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Introduction

Breast cancer (BC) is the most common type 
of invasive cancer among women, accounting for 
approximately 12.5% of all newly diagnosed cancer 
cases worldwide. It is also the second leading cause of 
cancer-related mortality in women. Nearly 60% of breast 
cancer deaths occur in economically developing regions 
of South America and Asia, including China, Pakistan, and 
India. BC is a heterogeneous and multifactorial disease 
characterized by diverse cellular origins and multiple 
molecular subtypes, with genetic factors increasingly 
recognized for their role in disease development 
[1–4]. The commonly adopted therapeutic strategy for 
managing breast cancer (BC) involves a combination 
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of surgery, radiotherapy, chemotherapy, and targeted 
therapy. Chemotherapy is an aggressive modality used 
in conjunction with surgery or radiotherapy to improve 
treatment outcomes. Most breast cancers are managed 
with systemic adjuvant and neoadjuvant chemotherapy, 
wherein combinations of agents such as anthracyclines 
(doxorubicin, epirubicin), platinum compounds (cisplatin, 
carboplatin), and taxanes (paclitaxel, docetaxel) constitute 
the foundation of standard therapeutic regimens [5–7]. 
These chemotherapeutic drugs are primarily detoxified 
in the liver, where cytochrome P450 enzymes metabolize 
them into less toxic forms, while the kidneys aid in 
filtering the resulting drug metabolites. However, this 
detoxification process can occasionally generate reactive 
byproducts, contributing to chemotherapy-induced 
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toxicity reactions, which may manifest as adverse 
effects on various organs and physiological systems. 
In breast cancer patients, these acute toxicity reactions 
are broadly categorized into hematological toxicities, 
such as anemia, neutropenia, febrile neutropenia, and 
thrombocytopenia and non-hematological adverse events 
including mucositis, chemotherapy-induced nausea and 
vomiting, fatigue, body ache, and peripheral neuropathy 
[8–10]. However, treatment responses and outcomes 
cannot be generalized across all patients, as the incidence 
and severity of acute toxicity are highly variable and 
often unpredictable. Acute hematological toxicities have 
been reported in approximately 40–80% of BC patients 
receiving both neoadjuvant and adjuvant chemotherapy 
[11]. Overall, non-hematological adverse drug reactions 
associated with both chemotherapy regimens have been 
observed in more than 80% of patients [12–13].

The cytochrome P450 enzyme system constitutes a 
critical component of the phase I detoxification pathway, 
wherein multiple CYP gene isoforms including CYP1A1, 
CYP1B1, CYP2B6, CYP2C9, CYP2C19, CYP2D6, and 
CYP2E1 are involved in the metabolism of various 
xenobiotics and therapeutic agents. The CYP450 family 
is highly polymorphic, and functional genetic variations 
in these enzymes have been associated with cancer 
susceptibility [14–15]. Among these, CYP2D6 and 
CYP2E1 encoded by the CYP2D6 and CYP2E1 genes 
respectively, are key phase I enzymes essential for the 
biotransformation of xenobiotic compounds within 
the human body. Number of studies have explored the 
functional association between polymorphisms in the 
CYP2D6 and CYP2E1 genes and altered susceptibility 
to various cancers, including esophageal and colorectal 
cancer [16–17], and more recently, breast [18] and bladder 
cancer [19]. Although direct evidence linking CYP2D6 
and CYP2E1 polymorphisms to breast cancer risk remains 
limited, their role in the metabolism of carcinogens and 
endogenous hormones suggests a potential influence 
on patient responses to chemotherapeutic agents. 
Thus, the selection of these polymorphisms for their 
potential association with doxorubicin and paclitaxel 
metabolism is justified in the context of BC risk 
prediction and toxicity outcomes. Previous studies 
have also reported an association between CYP2D6 
polymorphisms and breast cancer risk in the South Indian 
population [20]. CYP2E1 is a key enzyme involved 
in the metabolism of various dietary procarcinogens, 
including nitrosamines, heterocyclic amines, and 
polycyclic aromatic hydrocarbons. Polymorphisms 
in this gene may lead to reduced enzymatic activity, 
impairing carcinogen detoxification and thereby 
influencing individual susceptibility to increased cancer 
risk. The impact of genetic polymorphisms in CYP2D6 
and CYP2E1 genes on BC outcomes in response to 
doxorubicin- and paclitaxel-based chemotherapy remains 
uncertain in clinical settings. Therefore, this study aimed 
to identify and evaluate the association of CYP2D6*3 
(rs35742686), CYP2D6*4 (rs3892097), CYP2D6*10 
(rs1065852), CYP2D6*17 (rs28371706), CYP2E1*5B 
(rs2031920), CYP2E1*6 (rs6413432), and CYP2E1*7B 
(rs6413420) polymorphisms with chemotherapy-induced 

toxicity reactions in BC patients receiving treatment with 
doxorubicin and paclitaxel.

Materials and Methods

Patient enrollment and Clinical Information
Two hundred (200) clinically confirmed and 

histologically diagnosed BC patients visiting the Medical 
Oncology Outpatient Department (OPD) for treatment 
at the Department of Oncology, Krishna Hospital & 
Medical Research Center, Krishna Vishwa Vidyapeeth 
(Deemed to be University), Karad, were enrolled based 
on predefined inclusion and exclusion criteria. The sample 
size was calculated by the formula n= [(p1xq1) + (p2 x 
p2)] X (Z1-α/2) +Z1-β)2/ (p1-p2)2 with 95%confidence and 
95% power; Where p1- presence of allele1, q1- absence 
of allele1, p2- presence of allele 2, q2- absence of allele 
2, α- probability of detecting false results and β- power. 
The Inclusion criteria are; patients with age range of 18 
to 85 years age diagnosed with BC, histopathologically 
confirmed, no metastasis at diagnosis, clinically localised 
or locally advanced tumors according to standard staging 
system, patients diagnosed with BC who were planned 
to receive adjuvant chemotherapy postoperatively 
with standard doxorubicin and cyclophosphamide 
chemotherapy followed by paclitaxel chemotherapy, 
and locally advanced BC patients receiving neoadjuvant 
chemotherapy for downstaging. The exclusion criteria 
are; no pathological diagnosis, male BC Patients, relapsed 
disease or metastasis, associated severe co-morbidities, 
auto immune disease, no or incomplete treatment taken, 
incomplete follow-up, missing or incomplete data, patients 
with abnormal renal or liver function tests at the time of 
enrollment and patients with performance score of Eastern 
Cooperative Oncology Group (ECOG) ≥2. The study 
protocol was approved by Institutional Ethics Committee 
of Krishna Institute of Medical Sciences for the utilization 
of human subjects in the research (KIMSDU/IEC/01/2018 
dated 2nd February 2018)

Chemotherapy Treatment Regimen follow up and Toxicity 
Assessment

Once the patient was enrolled in the study after 
fulfilling inclusion and exclusion criteria,written informed 
consent was taken and chemotherapy was planned as 
per the stage of the patient. Patients received 4 cycles 
of combination chemotherapy with doxorubicin and 
cyclophosphamide , followed by 4 cycles of 3 weekly 
paclitaxel. After receiving 1st cycle of chemotherapy in 
each schedule, patient was followed again between Day10 
to Day14 post-chemotherapy for assessing chemotherapy 
related toxicities. The BC patients treated with adjuvant 
and neo-adjuvant chemotherapy were followed up for 
1year at the regular intervals for the assessment of 
treatment response and toxicity evaluation. Patient were 
explained regarding possible adverse effects and advised 
to report back in case of serious side effects or report 
during scheduled followup and details were noted and 
graded as per National Cancer Institute- Common Toxicity 
Criteria (NCI-CTC) 4.03 criteria [21]. The patients 
were routinely tested for blood and urine along with 
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complete blood count, renal function and liver function 
test before each chemotherapy cycle to monitor health 
and to check chemotherapy induced side effects. The 
hematological toxicities including anemia, neutropenia, 
thrombocytopenia and non-hematological toxicities such 
as mucositis, chemotherapy induced nausea/vomiting 
(CINV), fatigue, body ache, peripheral neuropathy were 
graded as 0, 1, 2, 3, 4. Both the hematological and non-
hematological toxicities were documented and evaluated 
for their association with genetic polymorphisms of 
CYP2D6 and CYP2E1 genes. For comparison of BC 
patients with toxicity reactions (>1 grade) were considered 
as chemo-sensitive groups were compared to patients with 
≤ 1 grade reactions.

Blood Sample Collection and Genomic DNA Extraction 
and Purification

Five milliliter (mL) of whole blood from 200 patients 
was collected in sterile EDTA containing vacutainer after 
receiving informed consent. Genomic DNA extraction 
was carried out from the peripheral blood sample using 
HipurA®Blood genomic DNA miniprep purification kit 
(HiMedia Laboratories) following the manufacturer’s 
instructions. This pure genomic DNA was used for 
genotyping assays by polymerase chain reaction (PCR) 
and Restriction fragment Length Polymorphism (RFLP).

Genotyping assays of CYP2D6 and CYP2E genes
The genotyping of CYP2D6*3, CYP2D6*4, 

CYP2D6*10, CYP2D6*17, CYP2E1*5B, CYP2E1*6, 
CYP2E1*7B genes was performed by PCR-RFLP. The 
PCR amplification were carried out separately in 20 micro 
liter (µL) reaction mixtures containing 1X PCR buffer 
0.2 mM each dNTP, 10 picomole (pmol) of each primers 
(IDT technologies) , 1U Taq DNA polymerase (GeNei, 
Merck Bioscience) and 100 nanogram (ng) of purified 
genomic DNA. The primer sequence used to amplify the 
CYP2D6 and CYP2E1 genes and the PCR conditions are 
shown in Table 1. 

Restriction Fragment Length Polymorphism
After performing PCR programme for each reaction, 

the PCR products were analysed by agarose gel 
electrophoresis in Tris-Acetate-EDTA (TAE) buffer. After 
confirmation of DNA amplification, each PCR product 
was digested with an appropriate restriction enzyme with 
specific conditions for genotyping. Ten micro litters of the 
PCR products digested at 37°C overnight with specific 
restriction enzymes in 20 µL reaction mixtures containing 
buffer supplied with each restriction enzyme (Table 1). 
After the overnight incubation, digestion products were 
separated on a 2-3% low EEO agarose (GeNei) gel at 
100 V for 30 min stained with ethidium bromide and 
photographed with gel documentation system (BioRad). 
The results obtained by PCR-RFLP analysis were further 
validated by direct DNA sequencing of amplified PCR 
products of some randomly selected representative 
samples which also confirmed the polymorphism in 
selected genes (Figure 1).

Statistical Analysis
A univariate logistic regression model was employed to 

assess the effect of genetic polymorphisms in the CYP2D6 
and CYP2E1 genes on the incidence of chemotherapy-
induced toxicity (Grade 0–1 vs. Grade 2–4). Odds ratios 
(ORs) and corresponding 95% confidence intervals (CIs) 
were calculated using unconditional multiple logistic 
regression. Clinical severity of post-chemotherapy 
adverse effects was classified into hematological and 
non-hematological toxicity reactions, with Grade 
>1 considered clinically significant. Multivariate 
analysis was conducted to adjust for demographic and 
clinicopathological variables influencing chemotherapy 
toxicity. Associations between each polymorphism and 
the severity of toxicities were further evaluated using chi-
square tests. p-values < 0.05 were regarded as statistically 
significant. Genotype frequency data were assessed for 
Hardy–Weinberg equilibrium using SPSS version 11.0 
software.

Results

A total of 200 clinically confirmed BC patients were 
enrolled in this study, with ages ranging from 18 to 85 
years and a mean age of 50.24 years. Among them, 157 
patients (78.5%) were above 40 years of age. Based 
on body mass index (BMI), 122 women (61%) had a 
BMI ≤ 25, while 78 women had a BMI > 25. Regarding 
menopausal status, 70 patients (35%) were classified as 
premenopausal and 130 patients (65%) as postmenopausal 
for the evaluation of treatment outcomes and other clinical 
parameters. Of the cohort, 155 women received adjuvant 
chemotherapy, 31 patients underwent neoadjuvant 
chemotherapy, and 14 patients were administered 
palliative chemotherapy. Hormone receptor status, 
assessed via immunohistochemistry, revealed 83 patients 
to be ER/PR positive, 109 patients to be ER/PR negative, 
and 85 patients exhibited triple-negative breast cancer. 
Tumor size exceeded 2 cm in 95 patients (range: 2–10 cm), 
while 105 patients (52.5%) presented with tumors ≤ 2 cm. 
Clinically, 98 patients were staged at TNM stages III and 
IV, and histopathologically, 110 patients were classified 
at TNM stages III and IV (Table 2).

Genotype distribution of CYP2D6 and CYP2E1 gene 
polymorphisms and their association with doxorubicin 
based chemotherapy toxicity in BC patients

The polymorphism CYP2D6*3, CYP2D6*4, 
CYP2D6*10, CYP2D6*17, CYP2E1*5B, CYP2E1*6, 
and CYP2E1*7B genes were investigated in this study. Out 
of 200 BC patients, 104 patients were first administered 
with doxorubicin followed by paclitaxel chemotherapy 
whereas 96 patients were first treated with paclitaxel 
and then doxorubicin. The chemotherapy induced acute 
toxicity reactions were grouped into hematological and 
non-hematological toxicities and graded into grade ≤1 
or >1 toxicities. Chemotherapy-induced acute toxicity 
reactions were categorized into hematological and non-
hematological toxicities and graded as ≤1 (mild) or >1 
(severe). Hematological toxicities, including anemia, 
neutropenia, febrile neutropenia, and thrombocytopenia, 
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Figure 1. Representative Chromatogram of Corresponding DNA Sequence Showing Nucleotide Change Position. (A) 
CYP2D6*4 is represented by G>A substitution at nucleotide 1846 of exon-4. (a) A sample with Normal ‘G’ allele (b) 
Sample with heterozygous G/A genotype and (c) Sample with homozygous variant A/A genotype  for CYP2D6*4 
(rs3892097) polymorphism (B) CYP2E1*7B polymorphism with G>T substitution of SNP rs6413420 (a) A sample 
with normal ‘G/G’ genotype. (b) A sample with major ‘G/T’ genotype in 71 G>T and (c) sample with homozygous 
variant (T/T) genotype of CYP2E1*7B (rs6413420) polymorphism.

were evaluated through blood testing. Non-hematological 
toxicities such as mucositis, CINV, fatigue, body ache, 
and peripheral neuropathy were documented through 
physical examination. Among 104 patients who received 
treatment with doxorubicin followed by paclitaxel, 23 
patients exhibited severe anemia (Grade >1), 25 developed 
severe neutropenia, 24 experienced febrile neutropenia, 
and 7 presented with thrombocytopenia. Severe non-
hematological toxicities (Grade >1) were recorded as 
follows: mucositis in 16 patients, CINV in 34 patients, 
fatigue in 37 patients, body ache in 15 patients, and 
peripheral neuropathy in 5 patients following doxorubicin 
administration. The univariate logistic regression analysis 
was used to find out an association of CYP2D6*3 
(rs35742686, A>T), CYP2D6*4 (rs3892097, G>A), 
CYP2D6*10 (rs1065852, C>T), CYP2D6*17(rs28371706, 
C>T), CYP2E1*5B (rs2031920, G>C), CYP2E1*6 
(rs6413432,T>A), and CYP2E1*7B (rs6413420, G>T) 
single nucleotide polymorphisms (SNPs) with standard 
doxorubicin based chemotherapy induced acute toxicity 
reactions in BC patients. In our investigation of the 
correlation between genetic polymorphisms in the 
CYP2D6 and CYP2E1 genes and severe hematological 
toxicity reactions in patients undergoing doxorubicin 
chemotherapy, the analysis revealed significant findings. 
The CYP2D6*10 polymorphism exhibited a negative 
association (OR = 0.32; 95% CI: 0.10–0.94; p = 0.039), 

suggesting a protective effect against febrile neutropenia 
in breast cancer patients. Similarly, CYP2E1*5B showed 
a significant negative association (OR = 0.05; 95% 
CI: 0.03–0.90; p = 0.04) with neutropenia in the same 
patient cohort (Table 3). Similarly, when we investigated 
the association between genetic polymorphisms in the 
CYP2D6 and CYP2E1 genes and non-hematological 
toxicity reactions including mucositis CINV, fatigue, 
body ache, and peripheral neuropathy in patients treated 
with doxorubicin, the analysis revealed no correlation 
for CYP2D6*3, CYP2D6*4, CYP2D6*10, CYP2E1*5B, 
CYP2E1*6, and CYP2E1*7B polymorphisms. However, 
a significant association was observed between the 
CYP2D6*17 polymorphism and CINV in breast cancer 
patients receiving doxorubicin-based chemotherapy (OR 
= 2.58; 95% CI: 1.11–6.60; p = 0.026) (Table 4).

Correlation of genetic variants of CYP2D6 and CYP2E1 
gene polymorphisms and paclitaxel based chemotherapy 
toxicity in BC patients

When the genotype distribution of CYP2D6*3, 
CYP2D6*4, CYP2D6*10, CYP2D6*17, CYP2E1*5B, 
CYP2E1*6, and CYP2E1*7B was examined in patients 
treated with paclitaxel-based chemotherapy, the analysis 
revealed a significant association between the CYP2E1*7B 
(rs6413420, G>T) single nucleotide polymorphism (SNP) 
and hematological toxicity, specifically anemia, in breast 
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Variables Number Percentage (%)

Total Number of patients 200

Age (Mean ± SD) years 50.24 ±10.93 (Range:18-85) 
Median:48

     ≤ 50 118 59

     >50 82 41

BMI Kg/m2

     <25 122 61

     25-30 62 31

     >30 16 8

Tobacco smoking Status

     Tobacco users 109 54.5

     Tobacco no users 91 45.5

Family history of Cancer

     Yes 50 25

     No 150 75

Tumor localization

     Left breast 102 51

     Right breast 98 49

Tumor size in cm

     ≤ 2 105 52.5

     > 2 95 47.5

Histological Grade    

     I, II 107 53.5

     III, IV 93 46.5

Clinical TNM Stage

     I 4 2

     II 98 49

     III 80 40

     IV 18 9

Histopathological TNM Stage

     I 2 1

     II 88 44

     III 90 45

     IV 20 10

Hormone Receptor Status

     ER/ PR+ve 83 41.5

     ER/ PR-ve 109 54.5

     ER/PR/Her2+ve 6 3

     ER/PR/Her2-ve 85 42.5

     ER/ PR+ve Her2-ve 78 39

     ER/ PR-ve Her2+ve 24 12

Chemotherapy

     Adjuvant chemotherapy 155 77.5

     Neo-Adjuvant chemotherapy 31 15.5

     Palliative chemotherapy 14 7

     Radiotherapy

     Adjuvant RT 81 40.5

     No Adjuvant RT 119 59.5

Table 2. Details of Demographic and Clinico-
Pathological Characteristics of Breast Cancer Patients 
Enrolled in the Study 

cancer patients (OR = 342.00; 95% CI: 33.04–354.60; 
p < 0.0001). In contrast, no significant associations 
were observed between the other genotypes and anemia 
or other hematological toxicities (Supplementary 
Table 1). Similarly, in our investigation of CYP2D6 gene 
polymorphisms in relation to non-hematological acute 
toxicities induced by paclitaxel-based chemotherapy, 
we observed that the variant genotypes CYP2D6*4 
(rs3892097, G>A) (OR = 4.71; 95% CI: 1.93–11.46; 
p = 0.0006) and CYP2D6*10 (rs1065852, C>T) (OR 
= 3.43; 95% CI: 1.43–8.21; p = 0.005) exhibited 
significant associations with peripheral neuropathy, 
a non-hematological toxicity reaction triggered by 
paclitaxel chemotherapy. Similarly, analysis of CYP2E1 
polymorphism revealed a positive association between 
CYP2E1*6 (rs6413432, T>A) and paclitaxel-induced 
peripheral neuropathy in BC patients (OR = 4.00; 95% CI: 
1.66–9.61; p = 0.001). Likewise, our findings indicated 
a significant association of the same polymorphism with 
paclitaxel-induced body ache in BC patients (OR = 4.04; 
95% CI: 1.72–9.50; p = 0.001) (Supplementary Table 2).

Association of CYP2D6 and CYP2E1 polymorphisms 
with demographic and clinic-pathological factors of BC 
patients

Upon analyzing the correlation between genetic 
polymorphisms in the CYP2D6 and CYP2E1 genes and 
the demographic and clinicopathological characteristics 
of BC patients, no significant association was observed 
between any of the CYP2D6 or CYP2E1 genotypes and 
the evaluated demographic or clinicopathological features. 
The results pertaining to the polymorphisms CYP2D6*3 
(rs35742686, A>–), CYP2D6*4 (rs3892097, G>A), 
CYP2D6*10 (rs1065852, C>T), CYP2D6*17 (rs28371706, 
C>T), CYP2E1*5B (rs2031920, G>C), CYP2E1*6 
(rs6413432, T>A), and CYP2E1*7B (rs6413420, 
G>T), and their association with the demographic and 
clinicopathological characteristics of BC patients are 
presented in Supplementary Table 3. When demographic 
factors, including age and body mass index (BMI), were 
considered for the BC patients enrolled in this study, the 
analysis revealed no association between CYP2D6 or 
CYP2E1 variant genotypes and patients’ age or BMI. The 
present study also found no association between CYP2D6 
SNPs (rs35742686, rs3892097, rs1065852, rs28371706) 
or CYP2E1 SNPs (rs2031920, rs6413432, rs6413420) 
and histopathological TNM stage > II. However, clinical 
TNM stage > II showed a significant association with 
the CYP2E1*7B (rs6413420, G>T) polymorphism (OR 
= 5.05; 95% CI: 1.06–24.02; p = 0.041). The analysis 
of genotype distributions for CYP2D6 and CYP2E1 
polymorphisms revealed no significant association with 
hormonal receptor status (ER/PR or HER2) in BC patients. 
However, our data indicated a significant correlation 
between the CYP2E1*7B (rs6413420, G>T) SNP and 
select demographic and clinicopathological characteristics 
of BC patients examined in this study. Furthermore, in our 
evaluation of the relationship between demographic and 
clinicopathological factors and chemotherapy-induced 
toxicity reactions, we observed that a higher BMI was 
negatively correlated with non-hematological toxicities, 
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specifically mucositis (p = 0.01) and body ache (p = 0.003), 
following doxorubicin treatment. Moreover, patients with 
clinical and histopathological TNM staging beyond stage 
II exhibited a significant association with chemotherapy-
induced nausea and vomiting in response to doxorubicin, 
with p-values of 0.046 and 0.035, respectively. However, 
our study did not reveal any significant correlations 
between demographic or clinicopathological factors and 
outcomes associated with paclitaxel-based chemotherapy

Discussion

Chemotherapeutic drugs used in cancer treatment 
are recognized for their specific targeted mechanisms 
of action; however, a substantial gap persists in 
understanding the pharmacological mechanisms of many 
chemotherapy drugs. Consequently, it is essential to 
investigate the genetic diversity of individuals undergoing 
chemotherapy, as it significantly influences their 
susceptibility to both therapeutic efficacy and adverse drug 
reactions. Examining single nucleotide polymorphisms 
in genes responsible for drug detoxification can 
provide valuable insights into their role in modulating 
chemotherapy responses. While numerous studies have 
explored genetic variations in drug metabolism-related 
genes and their associations with cancer susceptibility, 
limited data are available regarding their impact on 
chemotherapy treatment outcomes across various cancer 
types. Therefore, identifying key genetic polymorphisms 
in drug detoxification genes is essential for enhancing 
chemotherapeutic efficacy and minimizing toxicity in 
breast cancer patients. Several pharmacogenomic studies 
have demonstrated that patients respond differently to 
various chemotherapy drugs due to the diverse genetic 
susceptibility of each individual to treatment. The CYP 
genes are highly polymorphic in nature, encompassing 
multiple isozymes such as CYP1A1, CYP1B1, CYP2B6, 
CYP2C9, CYP2C19, CYP2D6, CYP2E1, and CYP17, 
each of which exhibits functional polymorphisms. These 
genetic variations have notable clinical relevance, as they 
can alter drug efficacy and contribute to therapeutic failure 
and adverse toxicity effects [22–24]. Pharmacogenomic 
studies have demonstrated that polymorphisms in 
CYP450 genes can significantly influence therapeutic 
efficacy and treatment outcomes associated with various 
chemotherapeutic agents [25–26]. The drug transporter 
ABCB1 gene, with its C1236T and C3435T variants, has 
been extensively investigated for its diverse distribution 
among different ethnic groups. Previous research has 
established a link between genetic variations in the ABCB1 
gene and alterations in response to a broad spectrum 
of chemotherapeutic agents. Numerous studies have 
highlighted the impact of ABCB1 gene polymorphisms 
on chemotherapy-induced toxicities in breast cancer 
patients, as demonstrated by Wu et al. [27] and Chaturvedi 
et al. [28]. Previous reports have demonstrated that 
polymorphisms in the CYP450 gene family are associated 
with therapeutic failure and severe chemotherapy-
induced toxicity reactions [29–31]. Association studies 
have indicated a significant correlation between the 
CYP2E1 T>A (rs6413432) polymorphism and outcomes 

of platinum-based chemotherapy in cervical cancer 
patients [32]. Conversely, other studies have reported 
no significant impact of CYP2D6*1A, CYP2E1*6, and 
CYP2E1*7B polymorphisms on clinical responses to 
either platinum- or taxane-based chemotherapy in patients 
with non-small cell lung carcinoma [33–34]. Functional 
polymorphisms in CYP1A1, CYP1B1, CYP2B6, CYP2C8, 
and CYP2C9 play a crucial role in clinical outcomes by 
influencing drug efficacy and potentially contributing 
to therapeutic inefficacy and adverse toxicity across 
various cancers [29–33], including breast cancer [35, 
36]. Similarly, the polymorphism of CYP2C19 and its 
association with hematological toxicities, including 
neutropenia, has been previously reported in response to 
chemotherapeutic drugs administered for ovarian [37], 
breast [38, 39], lung cancer [40], and non-small cell 
lung carcinoma [34]. In our prior study, we observed a 
significant association between the CYP2C19*2 (681 
G>A) polymorphism and hematological toxicities 
including anemia, neutropenia, febrile neutropenia, 
and thrombocytopenia in BC patients treated with 
doxorubicin. Furthermore, a significant association was 
noted between the CYP2C19*2 polymorphism and non-
hematological toxicities such as chemotherapy-induced 
nausea and vomiting, fatigue, and peripheral neuropathy in 
response to paclitaxel-based chemotherapy [41]. Unlikely, 
we observed a negative association between CYP1A1, 
CYP1B1, and CYP2C9 polymorphisms and peripheral 
neuropathy in BC patients treated with paclitaxel-
based chemotherapy [42]. The ABCB1 and CYP2D6 
genes have been shown to regulate the metabolism and 
pharmacokinetics of doxorubicin [43]. Polymorphisms 
in CYP2C9, CYP2C19, and CYP2D6 associated with 
poor metabolizer phenotypes demonstrated a significant 
correlation with decreased drug efficacy in breast cancer 
treatment [44]. This study examined the association of 
polymorphisms in drug detoxification genes (CYP2D6 
and CYP2E1) with hematological and non-hematological 
toxicities following doxorubicin- and paclitaxel-based 
chemotherapy in BC patients. Analysis of seven genetic 
variants including CYP2D6*3 (rs35742686), CYP2D6*4 
(rs3892097), CYP2D6*10 (rs1065852), CYP2D6*17 
(rs28371706), CYP2E1*5B (rs2031920), CYP2E1*6 
(rs6413432), and CYP2E1*7B (rs6413420) revealed a 
negative association of CYP2E1*5B (rs2031920) with 
neutropenia and CYP2D6*10 (rs1065852) with febrile 
neutropenia following doxorubicin-based chemotherapy. 
The CYP2D6*17 (rs28371706) polymorphism was 
significantly associated with doxorubicin-induced CINV 
in BC patients. Additionally, the CYP2D6*4 (rs3892097) 
variant genotype demonstrated a significant positive 
correlation with paclitaxel-induced peripheral neuropathy 
(OR = 4.71; 95% CI: 1.93–11.46; p < 0.0006). The findings 
of this study align with previous reports demonstrating 
a positive association between CYP2E1 polymorphism 
and platinum-based chemotherapy outcomes in cervical 
cancer patients [27]. In BC patients treated with paclitaxel, 
the CYP2E1*7B (rs6413420) polymorphism showed 
a significant association with anemia (OR = 342.00; 
95% CI: 33.04–354.60; p < 0.0001). Paclitaxel-induced 
body ache showed a significant association with the 
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CYP2E1*6 (rs6413432) polymorphism (OR = 4.00; 95% 
CI: 1.66–9.61; p < 0.001) in BC patients. In contrast, other 
studies reported no significant impact of CYP2D6*1A, 
CYP2E1*6, and CYP2E1*7B polymorphisms on 
platinum- or taxane-based chemotherapy response in non-
small cell lung carcinoma patients [31, 33–34]. Notably, 
the genotype distribution of CYP2D6 and CYP2E1 
exhibited significant deviation from Hardy–Weinberg 
equilibrium in patients experiencing paclitaxel-induced 
hematological and non-hematological toxicities. To our 
knowledge, this is the first study from India investigating 
the role of metabolic CYP450 gene polymorphisms in 
doxorubicin/paclitaxel-related chemotherapy toxicities 
in breast or other cancers.

Conclusion: In conclusion, the CYP2D6 polymorphism 
demonstrated a positive association with paclitaxel-
induced peripheral neuropathy, while the CYP2E1*6 
(rs6413432) polymorphism showed a significant 
correlation with body ache in BC patients. This is the first 
study of its kind to analyze the influence of doxorubicin-
based chemotherapy on metabolic gene polymorphisms in 
BC patients. However, larger-scale studies are necessary 
to validate and strengthen the observed associations 
between genetic variants of CYP2D6 and CYP2E1 
and chemotherapy outcomes in BC by increasing both 
the sample size and the number of SNPs included for 
genotyping.
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