployment. For example, a major medical center 
processing approximately 80,000 cases annually require 
138 terabytes of storage capacity per year (Table 7) [60, 
61]. This massive data volume necessitates sophisticated 
tiered storage architectures where older scans are migrated 
to lower-cost, lower-performance storage systems as 
retention requirements extend over multiple years. The 
data management strategy must account for regulatory 
compliance, with typical retention periods of seven years 
or more for pathological specimens [59, 61, 62].

Efficiency Gains and Cost-Benefit Analysis
The economic advantages of digital pathology 

implementation extend beyond initial technological 
investments to encompass significant operational 
improvements. AI-driven analyzers have demonstrated 
the capability to reduce analytical turnaround time by up 
to 89%, dramatically improving laboratory efficiency and 
patient care delivery [63]. This reduction in processing time 
directly translates to enhanced pathologist productivity 
and faster patient diagnosis, which is particularly critical 
in cancer care where early detection significantly impacts 
survival rates. Financial analysis reveals that digital 
pathology systems can generate cost savings of $1.3 
million over a five-year implementation period2. These 
savings result from multiple factors including reduced 
administrative work, enhanced workflow efficiency, 
improved remote collaboration capabilities, and decreased 
need for physical slide management and storage [64]. 
The efficiency improvements are particularly pronounced 
in high-volume laboratories where automated analysis 
can prioritize cases requiring immediate attention 
while routing routine cases through streamlined digital 
workflows.

Research Foundation and Validation
The statistical foundation supporting digital 

pathology adoption derives from comprehensive research 
methodologies combining both secondary and primary 
data sources [65, 66]. Recent market analysis incorporated 
35 interviews with digital pathology stakeholders from 
hospitals, academia, biopharmaceutical companies, 
and contract research organizations, alongside survey 
responses from 100 clinical pathology laboratories and 
40 biopharmaceutical survey respondents. This extensive 
research foundation provides robust validation for market 
projections and adoption trends across diverse healthcare 
sectors. The GPU-accelerated processing enables 
pathologists to focus their attention on areas of highest 

concern identified by the AI system, potentially improving 
diagnostic accuracy while reducing the time required for 
comprehensive tissue analysis [51]. This technology is 
particularly valuable in scenarios where early detection 
can significantly impact patient outcomes, as faster and 
more accurate pathological analysis directly correlates 
with improved survival rates. The integration of AI with 
traditional pathological workflows represents a paradigm 
shift toward precision medicine, where computational 
power enhances human expertise rather than replacing 
it [51, 67].

Cancer Genomics and Computational Biology
The integration of GPU technology in cancer 

genomics and computational biology has fundamentally 
transformed the landscape of genetic research and clinical 
diagnostics. Recent advances demonstrate remarkable 
performance improvements across multiple genomic 
analysis tasks, with GPU-accelerated systems achieving 
speedups ranging from 8× to 65× compared to traditional 
CPU-based methods, while simultaneously reducing 
costs by up to 85% and energy consumption by similar 
margins. These technological advances have made 
comprehensive genomic analysis feasible for routine 
clinical implementation, enabling real-time genetic 
profiling that can directly inform personalized treatment 
decisions in cancer care [68, 69].

Genomic Sequence Analysis and Variant Detection
Performance Breakthroughs in Sequence Alignment

The application of GPU-enhanced computational 
models in cancer genomics has created new possibilities for 
analyzing complex genetic data with unprecedented speed 
and accuracy. Modern cancer genomics research generates 
massive datasets requiring sophisticated computational 
approaches for sequence alignment, variant calling, and 
gene expression analysis. Recent benchmarking studies 
reveal that GPU-accelerated algorithms demonstrate 
significant performance improvements over traditional 
CPU-based methods across all critical analytical tasks, 
with sequence alignment showing particularly dramatic 
improvements [70]. The AGAThA (Accelerated GPU 
Alignment) platform represents a breakthrough in guided 
sequence alignment for long read mapping, achieving 
an 18.8× speedup against CPU-based baselines and a 
9.6× improvement over the best existing GPU-based 
approaches [71]. This system addresses the computational 
challenges of aligning increasingly longer DNA sequences 
to reference genomes, a process that previously required 
tens or hundreds of hours but can now be completed 
in a fraction of the time [70]. The parallel processing 
architecture of graphics processors is particularly well-
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suited for genomic applications, where multiple sequences 
can be processed simultaneously, dramatically reducing 
the time required for comprehensive genetic analysis.
Variant Calling Acceleration and Clinical Impact

NVIDIA Clara Parabricks represents a significant 
advancement in cancer genome sequencing analysis, 
providing GPU-accelerated tools for variant annotation and 
genomic data processing. This platform has demonstrated 
remarkable performance improvements, achieving up 
to 65× acceleration with germline variant callers and 
bringing HaplotypeCaller runtimes down from 36 hours 
to just 33 minutes on AWS, 35 minutes on Google Cloud 
Platform, and 24 minutes on NVIDIA DGX systems [72]. 
The system’s ability to process whole genome sequences 
rapidly has particular importance in clinical settings where 
timely genetic analysis can inform treatment decisions. 
Comparative analysis across different genomic analysis 
tasks reveals consistent performance advantages for GPU 
implementations. Variant calling tasks that previously 
required 3,600 seconds on CPU systems now complete 
in just 450 seconds on GPU platforms, representing an 
8× speedup [8,72]. The DeepVariant algorithm, when 
GPU-accelerated through Parabricks, can complete 30× 
whole genome sequencing analysis in 25 minutes instead 
of hours, while whole exome analysis runtime has been 
reduced from over 3 hours to as little as 11 minutes, 
achieving a 17× improvement in processing speed [72,73].

Cost-Effectiveness and Energy Efficiency
The economic implications of GPU acceleration 

in genomics extend beyond simple performance 
improvements to encompass substantial cost and energy 
savings. Comprehensive cost analysis demonstrates that 
variant calling expenses drop from $2.50 per run on 
CPU systems to just $0.35 per run on GPU platforms, 
representing an 86% cost reduction [72]. Similarly, gene 
expression analysis costs decrease from $2.00 to $0.30 
per run, maintaining the same dramatic cost savings 
pattern. Energy consumption analysis reveals even more 
striking improvements, with GPU systems consuming 
approximately 85% less energy than CPU equivalents 
for the same genomic analysis tasks [74]. The integration 
of GPU processing in genomic workflows has made it 
feasible to perform comprehensive genetic analysis as 
part of routine clinical care, moving beyond research 
applications to practical diagnostic implementations. 
Whole exome analysis using GPU-accelerated pipelines 
achieves cost reductions of up to 70% while maintaining 
accuracy standards required for clinical diagnostics 
[73]. This cost-effectiveness has democratized access to 
advanced genomic analysis capabilities, enabling smaller 
research institutions and clinical facilities to implement 
state-of-the-art genomic analysis pipelines that were 
previously economically prohibitive [72, 75].

Deep Learning Applications in Genetic Analysis
Advanced Pattern Recognition in Genomic Data

The integration of deep learning models with GPU 
platforms has enhanced predictive capabilities for cancer 
prognosis and treatment response based on genomic 
data [76,77]. These advanced computational models can 

identify complex patterns in genetic information that may 
not be apparent through traditional analytical approaches. 
Recent studies demonstrate that AI-powered diagnostic 
systems can achieve higher accuracy than specialized 
physicians in cancer prognosis, with neural networks 
trained on NVIDIA P100 GPUs using cuDNN-accelerated 
TensorFlow frameworks showing superior performance in 
brain cancer outcome prediction [78]. GPU acceleration 
enables the training of sophisticated neural networks 
on large genomic datasets, facilitating the discovery of 
novel genetic biomarkers and therapeutic targets. The 
enhanced processing capabilities have also accelerated 
the development of personalized medicine approaches 
by enabling real-time analysis of patient genetic profiles 
to inform treatment selection. Brain cancer prognosis 
models, for instance, require analysis of microscopic 
images containing billions of pixels, necessitating 
substantial computational power for processing thousands 
of predictions to help pathologists visualize single tissue 
samples [79,80].

Transcriptome Analysis and Single-Cell Genomics
RNA sequencing analysis has experienced 

transformational improvements through GPU acceleration, 
with differential gene expression analysis showing 
remarkable speedup ratios [81]. The GPU-accelerated 
DESeq2 pipeline can process large datasets of 1,000 
samples in approximately 1 hour compared to 10 hours 
required by CPU-based methods, representing a 10-
fold reduction in processing time. Similarly, the edgeR 
algorithm demonstrates comparable improvements, with 
GPU-accelerated versions completing analysis in 1.5 
hours versus 12 hours for CPU-based implementations. 
Single-cell RNA sequencing (scRNA-seq) applications 
have particularly benefited from GPU acceleration, 
addressing the computational challenges of analyzing gene 
expression at individual cell resolution [82]. Preprocessing 
tasks for datasets comprising 50,000 cells now complete in 
1.5 hours compared to 8 hours using traditional methods. 
Clustering algorithms for the same dataset size finish in 
less than 2 hours versus over 12 hours with CPU-based 
approaches, enabling researchers to explore cellular 
heterogeneity with unprecedented efficiency [83].

Multi-Dimensional Genomic Integration
The transformative potential of GPU technology in 

cancer genomics extends beyond basic sequence analysis 
to encompass complex multi-dimensional genetic analyses 
that integrate various types of biological data [8,84]. 
Modern GPU-enhanced systems can simultaneously 
process genetic sequences, gene expression profiles, 
and epigenetic modifications to provide comprehensive 
molecular characterizations of cancer patients. Gene 
expression analysis using GPU platforms completes 
RNA-Seq data processing in 400 seconds compared 
to 3,000 seconds on CPU systems, achieving an 8-9× 
speedup that enables real-time integration of multiple 
data types [74]. This integrated approach has proven 
particularly valuable in identifying patient subgroups 
that may respond differently to specific therapeutic 
interventions, advancing the goal of precision oncology. 
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The Genomics-GPU benchmark suite, comprising ten 
widely-used genomic analysis applications, demonstrates 
the broad applicability of GPU acceleration across diverse 
genomic tasks including genome comparison, matching, 
and clustering for both DNA and RNA analyses [85]. 
These comprehensive analytical capabilities support 
the development of sophisticated computational models 
that can predict treatment responses and identify novel 
therapeutic targets through parallel processing of multiple 
genomic data streams simultaneously.

GPU-Optimized AI Platforms and Development 
Frameworks in Cancer Research

The intersection of AI and cancer research has 
been revolutionized by GPU-optimized platforms and 
development frameworks, creating unprecedented 
opportunities for diagnostic precision, therapeutic 
discovery, and personalized treatment approaches [9]. This 
comprehensive review examines the current landscape 
of GPU-accelerated AI technologies specifically applied 
to oncology, spanning from foundational computing 
frameworks to specialized cancer-focused platforms. 
The analysis reveals that modern cancer AI research 
relies heavily on NVIDIA’s CUDA-X ecosystem, with 
platforms like PyTorch, TensorFlow, and JAX serving as 
primary development environments [86]. Cloud-based 
solutions including Google Compute Engine, Azure N 
Series, and specialized providers like Lambda Labs have 
democratized access to high-performance computing 
resources [87]. Emerging specialized platforms such as 
AI-powered pathology systems for lung cancer diagnostics 
and drug discovery frameworks like NVIDIA BioNeMo 
are demonstrating remarkable clinical translation 
potential, with some AI-discovered cancer therapeutics 
already advancing to Phase 1 clinical trials [88].

Foundational GPU Computing Frameworks for Cancer AI
NVIDIA CUDA-X AI Ecosystem

The backbone of modern cancer AI research rests 
on NVIDIA’s CUDA-X AI platform, which provides a 
comprehensive deep learning software stack specifically 
designed for researchers and software developers 
building high-performance GPU-accelerated applications 
in conversational AI, recommendation systems, and 
computer vision [89]. This unified programming model 
enables researchers to develop cancer-focused applications 
across diverse deployment environments, from desktop 
workstations to data centers, and even resource-
constrained IoT devices with minimal code modifications. 
The CUDA-X AI libraries consistently deliver world-
leading performance for both training and inference 
across industry benchmarks such as MLPerf, making them 
particularly valuable for computationally intensive cancer 
research applications that require processing large-scale 
genomic data, medical imaging, and multi-omics datasets 
[86]. The flexibility offered by GPU-optimized CUDA-X 
AI libraries has proven instrumental for framework 
developers and researchers seeking to accelerate 
new architectures specifically designed for cancer 
applications [90, 91]. This adaptability is particularly 
crucial in oncology research, where novel neural network 

architectures must be continuously developed to address 
the unique challenges of cancer heterogeneity, treatment 
resistance patterns, and the integration of multi-modal 
data sources including histopathology images, genomic 
sequences, and clinical records1. The NVIDIA NGC 
catalog further supports this ecosystem by providing over 
a hundred repositories covering products, demonstrations, 
samples, and tutorials specifically designed to help 
researchers get started with cancer-focused AI applications 
[86].

Core Deep Learning Frameworks
Cancer AI research predominantly relies on three 

major deep learning frameworks that have been 
extensively optimized for GPU acceleration: PyTorch, 
TensorFlow, and JAX. These frameworks offer essential 
building blocks for designing, training, and validating 
deep neural networks through high-level programming 
interfaces that are particularly well-suited for the complex 
modeling requirements of cancer research [86]. Each 
framework leverages GPU-accelerated libraries such 
as cuDNN and TensorRT to deliver high-performance 
training and inference capabilities essential for processing 
the massive datasets typical in cancer research, including 
whole-slide histopathology images, genomic sequencing 
data, and longitudinal patient records. The containerized 
versions of these frameworks available through NGC 
provide additional advantages for cancer researchers by 
offering the latest GPU optimizations integrated with 
CUDA libraries and drivers [86,90]. These containerized 
frameworks undergo monthly verification and testing 
to ensure optimal performance across multiple edge 
and cloud platforms, which is particularly important for 
cancer research applications that may need to be deployed 
in diverse clinical environments [92]. The integration 
of these frameworks with specialized cancer research 
workflows has enabled the development of sophisticated 
AI models capable of tasks ranging from automated 
pathology analysis to drug discovery and treatment 
response prediction.

Cloud-Based GPU Platforms for Cancer Research
Major Cloud Infrastructure Providers

The democratization of GPU computing for cancer 
research has been significantly advanced through cloud-
based platforms that provide scalable access to high-
performance computing resources without requiring 
substantial upfront infrastructure investments [82, 93]. 
Major cloud providers including Google Compute 
Engine, Microsoft Azure N Series, and Oracle Cloud 
Infrastructure have developed specialized GPU offerings 
that cater to the computational demands of cancer AI 
research. These platforms are particularly valuable for 
cancer research because they can accommodate the 
variable computational loads typical of research projects, 
from intensive model training phases requiring multiple 
GPUs to inference deployment that may need different 
resource configurations. The efficiency gains provided 
by GPU computing are especially pronounced in cancer 
research applications due to the resource-intensive nature 
of training AI models on medical data. Dense operations 
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that might require 50 minutes on a CPU can be completed 
in approximately one minute on even low-end GPUs, 
making it economically feasible for research institutions 
to conduct large-scale studies that would otherwise be 
prohibitively expensive [87]. This dramatic improvement 
in computational efficiency has enabled cancer researchers 
to explore more complex models, larger datasets, and more 
sophisticated validation approaches that were previously 
impractical.

Specialized Cloud GPU Providers
Beyond the major cloud infrastructure providers, 

specialized platforms such as Lambda Labs Cloud, IBM 
Cloud GPU, and Vast AI have emerged to serve the specific 
needs of AI researchers working on cancer applications 
[12]. These platforms often provide more flexible 
pricing models, specialized hardware configurations, and 
research-focused support services that are particularly 
valuable for academic cancer research institutions with 
limited budgets. The ability of GPUs to execute multiple 
tensor operations simultaneously, combined with their 
higher memory bandwidth compared to CPUs, makes 
them ideally suited for the sort of large-scale input data 
and deep networks that characterize modern cancer AI 
projects [15]. The numerous cores available in GPU 
architectures enable parallel processing of the extensive 
matrix operations required for cancer AI applications, 
including convolutional operations for medical image 
analysis, dense layer computations for genomic data 
processing, and attention mechanisms for multi-modal 
data integration. This parallel processing capability is 
particularly crucial for cancer research, where models 
must often process high-resolution histopathology images 
containing millions of pixels, genomic datasets with 
hundreds of thousands of features, and clinical datasets 
with complex temporal relationships [87].

Specialized Cancer AI Platforms and Applications
AI-Powered Cancer Diagnostics Platforms

Recent developments in specialized cancer AI 
platforms have demonstrated remarkable potential 
for clinical translation, particularly in the area of 
automated pathology analysis. A cutting-edge example 
is the AI-powered pathology platform developed by 
researchers at the University of Cologne, which provides 
fully automated and in-depth analysis of benign and 
cancerous tissues for faster and more personalized 
lung cancer treatment [48, 94]. This platform addresses 
critical limitations in traditional cancer diagnosis, where 
oncologists must manually examine tissue samples 
under microscopes in a process that is time-consuming, 
subjective, and prone to variability that can lead to 
misdiagnosis. The deep-learning-based multi-class tissue 
segmentation platform automatically analyzes digitized 
lung tissue samples, screening for cancer while providing 
detailed cellular analysis of the affected regions. The AI 
model was trained and validated on an extensive dataset 
from six institutions, encompassing 4,097 annotated 
slides from 1,527 patients, demonstrating the scale of data 
required for robust cancer AI applications. According to 
the study’s senior author, the algorithm can differentiate 

between 11 distinct tissue types, ranging from tumor 
tissue to tumor-associated classes such as tumor stroma, 
necrotic debris, and mucin, as well as normal tissues like 
cartilage and lymphatic tissue, achieving an impressive 
average Dice Score of 0.893 for pixel-wise accuracy. The 
computational infrastructure supporting this cancer AI 
platform utilized a sophisticated array of NVIDIA GPUs, 
including 12 NVIDIA V100 GPUs on the University of 
Cologne’s high-performance computing cluster, four 
NVIDIA A100 GPUs on the pathology institute’s AI 
server, and PC stations equipped with NVIDIA GeForce 
RTX 3090 and NVIDIA RTX 4090 GPUs. This setup 
enables rapid analysis of entire slide images, processing 
whole-slide images ranging from 200 to 2000 MB in 
approximately 1 to 5 minutes [95]. The platform’s ability 
to reveal detailed characteristics of tumor and immune 
cells within the cellular environment provides insights 
into how cancer interacts within the body, potentially 
informing more precise and effective treatments and 
offering valuable predictions about patient responses to 
specific cancer therapies [96–98].

AI-Driven Drug Discovery Platforms
The application of GPU-optimized AI platforms to 

cancer drug discovery represents one of the most promising 
developments in computational oncology. Iambic’s AI-
driven drug discovery platform, built in collaboration 
with NVIDIA, exemplifies the potential of generative 
AI to rapidly develop new therapeutic candidates for 
cancer patients. The platform has successfully identified 
IAM1363, a selective and brain-penetrant inhibitor of 
HER2 signaling designed for treating HER2-driven 
breast, lung, and colon cancers, which has now advanced 
to Phase 1 clinical trials. IAM1363 demonstrates the 
sophisticated capabilities of modern AI-driven drug 
discovery platforms, as it was specifically designed to 
reach metastatic tumors throughout the body, including 
the challenging brain environment, while maintaining 
a greater therapeutic index than current therapies in its 
class and avoiding associated toxicity. The integration 
of NVIDIA BioNeMo and other emerging NVIDIA 
technologies into Iambic’s platform has accelerated the 
creation of this oncology candidate, showcasing how 
specialized AI frameworks can compress traditional 
drug discovery timelines from decades to years [88]. 
This rapid progression from computational discovery 
to clinical testing represents a paradigm shift in cancer 
drug development, where AI platforms can now identify, 
optimize, and validate therapeutic candidates with 
unprecedented speed and precision [99-101].

Hardware Considerations and Infrastructure Requirements
GPU Selection for Cancer AI Applications

The selection of appropriate GPU hardware for 
cancer AI applications requires careful consideration of 
the specific computational demands, data characteristics, 
and deployment requirements of different oncological 
research areas [102]. The University of Cologne’s 
cancer diagnostics platform demonstrates the diversity 
of GPU requirements, utilizing everything from high-
end data center GPUs like the NVIDIA V100 and A100 
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for large-scale model training to consumer-grade RTX 
3090 and RTX 4090 cards for development and inference 
tasks. This heterogeneous approach reflects the varied 
computational needs across different phases of cancer 
AI research, from initial model development to large-
scale validation studies. The choice of GPU architecture 
significantly impacts the feasibility and efficiency of 
different cancer AI applications. High-memory GPUs 
like the A100 are particularly valuable for processing 
large histopathology images or genomic datasets that 
exceed the memory capacity of smaller GPUs, while the 
RTX series cards offer excellent price-performance ratios 
for development work and smaller-scale studies [96]. 
The computational requirements for cancer AI are often 
unpredictable, as model complexity and dataset size can 
vary dramatically between different research questions, 
making flexible infrastructure arrangements particularly 
important [103–106].

Performance Optimization and Scaling
The optimization of GPU performance for cancer 

AI applications involves careful consideration of both 
hardware configuration and software implementation 
strategies. The CUDA-X AI libraries provide optimized 
implementations of common operations used in cancer 
AI, including convolutions for image analysis, matrix 
operations for genomic data processing, and attention 
mechanisms for multi-modal data integration [90]. 
These optimized libraries ensure that cancer researchers 
can achieve maximum performance from their GPU 
investments without requiring deep expertise in low-
level GPU programming. Scaling considerations are 
particularly important for cancer AI applications due to 
the large datasets and complex models typically involved. 
The ability to scale from single GPU configurations to 
multi-GPU and multi-node setups enables researchers to 
tackle increasingly ambitious projects, from analyzing 
entire patient cohorts to training foundation models on 
multi-institutional datasets [8]. The unified programming 
model provided by CUDA-X ensures that cancer AI 
applications can be developed on desktop systems and 
deployed to data center environments with minimal code 
modifications, facilitating the translation of research 
prototypes to clinical applications [86].

Recent Developments and Future Directions
Emerging GPU Technologies for Cancer AI

Recent announcements regarding NVIDIA’s RTX 
50 series, codenamed “Blackwell,” indicate significant 
advances in AI-optimized GPU technologies that will 
likely impact cancer research applications. These new 
GPUs are expected to feature advanced DLSS technology 
with improved algorithms for higher frame rates and 
more detailed rendering, which could be particularly 
valuable for cancer imaging applications requiring 
high-resolution visualization of cellular structures. 
Enhanced ray tracing capabilities and improved RT 
cores for more realistic lighting and shadow effects may 
enable more sophisticated 3D visualization of tumor 
environments and cellular interactions. The introduction 
of neural rendering techniques based on AI represents 

a potentially transformative development for cancer 
visualization and analysis. These AI-accelerated graphics 
performance optimizations could enable new approaches 
to visualizing complex cancer data, from molecular 
interactions to tumor growth patterns. More efficient 
energy use through AI-based optimization of energy 
consumption and temperature control will be particularly 
valuable for large-scale cancer research projects that 
require sustained computational workloads. Improved 
AI upscaling processes could benefit cancer researchers 
working with medical imaging by enabling higher quality 
enhancement of low-resolution historical data or real-time 
imaging streams.

Integration with Emerging AI Paradigms
The integration of cancer AI platforms with emerging 

paradigms such as generative AI represents a significant 
frontier in computational oncology. Generative AI 
acceleration capabilities in new GPU architectures will 
likely enable more sophisticated approaches to cancer 
drug discovery, treatment optimization, and biomarker 
identification. The success of platforms like Iambic’s drug 
discovery system demonstrates the potential for generative 
AI to revolutionize cancer therapeutics development by 
enabling rapid exploration of vast chemical spaces and 
identification of novel therapeutic targets. Advanced 
features such as improved AI upscaling processes and 
neural rendering could transform how cancer researchers 
visualize and interpret complex biological data. These 
technologies may enable new forms of interactive 
analysis where researchers can explore high-dimensional 
cancer datasets through AI-enhanced visualization 
interfaces. The continued development of AI-based 
optimization techniques for energy consumption and 
performance will make large-scale cancer AI projects more 
accessible to resource-constrained institutions, potentially 
democratizing access to advanced computational oncology 
tools.

Current Challenges and Future Directions
Technical and Regulatory Challenges

Despite the significant advances in GPU-accelerated 
AI for cancer applications, several challenges remain 
that must be addressed to realize the full potential of 
these technologies. Regulatory approval processes for 
AI-assisted medical devices and diagnostic tools continue 
to evolve, with agencies working to establish appropriate 
frameworks for evaluating the safety and efficacy of 
AI-powered healthcare applications. The complexity of 
validating AI systems across diverse patient populations 
and clinical scenarios presents ongoing challenges for 
developers and regulators alike. Data standardization 
and interoperability represent additional significant 
challenges in the widespread adoption of GPU-accelerated 
AI tools in cancer care. Healthcare systems often employ 
different imaging protocols, data formats, and electronic 
health record systems, making it difficult to develop AI 
tools that can function effectively across diverse clinical 
environments. The development of standardized data 
formats and interfaces will be crucial for enabling broader 
deployment of AI-assisted cancer care tools.
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Emerging Applications and Research Directions
The future of GPU-accelerated AI in cancer research 

and clinical practice is likely to encompass increasingly 
sophisticated applications that integrate multiple data 
modalities and analytical approaches. Emerging research 
directions include the development of foundation models 
for medical imaging that can be adapted for specific 
cancer types and clinical scenarios. These large-scale 
models, trained on diverse medical datasets, could provide 
a foundation for developing specialized applications 
with reduced training data requirements and improved 
generalization capabilities. Real-time genomic analysis 
represents another promising frontier for GPU-accelerated 
cancer care applications. As sequencing technologies 
continue to improve and costs decrease, the ability to 
perform comprehensive genetic analysis during patient 
encounters could become routine clinical practice. GPU-
accelerated processing will be essential for enabling this 
transition, as current genomic analysis workflows often 
require hours or days to complete, limiting their utility for 
immediate clinical decision-making.

In conclusion, the convergence of GPU acceleration 
and AI has established a transformative foundation for 
modern cancer care, demonstrating that computational 
advances can directly translate into improved patient 
outcomes through enhanced diagnostic precision, reduced 
treatment times, and democratized access to sophisticated 
analytical capabilities. The documented performance 
improvements, including 100-fold acceleration in medical 
image reconstruction, 66-fold improvements in processing 
delays, and substantial radiation dose reductions while 
maintaining diagnostic quality, illustrate the profound 
clinical impact achievable through GPU-optimized 
AI implementations. As cancer incidence continues 
to rise globally and diagnostic complexity increases 
with the integration of multi-modal data sources, GPU-
accelerated AI platforms position healthcare institutions 
to meet these challenges through scalable, efficient, and 
accurate diagnostic and treatment planning systems. 
The demonstrated success across diverse applications 
from real-time cone-beam CT reconstruction and 
automated histopathological analysis to genomic 
variant classification and radiomics feature extraction 
indicates that GPU-accelerated AI has matured beyond 
experimental implementation to become an essential 
component of comprehensive cancer care. Future 
developments in this field promise continued expansion 
of AI capabilities, integration of explainable AI systems 
for enhanced clinical decision support, and broader 
accessibility of advanced diagnostic tools across varied 
healthcare environments, ultimately contributing to the 
evolution of precision oncology and improved cancer 
patient outcomes worldwide.
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