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Introduction

Various diseases have threatened human life, 
continually engaging the human mind in the search for 
therapeutic solutions [1-7]. Over the past few decades, 
sweeping advances in technology from cutting-edge 
materials and nanotech to artificial intelligence, modern 
imaging tools, and data science have empowered 
researchers and clinicians across the health and life sciences 
to create new ways to prevent, detect, and treat illness. 
By uniting insights from chemistry, biology, and clinical 
practice, experts have produced smarter therapies, safer 
materials, and more tailored care plans, helping people live 
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longer and enjoy better overall well-being [8-21]. Cancer 
remains one of the most formidable health challenges 
worldwide, claiming millions of lives each year. Its 
complex nature and diverse manifestations drive relentless 
research efforts to improve prevention, early diagnosis, 
and targeted therapies [22-36]. There are various methods 
for treating cancer, but one of the newest approaches is 
drug delivery [37-45]. Selenium nanoparticles (SeNPs) 
have emerged as an innovative and potent therapeutic 
agent in the fields of antibacterial, anti-biofilm, and 
anticancer therapies. Selenium nanoparticles have shown 
significant antimicrobial activity, including combating 
biofilm formation by pathogens like Staphylococcus 
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aureus [46]. Moreover, SeNPs are effective against 
various oral pathogens responsible for biofilms, such 
as C. albicans and S. mutans [47]. Selenium, a trace 
element with recognized antioxidant properties, plays a 
vital role in cellular processes. The generation of reactive 
oxygen species (ROS) by SeNPs is a primary mechanism 
inducing oxidative stress and apoptosis in cancer cells 
[48]. Additionally, SeNPs are effective at inducing 
oxidative stress and cell cycle arrest through pro-oxidant 
activity, contributing to their chemotherapeutic potential 
[49]. The growing interest in SeNPs is attributed to their 
superior biological properties, including their significant 
antimicrobial activity. SeNPs exhibit broad-spectrum 
antimicrobial activity, targeting bacteria, fungi, and 
viruses with mechanisms involving ROS and biofilm 
disruption [50]. Furthermore, these nanoparticles 
effectively prevent bacterial adhesion and quorum sensing, 
limiting biofilm formation [51]. Their small size, high 
surface-to-volume ratio, and ease of modification make 
SeNPs a highly versatile platform for drug delivery 
systems. These properties enable SeNPs to enhance 
drug delivery by improving the targeting of cancer cells 
and increasing therapeutic indices [52].  Functionalized 
SeNPs further improve drug delivery efficiency by 
targeting specific cancer cells and reducing off-target 
effects [53]. Recent advances in nanomedicine have led 
to the exploration of various nanocarriers to improve 
the efficacy and bioavailability of SeNPs. Among these 
carriers, liposomes have gained considerable attention 
due to their ability to encapsulate both hydrophobic and 
hydrophilic substances, providing controlled drug release, 
improved stability, and enhanced delivery to specific 
target sites [54]. Liposomes are lipid-based vesicles that 
offer a biocompatible and non-toxic medium for the 
encapsulation of drugs, ensuring their protection from 
degradation in the body and facilitating their targeted 
release [55]. Liposome-encapsulated nanoparticles can 
also enhance cellular uptake, reduce systemic side effects, 
and improve therapeutic outcomes. These carriers are 
effective in increasing drug retention and bioavailability 
while minimizing toxic side effects by targeting the 
release of therapeutic agents to specific cells or tissues 
[56]. Additionally, their versatility in encapsulating 
various drugs has led to advancements in cancer therapy, 
with liposomes achieving enhanced tumor targeting and 
controlled drug release [57]. The combination of selenium 
nanoparticles (SeNPs) with liposomes is particularly 
promising in the context of bacterial infections and cancer 
treatment. In bacterial infections, SeNPs have been shown 
to disrupt bacterial cell membranes and inhibit biofilm 
formation, a critical feature of pathogenic bacteria’s 
resistance mechanisms [51, 58]. When encapsulated in 
liposomes, SeNPs demonstrate enhanced antibacterial 
and anti-biofilm activities, potentially overcoming the 
limitations of traditional antibiotics [59-60]. Moreover, the 
anticancer potential of SeNPs is increasingly recognized, 
particularly in the treatment of oral cancer. Studies have 
demonstrated that SeNPs can induce apoptosis in cancer 
cells by activating various signaling pathways, including 
the upregulation of apoptotic genes such as CASP3 and 
CASP9 [48-49, 61]. Encapsulation of SeNPs in liposomes 

significantly enhances their anticancer efficacy through 
prolonged release, increased intracellular accumulation, 
and targeted delivery to cancer cells [48, 62]. The 
physicochemical properties of selenium nanoparticles 
(SeNPs), such as their particle size, surface charge, 
and morphology, are critical factors influencing their 
biological activity and therapeutic potential. These 
parameters significantly determine their interactions 
with cells and their overall therapeutic effectiveness 
[51]. The encapsulation of SeNPs in liposomes improves 
their solubility, stability, and bioavailability, enabling 
more effective and sustained drug release. Liposomal 
formulations provide a more stable environment for 
SeNPs, reducing premature degradation and enhancing 
bioavailability [52, 63]. Liposome formulations are also 
capable of modulating the pharmacokinetics of SeNPs, 
reducing their toxicity while maximizing their therapeutic 
effects. This is achieved by optimizing the delivery profile, 
ensuring prolonged circulation time, and minimizing 
off-target effects [49]. The controlled release of SeNPs 
from liposomes can be carefully tailored to match the 
needs of specific treatments, enhancing the selectivity of 
the drug and minimizing off-target effects. This targeted 
approach not only improves the therapeutic index but 
also reduces potential side effects associated with non-
specific drug distribution [48, 63]. In this study, we aim to 
explore the green synthesis of SeNPs, their encapsulation 
in liposomes, and the subsequent evaluation of their 
antibacterial, anti-biofilm, and anticancer properties. We 
will characterize the physicochemical properties of the 
liposome-loaded SeNPs, including their size, morphology, 
and encapsulation efficiency. The release profile of SeNPs 
from the liposomes will also be assessed to determine the 
controlled release kinetics. Finally, we will investigate 
the biological activities of the liposome-loaded SeNPs, 
including their antibacterial effects against standard 
pathogenic bacterial strains, anti-biofilm activity, and 
anticancer efficacy on CAL-27 oral cancer cells.

Materials and Methods

Materials
Lecithin, cholesterol, polyethylene glycol (PEG) 3350, 

along with ethanol, isopropanol, and dimethyl sulfoxide 
(DMSO), were purchased from Sigma-Aldrich (St. Louis, 
MO, USA). Additionally, culture medium RPMI 1640, 
Dulbecco’s Modified Eagle Medium (DMEM), phosphate-
buffered saline (PBS), fetal bovine serum (FBS), 
3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium 
bromide (MTT), and Penicillin/Streptomycin (100X 
solution) were obtained from Gibco (Thermo Fisher 
Scientific, USA). The CAL-27 oral squamous cell 
carcinoma (OSCC) cell line was acquired from the 
National Cell Bank of Iran (NCBI), Pasteur Institute of 
Iran, ensuring authentication and adherence to quality 
control standards.

Green Synthesis of Selenium Nanoparticles (SeNPs)
The aerial parts of Trifolium cherleri were procured 

from the Iran Biological Reserves Center (Plant Bank) under 
the designated herbarium accession number 1368 and were 
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therapeutic efficacy.

Nanoparticle Characterization
The particle size and zeta potential of the synthesized 

nanoparticles were characterized using the Dynamic 
Light Scattering (DLS) technique, utilizing a Zetasizer 
(Nano ZS3600, Malvern Instruments, UK). Additionally, 
a detailed morphological analysis of the nanoparticles 
was conducted to evaluate their surface structure and 
distribution. To prepare the samples for this analysis, the 
nanoparticle suspension was lyophilized, following the 
addition of 3% mannitol as a cryoprotectant, ensuring 
the preservation of the nanoparticle integrity during the 
freezing and drying process. The resulting nanoparticle 
powder was then examined using an advanced electron 
microscopy technique: Scanning Electron Microscopy 
(SEM) (S-4160 Scanning Electron Microscope, Hitachi, 
Japan), which provided high-resolution images of the 
surface morphology, offering detailed insights into 
the internal structure of the SeNPs at the nanoscale. 
The encapsulation efficiency (EE%) of the liposomal 
formulation was determined to assess the proportion of 
SeNPs successfully encapsulated within the liposomes 
relative to the total amount of SeNPs used in the 
preparation. The liposome-loaded SeNPs were subjected 
to centrifugation at 4°C and 14,000g for 60 minutes, which 
facilitated the separation of encapsulated SeNPs from the 
free, unencapsulated particles. Following centrifugation, 
the supernatant containing the free SeNPs was carefully 
removed, and the absorbance was measured at 265 nm 
using a spectrophotometer to quantify the amount of 
free SeNPs. The amount of encapsulated SeNPs was 
determined by subtracting the amount of free SeNPs from 
the initial total amount of SeNPs used in the formulation. 
The encapsulation efficiency was then calculated using 
the following formula:

Encapsulation Efficiency (EE%)= (Amount of free 
Drug−Amount of primary Drug/Amount of primary 
Drug) ×100

Drug release study
The drug release profile of the SeNPs formulations 

was assessed using a dynamic release system. In this 
procedure, 3 mL of the liposome-loaded SeNPs and an 
equivalent volume of free SeNPs were each placed in 
separate dialysis bags with a molecular weight cutoff 
of 10 kDa. These dialysis bags were then immersed 
in a beaker containing 40 mL of phosphate-buffered 
saline (PBS), maintained at a constant temperature of 
37°C to simulate physiological conditions. The beakers 
were placed on a magnetic stirrer to ensure continuous 
mixing, promoting the diffusion of the SeNPs through 
the dialysis membrane. At specific time intervals, 1 mL 
of the PBS solution containing the diffused SeNPs from 
the dialysis bag was withdrawn, and an equal volume 
of fresh PBS (also pre-warmed to 37°C) was added to 
maintain the volume and ensure the continuous release of 
the drug. Sampling was conducted at various time points 
to monitor the release dynamics, specifically at 4, 8, 12, 
24, 36, 54, and 64 hours. After each sampling, the optical 

taxonomically validated by an expert botanist. The plant 
material was subjected to controlled desiccation, ensuring 
minimal photodegradation by maintaining light-shielded 
and aerated conditions. Following complete dehydration, 
the plant was mechanically pulverized using an industrial-
grade electric milling system, yielding a homogeneous 
fine powder. For the preparation of the aqueous botanical 
extract, precisely 20 g of the processed plant powder 
was immersed in 100 mL of distilled water, wherein 
phytochemical extraction was conducted via the 
maceration method, ensuring optimal solubilization of 
bioactive compounds. Upon completion of the extraction 
period, the resultant crude extract was subjected to 
sequential filtration through high-purity Whatman filter 
paper (Germany) to eliminate residual particulates and 
obtain a clarified extract. Subsequently, for the green 
synthesis of selenium nanoparticles (SeNPs), an alkaline 
sodium selenite (Na₂SeO₃) solution (1 mM, 300 mL) was 
freshly prepared under sterile conditions. A meticulously 
measured 15 mL aliquot of the T. cherleri aqueous extract 
was gradually introduced into the selenite solution under 
ambient reaction conditions, wherein the reduction of 
selenium ions was initiated, manifesting a characteristic 
colorimetric transition, indicative of nanoparticle 
formation. The synthesized SeNPs were then subjected 
to multiple purification cycles, incorporating repeated 
centrifugation and washing with ultrapure distilled water, 
effectively removing unreacted precursors and organic 
residues. Finally, the purified SeNPs were lyophilized and 
stored under desiccated ambient conditions for subsequent 
physicochemical characterization and biomedical 
assessments.

Preparation of liposome loaded SeNPs
To fabricate liposome-encapsulated selenium 

nanoparticles (SeNPs), precise quantities of cholesterol 
(75 mg), lecithin (130 mg), and polyethylene glycol 
(PEG) 3,350 (14 mg) were dissolved in an organic 
solvent system comprising 10 mL of chloroform. The 
resulting lipidic solution underwent continuous agitation 
to ensure complete solubilization and homogeneity of 
the constituents. Subsequently, the lipid-solvent mixture 
was transferred into a specialized rotary evaporation flask 
and subjected to vacuum-assisted thin-film formation 
under controlled thermodynamic conditions (60°C, 150 
rpm), facilitating the gradual and complete evaporation 
of the organic solvent, thereby generating a uniform dry 
lipid film along the inner surface of the flask. During the 
hydration phase, a pre-formulated phosphate-buffered 
suspension of SeNPs (1 mg/mL, 10 mL) was introduced 
onto the lipid film under elevated thermal conditions 
(60°C). The system was continuously agitated using a 
rotary evaporator set at 120 rpm for 30 minutes, allowing 
optimal hydration and self-assembly of the lipid bilayer 
around the selenium nanoparticles. To achieve uniform 
nano-scale dispersion and size reduction, the resulting 
liposomal SeNP suspension was subjected to ultrasonic 
treatment (probe sonication) for 5 minutes, effectively 
reducing the particle size by disrupting and homogenizing 
the vesicle structures, yielding a monodisperse liposomal 
formulation optimized for enhanced bioavailability, and 
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absorption of the collected solution was measured using a 
UV spectrophotometer at a wavelength of 265 nm, which 
corresponds to the absorbance peak of the SeNPs. The 
data collected from these time points were used to plot 
a cumulative release curve, which shows the percentage 
of SeNPs released over the 64-hour period. This graph 
provides valuable insights into the release kinetics of both 
the liposome-loaded SeNPs and free SeNPs, allowing for 
a direct comparison of their release profiles under similar 
experimental conditions.

Antimicrobial activity
To evaluate the antimicrobial effects of both liposome-

loaded SeNPs and free SeNPs, the Minimum Inhibitory 
Concentration (MIC) and Minimum Bactericidal 
Concentration (MBC) methods were employed. These 
tests were performed in accordance with the Clinical 
and Laboratory Standards Institute (CLSI) guidelines 
using a serial dilution technique, with triplicate testing 
to ensure reproducibility and accuracy. The tests were 
carried out against pathogenic microbial strains including 
Staphylococcus aureus ATCC 25923 and Enterococcus 
faecalis ATCC 29212. In the procedure, a 5 µL aliquot 
of microbial culture, standardized to a 0.5 McFarland 
turbidity, was added to each well of a 96-well microplate, 
followed by the addition of 95 µL of Mueller Hinton 
Broth (MHB) to complete the inoculum preparation. 
Subsequently, a range of concentrations of both liposome-
loaded SeNPs and free SeNPs, varying from 4.125 µg/
mL to 66 µg/mL, was introduced to the wells. The MIC 
was determined as the lowest concentration of the tested 
formulation at which no visible bacterial growth occurred. 
To determine the MBC, the contents of the wells where 
bacterial growth was inhibited were subcultured onto fresh 
Mueller Hinton Agar plates, and the lowest concentration 
where no bacterial colony growth was observed was 
considered the MBC, representing the concentration 
required to kill the bacteria. As controls, a well containing 
only Mueller Hinton Broth medium without bacteria 
served as the negative control, and a well containing only 
the standard bacterial culture without any treatment was 
used as the positive control, ensuring proper validation 
of the experiment.

Time kill assay
The antibacterial effect of liposome-loaded SeNPs, 

free SeNPs, and free liposomes against specific 
pathogenic bacteria was evaluated over 64 hours using 
the time-kill assay method in a 96-well plate. In short, 100 
μL of liposome-loaded SeNPs and free SeNPs at sub-MIC 
concentrations were added to wells containing 100 μL of 
a 105 CFU/mL bacterial suspension. After incubation at 
37°C, the optical absorbance of the samples at OD 600 

nm was measured at 4, 8, 12, 24, 50, and 64 hours using 
a microplate reader.

Anti bioflm activity
To assess the anti-biofilm activity of liposome-

loaded selenium nanoparticles (SeNPs), free SeNPs, and 
free liposomes, a crystal violet (CV)-based microtiter 
plate assay was employed. Standard bacterial strains 
were cultured in 96-well plates at 37°C for 24 hours. 
Following incubation, the wells were washed three times 
with phosphate-buffered saline (PBS) to remove any 
unadhered bacterial cells. Subsequently, the bacterial 
cultures were exposed to sub-minimum inhibitory 
concentration (sub-MIC) levels of liposome-loaded 
SeNPs, free SeNPs, or free liposomes for another 24 
hours at 37°C. After treatment, the wells were rinsed three 
times with PBS and fixed with methanol for 15 minutes. 
The plates were air-dried for 30 minutes, and 100 µL of 
a 0.1% crystal violet solution was added to each well for 
20 minutes at room temperature. Following incubation, 
the wells were washed with distilled water, and 100 µL of 
33% acetic acid was applied to each well to solubilize the 
dye. The optical density (OD) of each well was measured 
at 570 nm. The absorbance values obtained were averaged 
and compared with those of the control group, which 
consisted of untreated bacterial strains.

Evaluation of bioflm gene expression level
The bacterial strains used in the study were exposed 

to sub-inhibitory concentrations (Sub-MIC) of liposome-
loaded selenium nanoparticles (SeNPs), free SeNPs, and 
free liposomes. Following treatment, RNA was extracted 
from the bacterial strains using the Qiagen RNA extraction 
kit (USA), strictly adhering to the manufacturer’s protocol. 
cDNA synthesis was then carried out using the QuantiTect 
Reverse Transcription kit from Fermentas (Lithuania), 
following standard procedures for reverse transcription. 
To assess the expression of biofilm-associated genes, 
quantitative Real-Time PCR (qRT-PCR) was employed, 
focusing on genes such as icaD, which plays a key role in 
biofilm formation, and Ace, which is involved in collagen 
adhesion in Enterococcus faecalis. Additionally, the 16S 
rRNA gene was used as a housekeeping gene to normalize 
the results, serving as an internal control. Finally, the 
relative expression levels of the biofilm-related genes 
were quantified using the ΔΔCt method. A detailed list 
of the primer sequences utilized for the study is provided 
in Table 1.

Cell toxicity test
The cytotoxicity of SeNPs loaded into liposomes, 

free SeNPs, and free liposomes was evaluated using 
a colorimetric MTT assay on oral cancer cell line, 

Gene Primer sequence (5′–3′) Ref
icaD F ATGGTCAAGCCCAGACAGAG  RAGTATTTTCAATGTTTAAAGCAA [64]
Ace F GGAGAGTCAAATCAAGTACGTTGGTT RTGTTGACCACTTCCTTGTCGAT [65]
16SrRNA F TATGGAGGAACACCAGTGGCGAAG RTCATCGTTTACGGCGTGGACTACC [66]

Table 1. The Primer Sequences of Bioflm-Related Genes
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including CAL 27. These cell lines were sourced from the 
Pasteur Institute Iran Cell Bank, located in Tehran, Iran. 
Initially, the cells were seeded into a 96-well plate at a 
density of 10,000 cells per well and allowed to incubate 
for 24 hours. Subsequently, the cells were treated with 
varying concentrations of liposome-loaded SeNPs and 
free SeNPs, ranging from 4.125 to 66 µg/mL. After a 
48-hour incubation period, MTT dye solution (5 mg/mL 
in PBS) was introduced to the wells and maintained in 
the incubator for an additional 3 hours. Following this, 
the supernatant was carefully removed, and 100 µL of 
dimethyl sulfoxide (DMSO) solution was added to each 
well to dissolve the formazan crystals. The absorbance 
of the wells was measured at 570 nm using a microplate 
reader. The percentage of cell survival was then calculated 
using the following formula: 

Cell survival % = (optical absorbance of treated 
cells / optical absorbance of control) × 100

Statistical analysis 
Statistical analysis was performed by repeating all tests 

three times. The results were evaluated using GraphPad 
Prism software (version 8), applying a one-way analysis of 
variance (ANOVA), with a significance level set at p<0.05.

Results

Green Synthesis and Characterization of Selenium 
Nanoparticles (SeNPs) and Liposome-Encapsulated 
SeNPs

The powdered form of T. cherleri was immersed in 
a solvent for a 24-hour period to facilitate extraction. 
Following this, the resultant extract was filtered using 
Whatman filter paper. The reduction of sodium selenite 
solution was initiated at ambient temperature upon the 
addition of the T. cherleri extract, leading to a noticeable 
transition in color from yellow to a reddish hue, signifying 
the formation of selenium nanoparticles (SeNPs). The 
occurrence of SeNPs was validated through scanning 
electron microscopy, revealing that the nanoparticles are 
predominantly spherical in shape as depicted in Figure 1A. 
As illustrated in Figure 1B, the maximum absorption peak 
of the nanoparticles was recorded at 265 nm, affirming the 
biosynthetic production of selenium nanoparticles. Further 
characterization demonstrated that the average size and 
zeta potential of these nanoparticles were 270.3 ± 19.6 nm, 
as shown in Figure 1C, and -21.9 ± 1.7 mV, respectively. 
Moreover, the encapsulation and loading efficiency of 
the drug within these nanoparticles were quantitatively 
assessed to be 50.5 ± 3.7%.

Drug release study
Figure 2 illustrates the cumulative release profiles 

Figure 1. Characterization of the Synthesized Selenium Nanoparticles (SeNPs) and Liposome-Encapsulated SeNPs 
includes: (A) Scanning Electron Microscopy (SEM) of the green-synthesized SeNPs, (B) Ultraviolet-Visible (UV-
Vis) Spectroscopy Analysis of the biosynthesized SeNPs, and (C) Dynamic Light Scattering (DLS) Analysis of the 
Liposome-Loaded SeNPs.

Figure 2. The Release Profile of SeNPs Encapsulated in Liposomes at 64 hours. Data are expressed as mean ± SD 
from three independent experiments.
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Figure 3. Antibacterial Efficacy of Free Selenium Nanoparticles and Liposome-Encapsulated Selenium Nanoparticles 
Against Selected Pathogenic Bacteria Including Staphylococcus aureus (A), and Enterococcus faecalis (B).

Figure 4. Anti-Biofilm Activity of free SeNPs, Free Liposomes, and Liposome-Loaded SeNPs is Shown. Values are 
expressed as mean ± SD for three replicates. Error bars denote standard deviations. ***p < 0.001. 

Bacteria MIC/MBC of free 
SeNPs (µg/ml)

MIC/MBC of liposome-loaded 
SeNPs (µg/ml)

SubMIC value of free SeNPs/ liposome-loaded 
SeNPs (µg/ml)

Staphylococcus aureus 16.5/33 4.125/8.25 8.25/>4.125
Enterococcus fecalis 33/66 4.125/8.25 16.5/>4.125

Table 2. Antibacterial Effects of Free Selenium Nanoparticles and Liposome-Encapsulated Selenium Nanoparticles 
Against Selected Pathogenic Bacteria.

of both free and liposome-encapsulated selenium 
nanoparticles (SeNPs) in a PBS release medium over a 
period of 64 hours. To mimic the ex vivo release conditions 
more closely to those of in vivo, a PBS medium with 
a pH of 7.2 was employed. The data indicate that the 
release of SeNPs from the liposomal carriers (61%) is 
lower than that of the free SeNPs (100%) over the same 
period. Specifically, 88% of the free SeNPs were released 
within the first 12 hours, compared to only 28% from the 
liposome-encapsulated SeNPs. The release kinetics from 
the liposomes are characterized by two distinct phases: an 
initial rapid release phase from 0–12 hours where SeNPs 
are quickly discharged into the medium, followed by a 
prolonged slow-release phase extending up to 64 hours. 
Overall, the pattern of drug release from liposomes is 
initially rapid and then tapers off over time.

Antibacterial Activity of Selenium Nanoparticles
In this study, the antimicrobial activity of free selenium 

nanoparticles (SeNPs) and liposome-loaded SeNPs was 
quantitatively assessed against two pathogenic bacteria, 
Staphylococcus aureus and Enterococcus faecalis. The 
minimum inhibitory concentration (MIC) and minimum 
bactericidal concentration (MBC) were determined 
for both formulations of selenium nanoparticles. For 
Staphylococcus aureus, the MIC and MBC values for the 
liposome-loaded SeNPs, which were 4.125 and 8.25 µg/ml 
respectively, represented a fourfold reduction compared 
to the free SeNPs with values of 16.5 and 33 µg/ml. 
Similarly, for Enterococcus faecalis, the liposome-loaded 
SeNPs decreased the MIC and MBC eightfold, with values 
of 4.125 and 8.25 µg/ml compared to 33 and 66 µg/ml for 
the free SeNPs. Additionally, the sub-MIC values, which 
indicate a sustained inhibitory effect of the nanoparticles 
at concentrations below the MIC, were recorded for 
both formulations against both bacteria. These results 
demonstrate a significant enhancement in the antimicrobial 
activity of the liposome-loaded SeNPs, which not only 
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Figure 5. Analysis of Biofilm-Related Gene Expression Following Treatment with free SeNPs, Free Liposomes, and 
Liposome-Loaded SeNPs. Data represent n=3, ***p<0.0001.

Figure 6. In vitro Cytotoxicity of Free SeNPs, Liposome Loaded SeNPs, and Free Liposome on CAL-27cell line. n=3, 
*** p<0.0001.

exhibit stronger antimicrobial effects compared to the 
free nanoparticles but also, considering their gradual 
release and sustained activity, may be more suitable for 
therapeutic applications. Also, the results indicated that the 
free liposomes exhibited no antimicrobial effects (Table 2).

Time kill assay
To investigate the bactericidal profile of liposome-

loaded SeNPs and free SeNPs, we employed the time-
kill assay technique against strains of S. aureus and E. 
faecalis. For this assay, sub-MIC concentrations of both 
liposome-loaded and free SeNPs were utilized over a 
period of 64 hours. After 64 hours, it was evident that 
the antibacterial effects of the liposome-loaded SeNPs 
were significantly greater than those of the free SeNPs 
(Figure 3).

Anti bioflm activity
The anti-biofilm properties of liposome-loaded 

SeNPs, free liposomes, and free SeNPs were assessed 
using the crystal violet staining technique. According 
to Figure 4, liposome-loaded SeNPs demonstrated 
significantly enhanced anti-biofilm effects compared to 

free SeNPs. Moreover, liposome-loaded SeNPs were 
shown to reduce biofilm formation by two to three times 
relative to free SeNPs. In contrast, free liposomes, serving 
as the control, exhibited no anti-biofilm activity.

Bioflm gene expression analysis
To evaluate the impact of liposome-loaded SeNPs, 

free SeNPs, and free liposomes on the expression levels 
of biofilm-associated genes, the Real-Time PCR technique 
was employed. The strains were first treated with their 
respective sub-MIC concentrations, followed by RNA 
extraction and cDNA synthesis. The expression levels 
of the biofilm-related genes icaD and Ace were then 
analyzed. The findings revealed a significant reduction in 
the expression of biofilm-forming genes in strains treated 
with liposome-loaded SeNPs compared to those treated 
with free SeNPs and free liposomes (Figure 5).

In vitro cytotoxicity
The cytotoxicity assessment of free SeNPs, free 

liposomes, and liposome-loaded SeNPs on oral cancer cell 
line over 48 hours revealed that liposome-loaded SeNPs 
exhibited the highest cytotoxic effect compared to free 
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SeNPs, as the IC50 value for CAL-27 cells treated with 
liposome-loaded SeNPs was 41.52±4.1 µM, significantly 
lower than that of free SeNPs, which was 90.2±7.2 µM. 
This highlights the notable cytotoxic efficacy of the 
liposome-loaded formulation (Figure 6).

Discussion

The integration of nanotechnology into biomedical 
applications has led to significant advancements in 
antimicrobial and anticancer therapies. Among various 
nanomaterials, selenium nanoparticles (SeNPs) have 
gained attention due to their unique biological properties, 
including their ability to combat bacterial infections, 
disrupt biofilm formation, and induce selective cytotoxicity 
in cancer cells [67]. However, the efficacy of free SeNPs 
is often limited by factors such as instability, rapid 
aggregation, and uncontrolled release, which can reduce 
their therapeutic potential [68]. Liposomal encapsulation 
offers a strategic solution to these challenges by enhancing 
the bioavailability and controlled delivery of SeNPs [69]. 
The lipid bilayer of liposomes provides a protective 
environment that prevents nanoparticle degradation while 
ensuring sustained and targeted release [70]. This 
improved formulation not only enhances bacterial 
membrane penetration, making SeNPs more effective 
against resistant bacterial strains and biofilms, but also 
increases cellular uptake in cancer treatment, reducing 
systemic toxicity [49, 71]. The combination of 
nanotechnology with drug delivery systems like liposomes 
represents a promising approach for developing next-
generation antimicrobial and anticancer agents with 
improved efficacy and safety [72]. In this research, the 
use of T. cherleri extract as a reducing agent in the green 
synthesis of selenium nanoparticles (SeNPs) represents 
an environmentally friendly approach. This method has 
distinct advantages over traditional chemical synthesis 
methods, which often involve toxic solvents and reagents 
[73]. The color change from yellow to red, resulting from 
the reduction of sodium selenite and the formation of 
SeNPs, serves as a visual indicator of nanoparticle 
synthesis and can be useful for monitoring the reaction 
without complex equipment [74]. SEM images confirm 
that the nanoparticles are predominantly spherical. This 
shape and uniformity can impact the biological activity 
and stability of the nanoparticles as spherical nanoparticles 
are often preferred due to better cellular uptake [75]. The 
average size of the nanoparticles, which is 270.3 nm, and 
a zeta potential of -21.9 mV indicate moderate stability 
of these nanoparticles in suspension. The importance of 
zeta potential in predicting the colloidal stability of SeNPs 
in suspension is crucial, as negative values indicate 
repulsion between particles, reducing their tendency to 
aggregate [76]. An encapsulation efficiency of 50.5% is 
notable for potential therapeutic applications, where 
higher encapsulation efficiency often correlates with better 
therapeutic efficacy and reduced toxicity. Factors that 
could influence the encapsulation efficiency include the 
lipid composition of the liposomes, the method of 
encapsulation, and the interaction between the SeNPs and 
the liposomal membrane [77-78]. The drug release study 

demonstrated that liposome-encapsulated selenium 
nanoparticles (SeNPs) exhibited a controlled and sustained 
release profile compared to free SeNPs. Over 64 hours, 
only 61% of the encapsulated SeNPs were released, while 
free SeNPs were fully discharged, with 88% released 
within the first 12 hours. This controlled release behavior 
aligns with previous findings on nanoparticle encapsulation, 
where liposomal carriers provide a protective barrier that 
slows drug diffusion and enhances stability [79]. The 
biphasic release pattern observed an initial rapid release 
followed by a prolonged slow-release phase suggests that 
encapsulation effectively modulates the release kinetics. 
This is likely due to the initial burst of surface-adsorbed 
nanoparticles, followed by gradual diffusion through the 
liposomal bilayer [80]. Such a controlled release 
minimizes burst effects, prolongs nanoparticle availability, 
and enhances therapeutic potential by reducing toxicity 
risks [81]. The presence of sub-MIC values in both 
bacterial strains further supports the sustained antimicrobial 
activity of liposomal SeNPs, suggesting a prolonged 
inhibitory effect even at concentrations below the MIC. 
This controlled release mechanism prevents rapid 
degradation or aggregation of SeNPs, maintaining their 
antibacterial action over time. Similar findings have been 
reported in previous studies, where selenium nanoparticles 
exhibited prolonged antimicrobial efficacy due to their 
controlled release and enhanced stability [82]. Additionally, 
selenium nanoparticles in chitosan solutions have 
demonstrated strong antimicrobial properties against 
Streptococcus mutans, Lactobacillus acidophilus, and 
Candida albicans, reinforcing the idea that nanoparticle 
formulations can sustain antibacterial effects for extended 
periods [83]. The enhanced antibacterial potential of 
selenium nanoparticles against multidrug-resistant 
bacteria has also been highlighted, suggesting their role 
as potential alternatives to conventional antibiotics [84]. 
Furthermore, studies have confirmed that selenium 
nanoparticles exhibit significant antibacterial effects due 
to their oxidative stress-inducing properties and ability to 
disrupt bacterial cell membranes [85]. The absence of 
antimicrobial activity in free liposomes in our study further 
confirms that the observed effects were solely due to the 
SeNPs, rather than the liposomal carrier itself. These 
findings align with previous studies that have demonstrated 
the improved antimicrobial potency of nanocarrier systems 
by increasing nanoparticle stability and bioavailability 
[81]. Liposomal encapsulation not only enhances the 
controlled release of SeNPs but also minimizes potential 
cytotoxicity, making it a promising approach for 
antimicrobial applications [86]. The time-kill assay results 
confirm the superior bactericidal activity of liposome-
loaded selenium nanoparticles (SeNPs) over free SeNPs, 
highlighting the benefits of nanocarrier-based drug 
delivery. Their sustained antibacterial effects over 64 hours 
suggest a controlled release mechanism that enhances 
bacterial inhibition. This improved efficacy is likely due 
to increased stability, bioavailability, and gradual release 
from the liposomal carrier, preventing nanoparticle 
aggregation and degradation [87]. Additionally, 
encapsulated nanoparticles exhibit prolonged retention 
and enhanced bacterial penetration, further increasing their 
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antimicrobial potential [88]. These findings align with 
previous studies indicating that nanocarrier-based drug 
de l ive ry  sys tems  s ign i f i can t ly  enhance  the 
pharmacokinetics and efficacy of antimicrobial agents 
[70]. The findings from the crystal violet staining assay 
highlight the superior anti-biofilm properties of liposome-
loaded selenium nanoparticles (SeNPs) compared to free 
SeNPs, reinforcing the advantages of nanocarrier-based 
drug delivery systems for combating biofilm-associated 
infections. Biofilms pose a significant challenge in 
antimicrobial therapy due to their ability to protect 
bacterial cells from conventional treatments, making the 
development of effective anti-biofilm agents crucial [89]. 
The results demonstrate that liposome-loaded SeNPs 
reduced biofilm formation by two to three times compared 
to free SeNPs. This enhanced efficacy can be attributed 
to the improved penetration of liposome-encapsulated 
SeNPs into biofilms, where the lipid-based carriers 
facilitate deeper diffusion through the biofilm matrix [90]. 
Additionally, liposomal encapsulation provides a sustained 
release profile, prolonging the antimicrobial activity of 
SeNPs within the biofilm environment [70]. The complete 
lack of anti-biofilm activity observed in free liposomes 
confirms that the biofilm inhibition effect is specifically 
due to the SeNPs rather than the liposomal carrier itself. 
This finding further supports the role of selenium 
nanoparticles as potent antimicrobial and anti-biofilm 
agents, with liposomal formulations enhancing their 
therapeutic efficacy [91]. The gene expression analysis 
using Real-Time PCR revealed that liposome-loaded 
selenium nanoparticles (SeNPs) significantly 
downregulated biofilm-associated genes icaD and Ace, 
which are critical for biofilm formation in Staphylococcus 
aureus and Enterococcus faecalis. This stronger 
suppression compared to free SeNPs suggests that 
liposomal encapsulation enhances nanoparticle stability, 
prolongs retention, and improves bacterial penetration, 
ensuring sustained inhibition of biofilm formation [89].  
The controlled release mechanism of liposomal SeNPs 
allows continuous gene suppression, reducing bacterial 
adhesion and biofilm stability [92]. The ability of SeNPs 
to inhibit biofilm formation at the genetic level aligns with 
previous studies that have shown selenium’s effectiveness 
in disrupting quorum sensing-regulated processes, which 
are critical for bacterial communication and biofilm 
development [93]. Moreover, selenium’s ability to 
interfere with E. coli O157:H7 biofilms by reducing 
exopolysaccharide synthesis and biofilm gene expression 
further supports its potential as an effective antimicrobial 
agent [94]. Additionally, green-synthesized SeNPs have 
been shown to significantly reduce biofilm formation in 
multidrug-resistant Klebsiella pneumoniae, highlighting 
their broad-spectrum anti-biofilm properties [71].The 
cytotoxicity assessment of liposome-loaded selenium 
nanoparticles (SeNPs) against oral cancer cells (CAL-27) 
demonstrates their superior anticancer potential compared 
to free SeNPs. The significantly lower IC50 value 
(41.52±4.1 µM) for liposome-loaded SeNPs compared to 
free SeNPs (90.2±7.2 µM) suggests that liposomal 
encapsulation enhances the bioavailability and cellular 
uptake of SeNPs, leading to more effective cytotoxicity. 

This increased potency can be attributed to the ability of 
liposomal carriers to facilitate nanoparticle stability, 
prolong systemic circulation, and improve intracellular 
delivery [86].

This study highlights the potential of liposome-
loaded selenium nanoparticles (SeNPs) as an advanced 
and biocompatible drug delivery system with significant 
antibacterial, anti-biofilm, and anticancer properties. The 
encapsulation of SeNPs within liposomes enhances their 
stability, bioavailability, and controlled release, ensuring 
prolonged therapeutic effects and reduced toxicity. The 
antibacterial efficacy of liposomal SeNPs, demonstrated 
by their superior bactericidal and biofilm-inhibiting 
activity, suggests their potential for combating multidrug-
resistant bacterial infections. Additionally, the anti-biofilm 
properties of liposome-loaded SeNPs, supported by 
their ability to downregulate key biofilm-associated 
genes, indicate their effectiveness in preventing and 
disrupting biofilm formation, which is a major challenge 
in chronic infections. In the context of oral cancer 
therapy, liposome-loaded SeNPs exhibited significantly 
enhanced cytotoxicity against cancer cells compared to 
free SeNPs, as evidenced by their lower IC50 values. 
The improved intracellular uptake and sustained release 
from liposomal carriers contribute to enhanced apoptosis 
induction, likely through oxidative stress mechanisms and 
mitochondrial dysfunction. This targeted and prolonged 
anticancer effect minimizes off-target toxicity, making 
liposomal SeNPs a safer and more effective alternative 
to conventional chemotherapeutics. Overall, the results of 
this study suggest that liposome-loaded SeNPs hold great 
promise as a multifunctional nanoplatform for targeted 
drug delivery in oral cancer therapy, while simultaneously 
offering potent antimicrobial and biofilm-disrupting 
capabilities. Future research should focus on optimizing 
their formulation, investigating their pharmacokinetics, 
and conducting in vivo studies to further validate their 
clinical applicability.

Future Research 
By leveraging cutting-edge, integrated technologies 

alongside advancements in chemistry and biology, 
substantial progress has been achieved in tackling a wide 
range of chronic diseases that afflict modern society. 
Among these innovations, nanotechnology has emerged 
as a pivotal tool, significantly contributing to the treatment 
of various conditions, including cancer, as well as driving 
advancements in other industrial fields. Continued 
evolution in these technologies holds great promise for 
further breakthroughs in both healthcare and industry [45, 
95-103, 104-106].
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