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Abstract

Background: Cutaneous melanoma is a highly aggressive skin cancer known for its metastatic potential and resistance
to conventional therapies. While genetic and environmental factors are well-recognized in melanoma progression, the
impact of chronic microbial infections is not fully understood. Recent studies suggest microbial pathogens interact with
the tumour microenvironment, facilitating immune evasion, epithelial-mesenchymal transition (EMT), and therapy
resistance. This study aims to explore how chronic infections contribute to melanoma aggressiveness and assess the
potential of antimicrobial peptides (AMPs) as a new therapeutic approach. Methods: A systematic review was conducted
according to PRISMA 2020 guidelines, utilising academic databases (PubMed, Scopus, Web of Science, and Google
Scholar) from 2020 to 2025. Peer-reviewed studies were screened to identify microbial species linked to melanoma,
antimicrobial resistance (AMR), and the effectiveness of AMPs. Data on cytokines, immune pathways, and bioinformatics
approaches to AMP design were synthesized. Results: The review revealed that pathogens such as Staphylococcus
aureus, Pseudomonas aeruginosa, and Candida tropicalis exacerbate melanoma progression by inducing chronic
inflammation, promoting pro-inflammatory cytokines (IL-6, TNF-a), and enhancing EMT, which aids tumour invasion
and metastasis. AMR complicates treatment, particularly in immunocompromised patients. AMPs were identified as
promising agents due to their dual action: antimicrobial activity and immunomodulation. Advances in bioinformatics
and Al have facilitated the rational design of AMPs with improved specificity and reduced cytotoxicity, suggesting
potential synergy with immune checkpoint inhibitors and targeted therapies. Conclusion: Chronic microbial infections
significantly influence melanoma aggressiveness and treatment resistance. AMPs offer a promising, multifunctional
therapeutic approach, addressing infection control and tumour microenvironment modulation. Combining AMPs with
current immunotherapies may enhance melanoma management. Further research and clinical trials are needed to validate
and optimise AMP-based treatments for personalised care.
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Introduction

Cancer is one of the leading causes of death worldwide,
significantly impacting life expectancy and posing a
severe challenge to global public health. In 2020, 19.3
million new cancer cases were reported, resulting in
10 million deaths, figures that highlight the devastating
impact of this multifactorial disease [1, 2]. Besides its
high incidence, cancer imposes a substantial economic
and social burden, affecting patients, families, and
healthcare systems comprehensively [2, 3]. The origin
and development of cancer involve complex interactions
among genetic, environmental, and lifestyle factors,

contributing to the clinical heterogeneity observed across
different tumour typesl [4-6]. Among various cancer
types, skin cancers hold a prominent position as the most
frequently diagnosed globally [7, 8]. The clinical and
epidemiological characteristics of melanoma and non-
melanoma skin cancer (NMSC) are strikingly different
[3, 7-9]. Most diagnoses are because of NMSC, which
typically shows slow growth, low metastatic potential,
and an approximately 5.31% mortality rate [3,8,10].
Conversely, melanoma, which represents only 3% of
skin cancer diagnoses, is highly aggressive, with a
greater propensity for metastasis and elevated lethality,
accounting for 75% of deaths attributed to skin cancer
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[2,3,10,11-15].

There are four primary stages of melanoma, each
representing the progression of the disease [12,14-19].
Stage 0, also referred to as melanoma in situ, indicates
that the tumor is confined to the epidermis [15,16]. Stage I
is distinguished by cancer localized within the superficial
dermis [15,17]. Stage Il is characterized by a thicker tumor
that continues to be localized. Stages III and IV pertain
to lymph node involvement and metastasis to distant
organs, respectively [18-21]. This classification is directly
correlated with survival rates, which exhibit a sharp
decline from 99% in stage 0 to merely 27% in stage IV,
thereby underscoring the significance of early diagnosis
for effective treatment [2-4,15, 21-23]. Recent studies
have indicated that external factors, such as microbial
infections, significantly influence melanoma progression
[22, 24, 25]. The interaction between pathogens and the
tumor microenvironment contributes to the complexity
of the disease, thereby rendering diagnosis and treatment
more arduous [26-31]. Bacteria, including Staphylococcus
aureus, Pseudomonas aeruginosa, and Acinetobacter
baumannii, in addition to fungi such as Candida tropicalis
and Candida glabrata, are associated with the deterioration
of the tumor microenvironment, fostering chronic
inflammation, immune evasion, and DNA damage [5, 6.
14, 28, 30, 32-35]. These microbial mechanisms facilitate
tumor evolution and are linked to heightened resistance
to standard treatments [7, 8, 33, 36].

Antimicrobial resistance presents a substantial
challenge within the field of oncology, particularly for
patients who possess compromised immune systems
[34, 37-40]. The emergence of resistant microorganisms
complicates the treatment of secondary infections,
diminishes the efficacy of therapeutic interventions, and
deteriorates the prognosis for individuals with melanoma
[9, 38, 41]. The intersection of oncology and infectious
diseases highlights the necessity for comprehensive
treatment strategies that consider the influence of microbial
infections on the progression of melanoma [10, 39, 42,
43]. Additionally, a critical element within the oncological
context is the impact of malignant tumors on the process
of wound healing. Pathogenic microorganisms commonly
colonize wounds that are associated with tumors, which
can impede the healing process, exacerbate inflammation,
and heighten the risk of tumor metastasis [8, 11, 44-47].
Research indicates that pro-inflammatory cytokines,
growth factors, and microRNAs are integral to the
molecular pathways regulating wound healing and tumor
progression; consequently, the tumor microenvironment
emerges as a promising target for therapeutic intervention
[9, 46, 49-52].

Antimicrobial peptides (AMPs) demonstrate
considerable promise as a therapeutic alternative within
this context [53-55]. These naturally occurring peptides
possess immunomodulatory properties, rendering them
effective in the control of infections and the suppression
of tumors [54, 56, 57]. Their efficacy and low toxicity
designate them as ideal candidates for innovative
treatments of melanoma [12,13, 58-60]. Advancements in
bioinformatics and rational peptide design have expedited
the development of new therapies founded upon AMPs
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[59,61,62]. Through the utilization of computational tools
and artificial intelligence, it is feasible to design molecules
with high specificity and efficiency, thereby addressing
the dual threats posed by melanoma and associated
infections, as well as overcoming the limitations inherent
in traditional therapies [14-16, 63-70].

This study investigates recent advancements in
understanding the interactions between microbial
infections and melanoma, the constraints of conventional
cancer therapies, and the innovative potential of
antimicrobial peptides within integrated patient care.
By adopting an interdisciplinary approach, this research
aspires to contribute to the formulation of more effective
and safer therapeutic strategies, underscoring the
application of computational tools in the rational design
of multifunctional peptides.Ultimately, this work aims
to translate bench-to-bedside findings, paving the way
for personalized medicine approaches that leverage the
synergistic interplay between immunomodulation and
antimicrobial action to combat this aggressive malignancy.

Materials and Methods

Our review adhered to the PRISMA 2020 guidelines
[17], employing a systematic and rigorous methodology
to comprehensively examine the literature concerning the
impact of microbial infections on melanoma progression.
This examination emphasizes antimicrobial resistance
and the potential advantages of antimicrobial peptides
(AMPs) in the context of treatment. We conducted a
thorough search across various academic databases,
including PubMed, Scopus, Web of Science, Embase,
and Google Scholar, to identify relevant studies on
microbial infections and melanoma progression during the
period from 2020 to 2025. Our search strategy integrated
Boolean operators with keywords such as “melanoma
progression,” “microbial infections,” “antimicrobial
resistance,” “chronic inflammation,” “antimicrobial
peptides,” and “therapeutic design.” We focused on studies
that investigated the biological and molecular relationships
between microbial infections and cancer, along with novel
therapeutic approaches.

Clearly defined inclusion and exclusion criteria
guided the selection of studies. Only peer-reviewed
articles published in English were considered. Studies
had to investigate microbial infections in melanoma
patients or experimental models and address AMPs or
related therapeutic interventions targeting melanoma
and associated diseases. Studies unrelated to melanoma
or antimicrobial peptides, articles lacking robust
experimental or clinical data, and non-peer-reviewed
materials, such as preprints and opinion pieces, were
excluded from the review. Data extraction focused on key
variables, such as microbial species and their mechanisms
in melanoma progression, cytokines, immune pathways,
and interactions within the tumour microenvironment.
Information on therapeutic strategies involving AMPs,
bioinformatics tools, and combinatorial approaches
was also extracted. The findings were then organised
thematically to address the primary research objectives
and synthesised in a narrative format.
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A critical analysis of the methodological framework
for evaluating AMPs was conducted, focusing on the
bioinformatics tools and artificial intelligence algorithms
used in peptide design. Studies of silico methods for
enhancing peptide specificity and stability were carefully
reviewed. To ensure methodological rigour, transparency,
and reproducibility, the review strictly adhered to the
PRISMA 2020 statement. This statement includes a
27-item checklist covering a systematic review report’s
introduction, methods, results, and discussion sections.
The PRISMA 2020 guidelines are accompanied by
a flow diagram and the PRISMA 2020 Explanation
and Elaboration paper. While primarily designed for
systematic reviews evaluating health interventions, the
guidelines apply to reviews of other interventions, such
as social or educational interventions, and systematic
reviews with objectives beyond intervention evaluation,
such as assessing aetiology, prevalence, or prognosis.
PRISMA 2020 supports reviews with or without synthesis,
including those that perform pairwise meta-analyses or
review only one eligible study.

Results

The study selection process strictly adhered to
the PRISMA guidelines, ensuring transparency,
reproducibility, and quality in the inclusion of articles.
Initially, 2.186 records were identified through searches
conducted in the PubMed (n=518), Scopus (n=251),
Web of Science (n=332), Embase (n=601), and Google
Scholar (n=484) databases. After removing 879 records,
including 481 duplicates and 398 publications in
languages other than English, 1,307 records remained
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for initial screening. During the screening stage, titles and
abstracts were meticulously reviewed to identify studies
meeting the inclusion criteria. At this phase, 736 records
were excluded: 299 non-peer-reviewed materials and 437
articles that lacked robust experimental or clinical data.
Consequently, 571 reports proceeded to the eligibility
assessment stage.

During the eligibility phase, we excluded 385
records that didn’t sufficiently address the relationship
between microbial infections, antimicrobial resistance,
melanoma, or antimicrobial peptides. These exclusions
fell into two main categories: 183 studies that lacked
a significant connection to antimicrobial peptides or
microbial infections related to melanoma, and 202 studies
focusing on conditions or diseases unrelated to melanoma
progression. We then assessed the remaining articles
against strict criteria outlined in the PRISMA guidelines,
including clear objectives, robust methodology, and
relevant data. Based on this evaluation, we selected 186
articles for inclusion in the final review. This rigorous
selection process ensured a high standard of quality and
relevance for the subsequent analysis.

A PRISMA checklist ensured a systematic and
standardized approach to our analysis. The process
involved developing a search strategy, defining inclusion
and exclusion criteria, explaining the rationale for
excluding studies, and conducting a thorough data
analysis. Therefore, this approach yielded a robust and
pertinent body of research underpinning our discussions.
The complete process of identifying, screening, selecting,
and incorporating studies is illustrated in the PRISMA
flow chart (Figure 1). Subsequently, the selected studies
were categorized into four main thematic domains: chronic
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Figure 1. PRISMA Flowchart of Selected Studies
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Table 1. Distribution of Included Studies Across Thematic Domains

Domain

Key Features Synthesized

Studies Reviewed

Chronic Inflammation

IL-6, TNF-0, and TGF-f activation of JAK/STAT3 & NF-xB 52

pathways; EMT; stromal remodeling

Immune Evasion via M2 Polarization

M2 macrophage induction, IL-10, TGF-B, Treg activation, 59

suppression of CTLs and neutrophils

Biofilm Formation & Antimicrobial
Resistance

AMP Therapeutics & Bioengineering

Biofilm persistence in wounds, oxidative stress, cytokine 64
deregulation, drug resistance

Dual antimicrobial and anti-tumour functions; EMT inhibi- 50

tion, angiogenesis suppression; Al-designed AMPs

Table 1 presents the number of studies associated with each of the four analytical domains identified in the systematic review. Due to thematic
overlap among certain studies, these studies contributed to more than one domain, resulting in a total count that exceeds the 186 unique articles

analyzed.

inflammation, immune evasion via M2 macrophage
polarization, biofilm formation and antimicrobial
resistance, and AMP-based therapeutic strategies. This
classification was conducted in accordance with the
protocol registered under PROSPERO (ID: 1072729).
Notably, several studies addressed more than one domain,
resulting in a cumulative total exceeding the 186 unique
articles included in the review (Table 1).

These studies offer insights into chronic infections
and melanoma progression but have limitations.
Many rely on past data, introducing biases that affect
result interpretation. Different methods hinder direct
comparisons and limit the applicability of findings. Future
studies should be prospective, multi-centered, and follow
standard protocols to clarify cause and effect and improve
understanding. Current research often uses experimental
models, which help explain molecular mechanisms but
may not reflect real-world settings. Small sample sizes,

Main causes of
Skin Cancer

Skin Cancer Types

varied methods, and biases reduce data reliability and
replicability. This is particularly relevant for antimicrobial
peptides (AMPs), mostly in preclinical stages, limiting
clinical trial potential. Furthermore, the absence of long-
term studies and limited genetic diversity in animal models
complicate the application of findings to diverse human
populations.

Discussion

Building upon the synthesized findings from the
186 peer-reviewed studies included in this review, the
discussion explores the influence of chronic infections
on the tumour microenvironment (TME) and their
contribution to the aggressiveness of melanoma [1-16,18—
186]. The evidence has been systematically categorized
into four interrelated domains: chronic inflammation,
immune evasion through M2 macrophage polarization,
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Figure 2. Main Causes, Types, and Treatments for Skin Cancer. (A) the primary causes of skin cancer, (B) the
classification into non-melanoma and melanoma types, and (C) the available treatment options, which encompass
surgery, immunotherapy, chemotherapy, and targeted therapies. Source: The author, created using Biorender.
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Figure 3. Characteristics and Factors of Cancer. Figure 3 illustrates the defining characteristics of cancer, which
encompass unregulated proliferation, evasion of immune surveillance, resistance to apoptosis, and various factors,
including genomic instability, inflammation, and angiogenesis, that are instrumental in tumor growth and the
development of resistance to treatment. Source: The author, created using Biorender.
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Figure 4. Impact of rowth Factors on the Tumour Microenvironment and Wound Healing.Figure 4 outlines (A) key
events in the tumor microenvironment, including cell recruitment, epithelial-mesenchymal transition (EMT), angio-
genesis, and immune evasion, all driven by growth factors like transforming growth factor-beta (TGF-f) and vascular
endothelial growth factor (VEGF). (B) compares the functions of various growth factors TGF-B, epidermal growth
factor (EGF), VEGF, fibroblast growth factor (FGF), and hepatocyte growth factor (HGF) in wound healing and can-

cer.Source: Author, created using Biorender.
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Figure 5. Biofilm Life Cycle and Anti-Biofilm Therapeutic Strategies. Figure 5 illustrates the biofilm life cycle, which
encompasses adhesion, maturation, and dispersion, as well as strategies for combating biofilms. Source: The author,

created with Biorender.

health challenge, resulting in approximately 10 million
fatalities in 2020 [2, 5, 8, 13, 22-24]. This disorder is
multifactorial, characterized by uncontrolled cellular
proliferation, localized tissue invasion, and the potential
for metastasis [5, 25-28]. The pathogenesis is influenced by
a complex interplay of various factors [27, 29-31]. These
factors encompass genetic mutations, environmental
exposures, and behavioral components [26, 36-38].
Notable behavioral components include tobacco usage,
insufficient dietary habits, physical inactivity, and
exposure to ultraviolet (UV) radiation [36, 39-42]
(Figure 2). Brazil exemplifies this concern, particularly
in regions of high exposure, where melanoma stands out
as an especially lethal skin cancer [43-47]. It accounts for
over 50% of skin cancer-related fatalities, despite its lower
prevalence relative to basal cell carcinoma (BCC) and
squamous cell carcinoma (SCC) [27, 35, 37, 48-56]. The
aggressive and metastatic characteristics are pronounced
in specific subtypes of melanoma, particularly the nodular
variants [25, 38, 57-62]. Early detection and prompt
intervention are crucial, as emphasized by the following
studies [63-66].

At the molecular level, melanoma arises from
modifications in critical regulatory pathways that
govern DNA repair, cell cycle control, apoptosis, and
differentiation [67-72]. These alterations pertain to
essential mechanisms such as mismatch repair and
nucleotide excision repair involved in DNA repair [46,
52,73-77]. They also encompass cyclin-dependent kinase
activity and retinoblastoma protein function, crucial for
cell cycle progression [53, 57, 64, 78-81]. Furthermore,
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Bcl-2 family proteins and caspase activity play significant
roles in apoptosis, while MITF and melanogenesis are
fundamental for melanocyte differentiation [61, 67,
79, 82]. Such modifications may result from genetic
mutations, including BRAF, NRAS, CDKN2A, epigenetic
changes, or environmental factors [68-72, 83]. Ultimately,
these factors culminate in unregulated cellular growth,
enhanced survival, and tumor formation [73, 79, 84-86].

Mutations in tumor suppressor genes, such as
TP53, combined with disruptions in mitotic regulation,
significantly contribute to genomic instability, therapeutic
resistance, and phenotypic heterogeneity [52, 59, 75, 82-
87]. This fundamental instability drives tumor evolution,
resulting in aggressive subclones’ emergence and
ultimately limiting targeted therapies’ efficacy [88-93].
Therefore, understanding the intricate interplay between
these genetic and regulatory defects is essential for
developing more effective cancer treatments [90,92,94-
98]. Additionally, the tumor microenvironment (TME)
exacerbates these issues by facilitating angiogenesis
through vascular endothelial growth factor (VEGF), while
concurrently suppressing immune responses [60, 96, 99-
104]. Furthermore, it promotes epithelial-mesenchymal
transition (EMT), influenced by stromal components and
pro-inflammatory cytokines [105-109].

These mechanisms and emerging hallmarks, such
as tumor-promoting inflammation and metabolic
reprogramming, furnish critical insights into the
progression of melanoma and its therapeutic resistance
(Figure 3) [62, 72, 77, 110-115]. The Warburg effect
represents a metabolic hallmark characterized by an



increased glucose uptake and lactate production, even
in the presence of oxygen [100, 112, 114, 116-120].
This phenomenon enables melanoma cells to proliferate
more rapidly and evade immune surveillance, thereby
contributing to their progression and resistance to targeted
therapies [95, 121-125]. Furthermore, deficiencies in
apoptotic signaling and necrotic cell death promote
chronic inflammation, facilitating immune evasion and
metastasis [126-129].

Significant advancements have been achieved in
immunotherapies, particularly through the development
of checkpoint inhibitors [124, 127, 130-135]. These
inhibitors activate the body’s intrinsic immune system to
combat cancer [136-138]. Another notable development
is represented by CAR T-cell therapies, which involve
the genetic engineering of immune cells specifically
to target cancer cells [123, 139, 140]. Furthermore,
oncolytic viruses have been engineered to selectively
infect and destroy cancer cells while concurrently
stimulating anti-tumor immune responses [132, 138,
140-144]. Such therapies offer new hope for individuals
suffering from previously untreatable cancers [122, 138,
142, 145]. Nevertheless, challenges remain regarding
side effects, efficacy across certain cancer types, and
financial implications [144,146]. These advancements
include checkpoint inhibitors, such as nivolumab and
pembrolizumab, and targeted therapies, like vemurafenib
for BRAF mutations [140, 144,146-148]. For instance,
immunotherapy and targeted therapy have significantly
improved survival rates in patients with advanced
melanoma [147, 150-152].

Nonetheless, the challenges associated with treatment
resistance and adverse effects remain significant [145,
150, 153-156]. Antimicrobial Peptides (AMPs) emerge as
innovative therapeutic options that offer dual advantages:
they exhibit antimicrobial properties and possess the
ability to modulate the immune system within the tumor
microenvironment (TME) [102,104,149,157-161]. For
instance, research has demonstrated that AMPs inhibit
critical processes in melanoma progression, including
epithelial-mesenchymal transition (EMT), angiogenesis,
and immune suppression [96, 103, 110, 162, 163]. Due
to their combined antimicrobial and immune-modulating
capabilities within the TME, AMPs are increasingly
regarded as promising new therapies for melanoma
treatment [ 164-170]. This dual benefit positions AMPs as
attractive candidates for overcoming treatment resistance
and mitigating the adverse effects associated with existing
melanoma therapies [171-176].

Advances in bioinformatics and artificial intelligence
(AI) have significantly contributed to the development
of AMPs that exhibit enhanced stability and specificity
for the treatment of cancer [177-180]. By integrating
innovative technologies such as photodynamic therapy,
liposomal drug delivery, Al-assisted diagnostics, and
teledermatology, we have significantly improved access
to diagnostic and treatment services, particularly in
regions that require them the most [166, 181-186]. The
COVID-19 pandemic has exacerbated global disparities
in cancer care, resulting in delays in melanoma diagnoses
and underscoring the urgent need for more inclusive
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public health policies [33, 40, 55, 74, 102, 107]. To
reduce mortality rates and enhance patient outcomes,
we are developing early detection strategies, including
the ABCDE rule, alongside comprehensive educational
campaigns [40, 51, 62, 76, 81, 99, 108].

Chronic Inflammation and Pro-Tumour Signaling

Researchers have investigated the impact of
chronic infections on the development of a long-term
inflammatory environment that promotes melanoma
growth, as evidenced by 52 studies. These investigations
underscore chronic inflammation as a pivotal factor in
tumor development. Furthermore, 24 studies concentrated
on the role of microbial persistence, particularly from
S. aureus, C. tropicalis, and P. aeruginosa, in impairing
wound healing and exacerbating tumor aggressiveness
[5,6,59,95,104, 106, 116, 120, 121].

These infections disrupt the body’s immune
equilibrium and initiate signaling pathways that
facilitate tumor growth, angiogenesis, and the immune
system’s failure to detect and eliminate the tumor [60,
106-109,120]. Antimicrobial peptides (AMPs), which
are released by skin cells through the activation of Toll-
like receptors TLR2 and TLR3, serve a crucial defensive
function by activating TNF-a signaling and modulating
immune cell activity [118, 122, 136]. However, when
microbial colonization endures, this protective mechanism
deteriorates, permitting tumor cells to thrive in an
environment that fosters inflammation and undermines
the immune system [25,105,137]. Chronic infections
disturb the immune system’s fragile balance, promoting
tumor growth through various mechanisms [110,121,124].
Inflammatory signaling pathways activated by the
infection stimulate tumor proliferation, angiogenesis, and
immune evasion [125-129]. Initially, AMPs released by
skin cells assist in combating the microbes and managing
immune responses [126,128]. Nonetheless, an extended
infection overwhelms this defense, resulting in a sustained
inflammatory state that suppresses immune function and
ultimately fosters tumor development [95, 127, 134,
135]. Consequently, the ensuing environment becomes
favorable for tumor growth and survival [105, 108, 110,
113, 134].

Long-term infections enhance the levels of specific
proteins, including /L-6, TNF-a, and TGF-B, which
activate crucial pathways that facilitate tumor growth,
such as JAK/STAT3 and NF-«xB [95, 104, 106, 119, 121].
When IL-6 engages STAT3, it aids in the survival of
tumor cells, while TNF-a and NF-«B signaling promote
the epithelial-mesenchymal transition (EMT) and sustain
chronic inflammation [10, 25, 107, 125, 128]. Although
TGF-B is instrumental in wound healing, it contributes to
chemotherapy resistance, the invasion of adjacent tissues,
and the suppression of the immune system within tumors
[105, 120, 125, 130, 136]. Growth factors essential for
regular tissue repair, such as EGF, FGF, HGF, and VEGF,
are utilized by tumor cells to support angiogenesis,
maintain cancer stem cell niches, and evade apoptosis
[42,45-106,130,137-139].

Chronic wounds frequently exhibit microbial activity
and overproduction of proteases, which degrade growth
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factors and impede healing. This phenomenon may also
facilitate tumor adaptation [42,81,95,113,115,129,135].
Infections caused by S. aureus, C. tropicalis, P. aeruginosa,
A. baumannii, and C. glabrata commonly result in
the formation of biofilms within melanoma lesions
[59,106,114,126,128,132]. These polymicrobial biofilms
provide secure environments for pathogens, enhance
antibiotic resistance, and exacerbate inflammation by
continuously releasing molecular patterns associated with
pathogens [95, 116,120,123,138]. Furthermore, microbial
byproducts such as N-nitrosamines have the potential
to induce DNA damage, thereby contributing directly
to mutations and the development of cancer [139,140].
Prolonged infections also compromise the functionality
of neutrophils and macrophages, critical immune cells for
tissue repair, resulting in diminished phagocytic activity
and increased tumor tolerance [114,116,126,137,140].

As chronic inflammation persists, the tumor
microenvironment in melanoma gradually evolves into
a more immunosuppressive state [95,113,115,131].
Prolonged exposure to antigens culminates in the
exhaustion of CD8+ T cells, while microbial enzymes
hinder antigen presentation and attenuate innate
immune responses [128.133]. Continuous microbial
activation also desensitizes protective Toll-like
receptor signaling, undermining immune surveillance
[35,52,59,91,117,125,127-132]. These mechanisms
synergistically interact with tumor-derived signals to
diminish anti-tumor immunity and facilitate metastasis
[10,67,120,122,126,130,134]. In clinical practice,
melanoma lesions, particularly those characterized by
ulceration or vegetation, frequently acquire secondary
infections, especially in patients possessing compromised
immune systems undergoing chemotherapy or receiving
broad-spectrum antibiotics [35,72,99,104,112,132-135].

Considering the complex relationship between
factors, therapies that tackle both the inflammatory and
microbial aspects of melanoma are gaining importance
[23,45,59,106,112,120,136]. For instance, regulating
IL-6 and TNF-a signaling may help reduce angiogenesis
and EMT [121,123,129,137]. Meanwhile, antimicrobial
strategies focused on biofilms could improve immune
response and boost drug effectiveness [125,128,138].
Additionally, treatments aimed at preserving macrophage
and neutrophil function, or increasing AMP production,
may help restore immune control over infections and
tumor growth [117,123,130,134,139]. Future studies
should focus on comprehensive approaches that view
infection-driven inflammation as a secondary and primary
target for treating melanoma.

Immune Evasion via M2 Macrophage Polarization
Suppressing the immune system is a well-known
result of long-term infections within the melanoma tumor
microenvironment (TME) [53,106,108,109,115,137-142].
Over 40 studies have shown that microbial pathogens,
especially C. glabrata, C. tropicalis, and S. aureus,
lead to tumor-associated macrophages (TAMs) being
polarized towards the M2 Macrophage [116,126,143-
150]. This M2 phenotype is marked by the release of
IL-10, TGF-B, and other immunosuppressive chemicals
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[116,127,132,141,148,151-156]. These M2 macrophages,
working together with regulatory T cells (Tregs), play a
key role in weakening the immune system’s ability to
fight cancer, allowing the tumor to progress more easily
(Figure 4)[110,113,129-131,1501,157]. This is especially
important in people with weakened immune systems,
such as those living with HIV/AIDS or undergoing
cancer treatment, where infections can worsen the
immune dysfunction and lead to more aggressive forms
of melanoma [18,104,116,132-136,158].

Chronic infections compromise the immune system’s
integrity and impair its inherent recognition mechanisms
[109,124,130,137,159]. Research indicates that such
infections influence Toll-like receptor (TLR) signaling,
diminishing the body’s capacity to combat tumors and
facilitating the evasion of cancer cells from immune
detection [102,131,145,162-167]. This perturbation of
immune pathways allows for unregulated proliferation
of melanoma cells, frequently in conjunction with
genetic mutations [110,131165,166,168-170]. These
mutations may encompass alterations in the PTEN gene,
present in 10-20% of primary melanomas, which disrupt
cellular cycle regulation and foster cancer advancement
[101,102,132,145,168-171]. Furthermore, persistent
bacterial or viral infections, such as those instigated by
Helicobacter pylori or Epstein-Barr virus, are associated
with the sustained release of pro-inflammatory cytokines,
specifically IL-6 and TNF-q, which further expedite cancer
proliferation, angiogenesis, and immune suppression
[53,104,126,135,145,165,168,172-174].

Specific fungal pathogens, such as C. tropicalis and
C. glabrata, considerably impact the immune responses
of cancer patients [128-134,154,175]. Notably, C.
glabrata is recognized for its heightened resistance to
antifungal treatments, capacity to form biofilms, and
production of enzymes that modulate the immune system
[112,126,135,136,169,176]. Proteases and hemolysins are
crucial in altering macrophages and activating regulatory
T cells [109,110,114,119,170-174,177]. Similarly, C.
tropicalis has been linked to systemic and skin infections
in individuals with compromised immune systems,
exacerbating inflammation and increasing the risk of
cancer through mechanisms that facilitate uncontrolled
cell proliferation and instability [111,115,116,126-
129,175,178]. Furthermore, these species synthesize
substances that foster the growth of blood vessels and the
transformation of epithelial cells into mesenchymal cells
critical processes in the dissemination of melanoma and
the development of resistance to treatments [71,87,95,99
,106,118,131,176,179].

Aside from fungal infections, bacterial pathogens such
as S. aureus and S. epidermidis also play a considerable
role in disease progression [59,82,95,106,114,121,132
,141,165]. Staphylococcus aureus produces toxins and
virulence factors that lead to excessive inflammation and
initiate the release of cytokines, including interleukin-1
beta (IL-1pB), interleukin-6 (IL-6), and tumor necrosis
factor alpha (TNF-a) [74,79,81,85,93,95,100,103,11
2,119]. These cytokines facilitate tumor cell invasion
and stromal degradation [80,97,108,112,115,119,132,
166]. Although S. epidermidis is deemed less virulent,



it frequently forms biofilms in immunosuppressed
patients, contributing to persistent inflammation and
resistance to treatment [80,81,97,109,145,154]. Such
interactions considerably impede the clinical management
of melanoma, underscoring the necessity for therapies
that target both infection and tumor progression
[85,88,120,138,161].

Infections may collaborate with pre-
existing cancer-promoting pathways
[22,39,52,64,71,85,107,116,119,132,157,159,165,167-
170]. Prolonged immune suppression, DNA damage,
and persistent inflammation have the potential to
interact with environmental carcinogenic factors
such as ultraviolet (UV) radiation, tobacco use, and
obesity, thereby facilitating the development of cancer
[87,93,105,125,129]. Cancer progression occurs through
three phases: initiation, promotion, and progression, which
may be affected by microbial activity [78,81,99,102,116,1
18,121,156,162]. In low- and middle-income nations, up
to 25% of cancers are associated with chronic infections,
emphasizing their global significance as biological triggers
for cancer [67,69,93,121,125,132,150,165]. This insight
underscores the need for integrated strategies combining
antimicrobial control with immunomodulation to impede
melanoma progression and enhance patient outcomes
[74,81,94,96,107,120,144,161].

Invisible Barriers: Biofilms in Melanoma-Linked Chronic
Infections

According to the World Health Organization’s (WHO)
2024 global priority list, addressing these pathogens
requires advancing research on novel antimicrobials
[18,20,21,37,63]. Additionally, this endeavor involves
establishing comprehensive infection control programs
and promoting the responsible use of existing medications
[68,72,89,95,100,130]. Among fungal pathogens, the
increasing resistance observed in Candida species—
primarily C. albicans and C. tropicalis—demands rigorous
monitoring and the development of new antifungal agents
[24,102,137,158,161,165-169].

The ESKAPE group, consisting of Enterococcus
faecium, Staphylococcus aureus, Klebsiella pneumoniae,
Acinetobacter baumannii, Pseudomonas aeruginosa, and
Enterobacter species, represents a significant threat to
global public health due to their remarkable capacity
to develop and disseminate resistance mechanisms
[20,25,81,96,108,138,143,156]. Numerous pathogens
in this group resist last-resort antibiotics such as
carbapenems and polymyxins [39,44,109,126,132,143,15
0,157]. Furthermore, these pathogens frequently exchange
resistance elements through horizontal transfer, resulting
in ongoing infections and outbreaks in healthcare settings
[82,132,151,154,158-161].

Antimicrobial resistance (AMR) among melanoma
patients, particularly those with compromised
immune systems, presents significant implications
[98,102,138,143,145]. The concurrent infection of chronic
wounds by resistant bacteria, such as methicillin-resistant
S. aureus (MRSA), C. glabrata, and other ESKAPE
pathogens, exacerbates patient outcomes and complicates
cancer treatment [21,78,132,158-162]. For instance, C.
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glabrata possesses intrinsic resistance to azole antifungals,
including fluconazole, which constrains treatment
options and heightens the risk of therapeutic failure
[93,122,152,170]. Moreover, infections may instigate
intensified inflammatory responses, diminish patients’
capacity to endure chemotherapy and immunotherapy,
and potentially contribute to prolonged hospitalizations
[74,80,169-172].

The formation of biofilms represents a critical factor
in the persistence and resistance of microbial infections,
particularly in chronic wounds and cancerous lesions,
as evidenced in patients diagnosed with melanoma
(Figure 5) [25,36,40,173-175]. A comprehensive review
of 35 studies has determined that biofilms produced by
Pseudomonas aeruginosa, Acinetobacter baumannii, and
various species of Candida are prevalent in melanoma-
related wounds [122,136,159,173-177]. These biofilms
function as physical and biochemical barriers that
impede the ingress of therapeutic agents and provide a
protective shield for microbes against the host’s immune
response [8,147,155,165,174,176,178]. Consequently,
this phenomenon substantially contributes to treatment
failures, extended periods of local inflammation, and
necrosis of tissues [24,63,74,89,95,98,106,122,150,168
,171].

Biofilms comprise densely aggregated microbial cells
enveloped by a self-generated extracellular polymeric
substance (EPS) matrix [167,169,170]. This matrix
comprises polysaccharides, extracellular DNA (eDNA),
proteins, and lipids [163,164,168]. It provides structural
stability to the biofilm while obstructing the penetration
of antimicrobial agents, thereby reducing their efficacy
[91,103,159,163,167,170]. The development of biofilms
transpires through several stages: (1) the reversible
attachment of planktonic cells, (2) the acquisition of
irreversible attachment mediated by adhesins and pili,
(3) maturation through the accumulation of EPS and the
formation of a complex structure, and (4) disintegration,
which allows sessile cells to revert to a planktonic state,
consequently enabling them to colonize new environments
[89,90,98,115,123,134,164,158-175].

Polymicrobial biofilms, particularly those formed by P.
aeruginosa, A. baumannii, C. albicans, and C. tropicalis,
possess significant clinical relevance due to their collective
virulence and resilience [94,115,135,159,172,176]. The
intricate structure of these biofilms enhances resistance
through various mechanisms, including the overproduction
of extracellular polymeric substances (EPS), quorum
sensing (QS), and cyclic-di-GMP signaling pathways
[76, 85-87, 91-93,165,173]. These characteristics are
especially pronounced in Pseudomonas aeruginosa,
where internal signaling molecules meticulously regulate
biofilm development [102,142,149,165,174]. This process
facilitates the transition from planktonic to sessile growth
forms, amplifies EPS production, and governs virulence
gene expression [89, 95, 98,143,165,177].

Quorum sensing (QS) systems are essential for
regulating the formation and resistance of biofilms
[95,103,153,160]. These systems function by synthesizing
and detecting signaling molecules, which include
acyl-homoserine lactones (AHLs) in Gram-negative
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bacteria and auto-inducing peptides in Gram-positive
species [86,96,132,150,176]. Both types of signaling
molecules play a critical role in coordinating collective
behavior that is contingent upon population density
[86,95,96,102,132,148,151]. In the case of Pseudomonas
aeruginosa, the Las and Rhl QS circuits govern the
expression of genes that are involved in the production of
extracellular polymeric substances (EPS), virulence, and
biofilm architecture [89, 97,144,163,170]. Concurrently,
cyclic-di-GMP functions as a second messenger that
facilitates the transition between motile and sessile
lifestyles [93,98,144,164,170,175]. Elevated levels of
cyclic-di-GMP activate diguanylate cyclases (DGCs),
thereby promoting biofilm formation. Conversely,
phosphodiesterases (PDEs) diminish their concentration,
resulting in dispersion [90, 97-99,144,170-177].

A significant characteristic of biofilm resistance is
its metabolic diversity [126,152,177]. Bacteria located
within the inner layers of a biofilm frequently exhibit
diminished metabolic activity as a result of restricted
nutrient and oxygen availability, rendering them less
susceptible to antibiotics that target rapidly proliferating
cells [92-94,149,155,165,169-177]. Furthermore,
the biofilm environment facilitates horizontal gene
transfer (HGT), which accelerates the dissemination
of antibiotic resistance genes and contributes to the
emergence of multidrug-resistant (MDR) strains [93,
94,155,171,176,178]. Biofilms are pivotal in chronic
infections and pose challenges to treatment methodologies
[82,97,99,120,171,179]. It is noteworthy that P. acruginosa
is recognized for forming persistent lung biofilms in
individuals with cystic fibrosis, whereas A. baumannii
is associated with biofilms on medical equipment
and hospital surfaces, exacerbating hospital-acquired
infections [76,97,99.143,172,175,178]. Fungal biofilms,
particularly those formed by C. albicans and C. tropicalis,
are linked to device-related infections and demonstrate
inherent resistance to conventional antifungal therapies,
such as azole compounds [99,171,173].

Researchers are currently engaged in the development
of innovative therapies aimed at addressing these
challenges [96,150,158,176]. Among these approaches are
the utilization of enzymes that decompose exopolymeric
substances (EPS), antimicrobial peptides, nanoparticles
designed for drug delivery, and monoclonal antibodies
that specifically target elements of biofilms or signaling
molecules [20,27,42,66,89,95,100,143,172,178]. The
integration of these targeted therapies with traditional
antibiotics exhibits considerable potential for combating
resistance induced by biofilms [97-101,124,143]. The
correlation between biofilm formation and antimicrobial
resistance presents a significant obstacle [5,9,13,25,37,58
,101,124,139,165]. This issue is particularly pertinent for
the management of infections in patients suffering from
melanoma and other immunocompromised conditions
[52,58,102,124,152,165,167]. A comprehensive strategy
is essential for mitigating biofilm-associated infections
[162,165,169-174]. Such a strategy encompasses
early diagnosis, innovative treatment modalities, and
stringent infection control measures, all of which address
the pressing global issue of antimicrobial resistance
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[24,100,175].

Dual-Action Antimicrobial Peptides: Design,
Immunomodulation, and Applications in Melanoma

Antimicrobial peptides (AMPs) have emerged
as promising therapeutic agents possessing both
antimicrobial and antitumor properties, particularly
in the management of melanoma and its associated
complications [47,84,94,118,134,176]. These peptides are
generally comprised of short sequences of amino acids
characterized by amphipathic structures, which facilitate
rapid interaction with bacterial membranes leading to
destabilization and cellular lysis [7,118,134,177]. In terms
of structure, AMPs are categorized into cationic, neutral,
or cyclic peptides [47,84,118,176,178]. Cyclic variants
exhibit significantly greater resistance to enzymatic
degradation, attributable to the stabilization conferred by
disulfide bonds [98,118,134,169,178].

AMPs demonstrate broad efficacy against multidrug-
resistant pathogens, including S. aureus, P. aeruginosa, and
Candida species [119,129,171,179]. This characteristic
renders them particularly advantageous for the treatment
of secondary infections associated with melanoma-related
wounds [13,47,76,81,119,180]. The thirty-eight studies
reviewed emphasized AMPs such as LL-37, melittin,
and lactoferricin B (LfcinB) due to their dual-action
properties [25,107,132,177,181]. These molecules exhibit
selective cytotoxicity towards melanoma cells, disrupt
microbial membranes, and modulate immune responses
[5,7,171,182]. Furthermore, they inhibit critical processes
that facilitate cancer progression, including epithelial—
mesenchymal transition (EMT), angiogenesis, and the
release of pro-inflammatory cytokines [151,159,172].
Examples of these cytokines encompass interleukin-6
(IL-6) and tumor necrosis factor-alpha (TNF-a), which are
frequently elevated within melanoma microenvironments
[89,143,151,159,170,183].

Therapies based on peptides have garnered considerable
attention in the treatment of cancer, as anticancer peptides
(ACPs) have demonstrated the capacity to trigger apoptosis,
inhibit tumor proliferation, and modify the immune
microenvironment surrounding tumors [151,172,184].
In particular, melittin analogs and LfcinB have exhibited
the ability to selectively target and eliminate melanoma
cells while preserving healthy tissue [14,136,176,179].
These peptides possess dual functionalities, being effective
in tumor cytotoxicity as well as combating infections
[177-181]. Consequently, they are regarded as promising
candidates for integrated therapeutic approaches in the
management of melanoma [141,165,180,183]. Melanoma
frequently presents in conjunction with chronic wounds
or infections in individuals with compromised immune
systems [76,118,141,156,180,185].

Recent advancements in bioinformatics and artificial
intelligence (Al) have substantially accelerated the rational
design of antimicrobial peptides (AMPs) [179,183-186].
This development enhances the prediction of peptide—
target interactions, resistance to proteolytic degradation,
and minimizes cytotoxicity to host cells [182,184]. A total
of twelve studies have concentrated on the development
of Al-assisted AMPs, employing methodologies such as



structure—activity modeling and molecular docking to
improve therapeutic selectivity and refine physicochemical
properties [181,183,185,186]. Furthermore, de novo-
designed and bioinspired synthetic peptides are being
meticulously customized for heightened specificity
and stability, addressing critical challenges concerning
production costs and degradation [163,178,180,182].

The integration of AMPs with conventional or targeted
therapies for melanoma has demonstrated considerable
potential for synergistic effects [161,173,179]. Initial
investigations indicate that the combination of AMPs
with immune checkpoint inhibitors has resulted in
enhanced antitumor efficacy and improved management
of infections [126,129,182]. Notable immune checkpoint
inhibitors encompass pembrolizumab and nivolumab
[132,181]. Furthermore, targeted therapies such as the
BRAF inhibitor vemurafenib and the MEK inhibitor
cobimetinib significantly contribute to these therapeutic
outcomes [109,127,145,154]. This multifaceted approach
addresses both the progression of cancer and infection-
related complications, a factor of particular importance
for patients with compromised immune systems receiving
treatment for melanoma [51,59,62,77,171,184].

Demonstrating substantial potential exceeding
direct cytotoxic effects, AMPs are recognized primarily
for their involvement in immunomodulation. This
encompasses the capability to reverse tumor-induced
immunosuppression and enhance antigen presentation
[134,148]. Research indicates that AMPs can modulate
cytokine profiles and facilitate T-cell-mediated immune
responses, thereby promoting a more effective anti-tumor
immune environment [10,136,143,152,169]. Furthermore,
advancements in nanotechnology have expanded the
therapeutic applications of AMPs [179,182,184]. Through
the encapsulation of peptides within nanoparticles,
researchers can augment stability and bioavailability while
simultaneously enabling targeted delivery [170,183,186].
Significant innovations include nanoformulations
developed for AMP-based vaccines and drug delivery
systems specifically aimed at melanoma treatment
[158,171,183]. These delivery mechanisms reduce
systemic toxicity and enhance the concentration of
pharmaceuticals at tumor or infection sites [ 134,181-186].

In the management of wounds for patients suffering
from melanoma, AMPs assume a foundational role,
given that infections and ulcerations frequently arise due
to tumor necrosis and complications associated with the
immune system [115,132,148,165]. Silver sulfadiazine
is acknowledged for its antimicrobial and antitumor
properties and has been utilized for the topical treatment
of wounds [116]. However, the risk of hypersensitivity
necessitates a cautious approach [116,157]. Alternative
agents, such as metronidazole, have significantly
reduced the prevalence of anaerobic bacteria and the
resultant odor, thereby improving wound hygiene and
the quality of life for those affected [137,152,156,162].
Moreover, methodologies such as papain-based enzymatic
debridement, ointments containing vitamins A and D,
and activated charcoal provide supplementary benefits
in promoting wound healing and infection control
[86,104,171,174].
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When fungal infections manifest in individuals
diagnosed with melanoma, particularly those attributable
to C. tropicalis and C. glabrata, management becomes
particularly challenging due to resistance to azole
antifungal agents such as fluconazole [122,138,144].
For the effective treatment of these infections, medical
practitioners frequently employ echinocandins
(including caspofungin) and combination therapies
[53,76,114,164,172]. To avert the occurrence of these
infections, it is imperative to uphold rigorous hygiene
practices, facilitate prompt diagnosis, and manage risk
factors such as diabetes and the excessive utilization of
antibiotics [42,57,74,104,149,170,175].

Therapies for metastatic melanoma, including
checkpoint blockade, chemotherapy, and targeted kinase
inhibitors, could benefit from combinations with AMPs
to enhance outcomes and reduce resistance [10,11,58,7
4,85,109,132,144,169,181]. For example, conjugating
AMPs with monoclonal antibodies like nivolumab and
ipilimumab may boost the immune response, allowing
for lower dosages of cytotoxic agents and minimizing
side effects [27,28,48,176,181]. AMPs show promise as
therapeutics providing multiple advantages in melanoma
treatment [133,141]. Their antimicrobial properties,
immunomodulatory effects, and cytotoxic capabilities
make them strong adjuncts to existing therapies
[144,156,168,172]. These traits work synergistically with
advanced peptide design and delivery systems to tackle
tumor growth and infection [142,154,171,180,186]. Future
research should focus on integrating these treatments into
clinical practice, using artificial intelligence to identify
more effective peptides, and conducting combination
trials to validate their dual-action efficacy in real-world
oncology [10,123,129,143,179,185,186].

Critical View Section

This review provides an analysis of microbial
infections and melanoma progression; however, several
limitations are present. A primary concern pertains to
the influence of language restrictions on the results; the
exclusive focus on English publications may have resulted
in the omission of relevant research published in other
languages, thereby affecting the comprehensiveness of
the findings. The majority of the studies included in
this review are preclinical or experimental in nature,
which limits their applicability to clinical practice with
human patients. While preclinical research is essential
for comprehending underlying pathways, the absence
of large-scale clinical trials suggests that the therapeutic
potential of antimicrobial peptides (AMPs) for melanoma
remains unverified in human subjects.

Another major limitation is clear in the scope of
the therapeutic strategies being discussed. Although
antimicrobial peptides (AMPs) show promise as dual
agents for controlling infections and suppressing tumors,
there’s a lack of data on their long-term effectiveness,
safety, and potential for clinical use. Many studies focus
mainly on single-agent therapies, while the potential for
AMPs to work together with other treatments, such as
immunotherapies and chemotherapy, hasn’t been fully
explored. Furthermore, the review doesn’t adequately
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address the broader challenges of translating AMPs into
clinical use, including issues like peptide stability, targeted
delivery methods, and patient-specific differences, all of
which are key to determining whether a treatment will
work.

Future research needs to focus on large-scale
clinical trials to validate the effectiveness and safety of
antimicrobial peptides (AMPs) for melanoma patients.
These studies should include diverse populations and
various stages of melanoma to confirm the findings can
be applied broadly. Exploring combination therapies that
combine AMPs with existing immunotherapies could
reveal synergistic effects that boost tumor suppression.
Advances in computational peptide design should also
be used to improve the stability, specificity, and targeted
delivery of AMPs to tumor sites. Long-term studies on
the lasting impact of AMP-based treatments will help
overcome the current barriers to clinical use.

This review synthesizes findings from microbiology,
immunology, and oncology to offer a comprehensive
perspective on the interrelationship between infection,
inflammation, and the progression of melanoma. However,
further research is essential to bridge the existing
knowledge gaps and to translate experimental findings
into clinically viable therapies.

Overall Insights

The intersection of microbial infections and melanoma
progression emphasizes the urgent need for integrated,
multidisciplinary therapeutic strategies. Chronic
inflammation, immune evasion, and biofilm formation
are highlighted in this study as key factors driving tumor
malignancy, confirming the complex interplay between
infection and melanoma. Antimicrobial peptides (AMPs)
emerge as promising bifunctional agents, offering the
potential for infection control and directly suppressing
tumor growth. Targeted and more effective therapies
can be developed by harnessing advancements in
computational design and bioinformatics, ultimately
improving clinical outcomes for melanoma patients. To
fully realize the potential of AMPs, future research should
focus on optimizing peptide stability, refining delivery
mechanisms, and ensuring seamless clinical integration.
Exploring the synergistic effects of AMPs with other
therapeutic modalities and investigating their long-term
safety and efficacy will be crucial to overcoming current
therapeutic limitations. These efforts will pave the way for
more effective treatments, thereby enhancing the prospects
for melanoma patients in the near future. This review
offers novel insights into the interplay between microbial
infections and melanoma progression, particularly
highlighting the therapeutic potential of antimicrobial
peptides (AMPs) as dual agents for infection control and
tumor suppression.
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