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Introduction

Cancer is one of the diseases with the second highest 
death rate in the world with 8.97 million deaths after 
ischemic heart disease and is expected to continue to 
increase. The number of cancer cases recorded is almost 
20 million new cases in 2022 and 9.7 million deaths due 
to cancer worldwide, this figure has increased from the 
previous year which was 18 million cases in 2018 and 
continuing to increase every year. 

In the last few decades, several combinations of 
therapies have been suggested and are currently used 
to treat various types of cancer [1]. Chemotherapy and 
conventional radiotherapy are now widely utilized, 
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which were not common a few years ago [2]. Although 
chemotherapy and radiotherapy are the primary treatments 
for cancer, their effectiveness and application are often 
hindered by severe side effects [3].These side effects 
directly reduce patients’ quality of life and may also lead 
to long-term complications in cancer survivor [4], [5]. 

Gene therapy is a cutting-edge treatment method 
that involves introducing new genes into cancerous 
cells or surrounding tissues to induce cell death or slow 
the progression of cancer [6, 7], This therapy works by 
focusing on genetic modifications that interfere with the 
cellular mechanisms responsible for the rapid growth 
and division of these cancer cells [8]. By disrupting 
these processes, gene therapy has the potential to directly 
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eliminate cancer cells while simultaneously suppressing 
their ability to survive and thrive within the body [9].

This therapy can be implemented using both viral and 
non-viral methods. Non-viral approaches offer significant 
advantages in terms of safety and avoiding immune 
reactions despite being less commonly used than viral 
vectors [7]. Viruses are most commonly used vector 
for gene therapy, utilizing native or modified viruses to 
trigger an anti-cancer response where these are known as 
virotherapy [10]. The main reason for using a virus as a 
vector for gene delivery is to take advantage of its natural 
ability to infect cells and effectively transport the desired 
genetic material into host cells [11, 12]. These viruses 
include retrovirus, adenovirus, and adeno-associated virus 
(AAV) [13]. The use of viral groups such as retroviruses, 
adenoviruses, and adeno-associated viruses (AAVs) as 
virotherapy agents is well-founded. These three types 
of viruses possess key characteristics that support their 
effectiveness in virotherapy, including high transduction 
efficiency, large gene packaging capacities, the ability 
to integrate into the host genome, and relatively low 
immunogenicity [14-16]. These features make them ideal 
candidates for the efficient and targeted delivery of genetic 
material to cancer cells. Moreover, the selection of these 
viral vectors is further supported by clinical trial data. 
According to the Wiley Gene Therapy Trials Database, 
adenoviruses, lentiviruses (a subclass of retroviruses), and 
AAVs are the most commonly used viral vectors in gene 
therapy clinical trials, accounting for approximately 50%, 
28%, and 22% of all trials, respectively [17].

However, despite the numerous approaches that have 
been explored, there remains uncertainty regarding which 
method is the most effective Consequently, this article 
was developed as a review to compare the effectiveness 
of different viruses in virotherapy for cancer treatment. 
By evaluating their capacities, efficiency transductions, 
structures, mechanisms, cell lines, advantages and 
disadvantages, conclusions can be drawn about which 
viruses have the greatest potential for use as gene delivery 
agents in cancer therapy.

Materials and Methods

The methodology employed in this article consists 
of a comprehensive literature review and qualitative 
content analysis. The literature review focuses on 
gathering and synthesizing relevant information from 
more than 85 scientific articles published between 2016 
and 2024, sourced from reputable databases, including 
ScienceDirect, PubMed, Scopus, and Nature. The 
qualitative content analysis was conducted to identify 
patterns, themes, and insights relevant to the research 
topic, ensuring a thorough and systematic evaluation of 
the available data.

Results

The review evaluates Retroviruses, Adenoviruses 
(AdVs), and Adeno-Associated Viruses (AAVs) as viral 
vectors in virotherapy, comparing their safety, transduction 
efficiency, and clinical trial outcomes. Retroviruses exhibit 
moderate transduction efficiency, ranging from 40% to 
60%, and their ability to integrate into the host genome 
ensures stable, long-term gene expression. However, 
retroviruses can only infect dividing cells and carry 
risks of insertional mutagenesis, limiting their safety. In 
clinical trials, retroviral vectors demonstrated therapeutic 
potential, such as significant tumor size reduction in 
osteosarcoma, but their application is hindered by 
production challenges and receptor dependency.

Adenoviruses, in contrast, deliver genetic material 
without integrating into the host genome, enabling 
temporary but effective gene expression. With transduction 
efficiency reaching up to 98% in hepatocellular carcinoma 
and around 70–80% in other cancers, Adenoviruses 
outperform retroviruses in efficiency. They can infect 
both dividing and non-dividing cells and offer a large 
gene capacity (37 kb), making them suitable for delivering 
complex therapeutic genes. Clinical trials in pancreatic 
cancer reported an overall response rate (ORR) of 50%, 
with manageable side effects, supporting AdVs as effective 

Figure 1. Types of Gene Therapy [99]​ 
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abnormal genes contributing to specific diseases in gene 
therapy [20]. However, a significant challenge in this 
process is the efficient insertion of these genes into stem 
cells. To address this challenge, molecular carriers known 
as “vectors” are utilized for gene transfer [21, 22].

Virus Vector-Based Delivery 
Virus vector is a modification of a virus that is used 

to deliver genetic material or a target gene into a host 
cell [23]. Genetic modification for virotherapy aims to 
create oncolytic viruses that can specifically attack cancer 
cells without harming normal cells [24]. This process 
involves several important steps, such as deleting or 
modifying the virus genes that usually cause disease [25, 
26]. In virotherapy, several viruses are commonly used 
and modified as therapeutic agents, primarily for gene 
delivery in cancer therapy. These vectors are integrated 
into the DNA of the host cell and express the genes they 
carry. Viruses can express their genes efficiently in host 
cells, making them very suitable as delivery vectors 
(as shown in Figure 2) [23]. One of the parameters to 
determine how effective the virus is in delivering target 
genes into host cells is based on the gene transduction 
efficiency value. Transduction efficiency is an indicator 
that measures the number of target cells that successfully 
receive new genetic material via the viral vector used in 
therapy [27, 28]. Transduction efficiency in virus vectors 
is usually calculated by calculating the percentage of cells 
that successfully receive and express the target gene after 
infection by the viral vector [29]. 

This efficiency values can increase the potential 
success of gene therapy from viral vectors. It can be 

and relatively safe vectors. However, immune responses 
triggered by Adenoviruses capsids remain a notable 
drawback.

Adeno-Associated Viruses provide the advantage 
of long-term gene expression and minimal immune 
responses, making them highly safe for therapeutic use. 
However, their transduction efficiency is lower, at around 
30–50% depending on the target cell, and their limited 
genetic capacity (4.8 kb) restricts the delivery of larger 
genes. Preclinical studies on AAVs have shown effective 
tumor inhibition with minimal side effects, though risks 
such as liver cell damage in some cases highlight areas 
for improvement.

Among these vectors, Adenoviruses stand out due 
to their superior transduction efficiency, versatility in 
infecting various cell types, and strong clinical trial 
outcomes. While each vector has unique strengths and 
weaknesses, Adenoviruses currently show the most 
promise for broader applications in cancer virotherapy 
(the results are presented in Table 1).

Discussion

Basics of Gene Therapy 
Definition of Gene Therapy

Gene therapy is defined as the treatment of disease by 
inserting genetic material into cells which can correcting 
defective genes that cause diseases [18]. This medical 
approach focuses on modifying the genes in cells to 
achieve a therapeutic outcome or treat disease by repairing 
or reconstructing faulty genetic material (as shown in 
Figure 1) [19]. 

The Mechanism of Gene Therapy 
Healthy genes are inserted into the genome to replace 

Figure 2. Viral Vector Expression Systems [23] A). Converting virus into a vector B). The process of binding the viral 
vector to the target cell receptor C). Endosome escape from viral vector and nuclear DNA entry D). Protein release 
from viral vector expression [94]
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Figure 3. Structure of Retrovirus [39]

known if the higher the transduction efficiency value, the 
more cells will receive the therapeutic gene. The more 
therapeutic genes that are successfully integrated into 
target cells, the success of therapeutic treatment will also 
increase [30]. The choice of the vector to be used as based 
delivery depends upon the type of genetic material to be 
delivered, capacity, efficiency transduction, structure, 
mechanism of genetic transmission parameters, and also 
the advantages-disadvantages of each virus as a vector 
[31].

Retrovirus Mechanisms and Applications in Gene Therapy 
Definition of Retrovirus

Retrovirus is a type of RNA virus that replicates itself 
through a process called reverse transcription. Unlike 
most viruses, which directly use their RNA or DNA to 
create proteins, retroviruses use an enzyme called reverse 
transcriptase to convert their RNA genome into DNA after 
infecting a host cell [32]. Retroviruses have a genetic 
capacity of approximately 8 kilobases (kb), allowing them 
to carry and integrate relatively large fragments of DNA 
into the host genome, thereby supporting applications in 
gene therapy and vaccine development [33].

Structure of Retrovirus
The structure of retroviruses allows them to attach to 

the host cell, inject their genome, and replicate through 
infection [34]. Surrounding the capsid is a viral envelope, 
derived from the host cell membrane during the budding 
process, which contains glycoproteins and lipid molecules. 
This envelope not only shields the nucleocapsid but also 
aids in the virus’s entry into and exit from host cells [35]. 
Embedded in the envelope are glycoprotein spikes, which 
are essential for binding to specific receptors on the host 
cell membrane [34]. The structure of the retrovirus can 
be seen in Figure 3.

Mechanism of Retrovirus Infection
The retroviral infection process starts with the virus 

binding to specific receptors on the target cell, ensuring 
selective targeting and minimizing effects on healthy cells, 
crucial for gene therapy [36, 37]. After binding, the viral 
envelope fuses with the host cell membrane, allowing 
the viral core (RNA and enzymes) to enter the cytoplasm 
[38]. Reverse transcription then converts viral RNA into 
complementary DNA (cDNA) via reverse transcriptase, 
a key retrovirus feature [36-38]. The cDNA is transported 
to the nucleus, where integrase integrates it into the host 
genome, enabling long-term gene expression [39]. The 
host transcribes the integrated DNA into mRNA, which 
is translated into therapeutic proteins in the cytoplasm, 
[40, 41]. Subsequently, viral RNA and newly synthesized 
proteins in the cytoplasm begin assembling into new viral 
particles. This process involves RNA-protein binding, 
ensuring proper packaging of the viral genome [40, 41]. 
New viral particles assemble in the cytoplasm and are 
transported to the host membrane, where they bud off 
using the host’s lipid bilayer [42]. To avoid uncontrolled 
replication, gene therapy vectors are engineered to be 
non-infectious while delivering therapeutic genes [42, 43]. 
Finally, viral proteases mature the virus, but most vectors 
are designed to limit replication to targeted delivery [44]. 
The mechanism of the retrovirus infection can be seen in 
Figure 4.

Figure 4. Mechanism of Retrovirus Infection [95]
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Transduction Efficiency of Retrovirus
Transduction efficiency of retroviruses (RV) in in 

vitro-activated CD8+ T cells typically ranges from 40% 
to 80%, depending on factors such as RV titer, gene of 
interest (GOI) insert size, and the activation status of the 
target T cells. Enriching activated CD8+ T cells, which are 
more susceptible to RV transduction, increases the yield of 
transduced cells. After spin-transduction, approximately 
50% of the initial cell population remains viable, with 
around 1 million RV-transduced T cells recovered from 10 
million cells [45]. Lentiviruses, a subtype of retroviruses, 
also demonstrate high transduction efficiency in lung 
cancer cells, achieving over 50% transduction in most 
lung cancer cell lines with a low Multiplicity of Infection 
(MOI) of around 5 [44].

CAR-T therapy, which often uses retrovirus-based 
vectors for genetic modification, has shown strong 
efficacy in treating challenging cancers [46, 47]. In the 
ZUMA-1 trial for large B-cell lymphoma, CAR-T therapy 
with axi-cel achieved an Overall Response Rate (ORR) 
of 83%, with a Complete Remission (CR) rate of 53%, 
indicating significant tumor reduction or disappearance 
in most patients with remission duration exceeded two 
years [47]. The ZUMA-2 trial, which focused on mantle 
cell lymphoma, reported an ORR of 91% and a CR rate of 
68%, further highlighting the therapy’s effectiveness [48]. 
Adverse effects like Cytokine Release Syndrome (CRS) 
and Immune Effector Cell-Associated Neurotoxicity 
Syndrome (ICANS) occurred in 55.3% and 37.2% of 
cases, respectively, underscoring the need to manage 
these toxicities alongside treatment [49, 50]. The FDA 
has approved CAR-T products, including axi-cel, tisa-cel, 
and liso-cel, for relapsed or refractory high-grade B-cell 
lymphomas, with approvals spanning from 2017 to 2021 
[46]. Additionally, CAR-T has been studied in phase I 
and II trials [46]. 

Types of Cancer Cell Lines for Retrovirus Applications 
Cancer cell lines are populations of cells derived from 

tumours or cancerous tissues that have been isolated 
and cultured in the laboratory [51]. These cells possess 
the ability to divide and multiply continuously, making 
them suitable for research over extended periods [51]. 
Cancer cell lines can originate from various types of 
cancer, including breast cancer, lung cancer, colon cancer, 
melanoma, and others. They provide researchers with 
essential tools for understanding cancer and developing 
more effective treatment strategies. Several examples of 
cancer cell lines used for retrovirus applications include 
the melanoma cell line A375, the breast cancer cell line 
MCF-7, the breast cancer cell line T47-D, and the colon 
cancer cell line HT-29 [38, 52-55]

Advantages and Disadvantages of Retrovirus
Retroviruses offer advantages in gene therapy, such 

as the higher availability of transfer vector mRNA during 
packaging, which optimizes production and enhances 
gene delivery efficiency [53]. Their ability to integrate 
genetic material into the host cell’s chromosomes ensures 
long-term therapeutic effects by replicating alongside the 
host DNA during cell division [11]. However, retroviruses 

have limitations, including infecting only dividing cells, 
which restricts their use in tissues with quiescent cells 
[38]. Additionally, their random integration into the host 
chromosome poses a risk of insertional mutagenesis, 
potentially leading to tumorigenesis [39, 42]. These 
drawbacks require careful consideration and further 
research for safe therapeutic use.

Clinical Trials and Success Rates of Retrovirus
The study conducted by Shoji Kubo et al. [56] 

examines an in vivo trial in mice aimed at evaluating 
the effectiveness of Retroviral Replicating Vectors 
(RRVs) in cancer therapy, specifically targeting human 
osteosarcoma. This research employs two types of RRVs-
AMLV (amphotropic murine leukemia virus) and GALV 
(gibbon ape leukemia virus) that have been engineered 
to carry the prodrug-activating cytosine deaminase (CD) 
gene [56]. Mice with subcutaneous tumors were injected 
with RRVs, followed by administration of the prodrug 
5-fluorocytosine (5FC), which is converted into an active 
chemotherapeutic agent within tumor cells infected by 
RRVs [56]. The findings indicate that AMLV-CD RRV 
achieved significant tumor growth inhibition compared 
to GALV-CD and control groups. The therapeutic efficacy 
was demonstrated by a significant reduction in tumor size 
in mice treated with AMLV-CD and 5FC [56]. Although 
no major toxic side effects were reported in the mice, the 
effectiveness of RRVs depends on the specific receptor 
expression within tumor cells, which represents a primary 
limitation, as low receptor expression reduces transduction 
efficiency [56]. Additionally, large-scale RRV production 
remains challenging, and further development is needed 
to enable effective application of this therapy for cancers 
with systemic metastasis.

Adenovirus (AdV) Virrus Mechanism and Applications 
in Gene Therapy
Definition of Adenovirus (AdV)

AdV are part of the notable adenoviridae family, 
non-enveloped viruses with double-stranded DNA that 
frequently cause respiratory infections in people of all 
ages [57]. The absence of viral coding sequences in the 
genomes of HC-AdVs increases the cloning capacity to 
37 Kb [55]. Over the past 30 years, viral vectors like AdV 
have been widely researched for their potential in gene 
therapy. Their gene expression is temporary because the 
DNA remains separate from the host genome, and they 
can penetrate both dividing and non-dividing cells [12].

Structure of Adenovirus (AdV)
AdV is a non-enveloped virus with a size of 

approximately 70-90 nm. AdV have a structure that 
consists of a capsid shaped like an icosahedron or 
polyhedron [58]. AdV contains a double-stranded DNA 
(dsDNA) genome that is surrounded by a protein capsid. 
The main structure of the capsid consists of large proteins 
such as hexon and penton, which are responsible for the 
stability of the capsid [58-60]. Therefore, the capsid 
serves as a protective barrier for the viral genome while 
also facilitating fusion with the host cell membrane [58].

Between the hexons and pentons, there are other 
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proteins in the form of fibers [60]. Each vertex of the 
adenovirus has one fiber equipped with a knob [61]. 
Additionally, there is a core, which is the inner part of the 
capsid containing the viral genetic material and several 
proteins involved in replication and infection. The core 
plays a crucial role in ensuring that the genetic material 
can be safely delivered into the host cell and expressed 
to produce more viral particles [60]. The structure of the 
adenovirus can be seen in Figure 5.

Mechanism of Adenovirus (AdV) Infection
AdV enters host cells in multiple stages, facilitated 

by its capsid. The capsid protects the viral genome and 
controls intracellular movement, releasing the genome at 
specific cell locations [55]. Infection begins with binding 
to receptors on the plasma membrane, where the AdV 
fiber’s terminal knob interacts with receptors like CAR, 
desmoglein-2, CD46, and sialic acid-containing glycans 
[62]. This binding induces structural changes, making 
the fiber more flexible to interact with CAR and integrin 
αv, triggering dynamic uncoating within the virus [55]. 
Components like fiber and protein VI detach, signaling the 
virus to penetrate the cell via endocytosis [63]. Integrin αv 
on the cell surface interacts with the AdV penton base’s 
RGD motif, triggering temporary endocytosis and forming 
a clathrin-coated vesicle [62]. Adaptor proteins like 
AP2 and EPS15 further recruit scaffolding proteins and 
clathrin, forming a clathrin-coated pit. GTPase dynamins 
constrict and cleave this pit, releasing the vesicle. The 
clathrin coat sheds quickly with help from Hsc70 and 
auxilin, allowing the virus to move within a membrane-
enclosed compartment [62]. AdV can also enter through 
macropinocytosis, a non-specific endocytic process 
involving actin filament rearrangement and lamellipodia 
formation triggered by AdV binding to integrin αv [62].

Inside the endosome, AdV undergoes maturation but 
must escape before being degraded by lysosomes. Protein 
VI is activated, destabilizing the endosomal membrane and 
allowing the virus to escape into the cytoplasm [62]. To 

avoid degradation, AdV recruits the E3 ubiquitin ligase 
Nedd4.2 via the PPXY motif on Protein VI, inhibiting 
autophagy and preventing destruction [62]. Finally, AdV 
uses a microtubule network and motor proteins like 
dynein to move toward the nucleus, where it undergoes 
uncoating to deliver its genome, initiating replication 
[64]. The mechanism of the adenovirus infection can be 
seen in Figure 6.

Transduction Efficiency of Adenovirus (AdV) in Cancer 
Adenoviral (AdV) vectors are used as a transduction 

vehicle because they can infect both dividing and non-
dividing cells, and they have minimal restrictions on the 
packaging capacity of their genetic material [65]. The 
transduction efficiency of adenovirus can reach up to 
98,37% in hepatocellular carcinoma [16, 65]. In pancreatic 
cancer, adenovirus vectors displaying PFW and SYE 
demonstrated high gene transduction efficiency when 
tested with clinical pancreatic cancer samples. Specifically, 
vectors with PFW and SYE enhanced transduction 

Figure 5. Structure of Adenovirus [96]

Figure 6. Mechanism of Adenovirus Infection [62]
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Virus Capacity Structure Mechanism Cell Line and It’s Efficiency 
Transduction (%)

Clinical Trial Advantages and 
Disadvantages

Retrovirus 8 kb [99] Figure 3 
[100]

Converts RNA to 
DNA via reverse 

transcriptase, 
integrates into 

host genome [99]

Mouse CD8+ T cells 60% [45], 
Lung cancer NCI-H69 and 
NCI-H1155 cells 40% [44],

Shoji Kubo et al. 
[56]: AMLV & 

GALV vectors for 
osteosarcoma; reduced 
tumor size, low toxicity

Advantages
High integration and gene 

expression 52], [11]
Disadvantages

Retrovirus can only infect 
dividing cells [101] & 

random integration into host 
chromosome [54]

Adeno
Virus 
(AdV)

37 kb
[55]

Figure 5 
[58]

Receptor binding, 
endocytosis, 
trafficking, 

genome delivery, 
replication [63]

Hepatocellular Carcinoma 
HepG2 98,37% [70]

Ovarian Cancer OVCAR-3 
95% [108]

Hamster CHO-CAR 70-80% 
[65]

Esophageal carcinoma EC109 
67% [70]

VCN-01 used for 
pancreatic cancer; 50% 
response rate in phase 
II–III trials, mild side 

effects [74]. 

Advantages
High titers and broad 

transduction [70]
Disadvantages

A potent inflammatory 
response is mediated by the 

capsid [16], [68]. 

Adeno 
Associated 
Virus 
(AAV)

4,8 kb [102] Figure 7 
[97] 

Enters via 
endocytosis, 

replicates with 
helper virus or 

stays as episome 
[103]

Lung Cancer A549 70% [82]
Ovarian Cancer 

NIH:OVCAR-3 65 70% [83]
Carniocoma Caki-2 70% [82]

Prostate Cancer PC-3.35% [82]

2018–2023 studies: 
reduced tumor size and 
growth in mice, no side 

effects [91] 

Advantages
Stable long-term expression 

and infects various cells 
[82].

Disadvantages
Small capacity limits large 

gene delivery [9].

Table 1. Comparision of Retrovirus, Adenovirus, and Adeno Associated Virus (AAV) for Anti-Cancer Therapy

efficiency by 4.4-fold and 4.3-fold, respectively [66]. The 
efficiency of adenovirus transduction also shows positive 
results in ovarian cancer. Ad5eYFP had a multiplicity of 
infection (MOI) of 1000, Ad5-TR3DAFeYFP had an MOI 
of 8750, and Ad5-TR3GPIeYFP had an MOI of 5000, all 
resulting in similar transduction rates of 70% to 80%, as 
measured by the proportion of YFP-positive cells [65]. 
Overall, these findings suggest that adenoviral vectors 
hold significant promise for effective gene therapy in 
various cancer types.

Types of Cancer Cell Lines for Adenovirus (AdV) 
Applications

In the past few decades, gene therapy for diseases such 
as cancer using adenoviral vectors has been significantly 
advanced [67]. In 2018, adenoviral (AdV) vectors 
were mainly used in clinical applications for cancer 
treatment, accounting for 80% of their total use [68], 
[69]. Adenoviral vectors have been designed to replicate 
oncolytically in cancer cells while avoiding replication 
in healthy cells [67]. Several studies have demonstrated 
that adenoviruses can treat ovarian cancer, esophageal 
carcinoma, hepatocellular carcinoma, pancreatic cancer, 
and Chinese Hamster Ovary (CHO) cell line modified 
to express the Coxsackievirus Adenovirus Receptor 
(CAR) [65]. The cell lines that have been successfully 
researched include the ovarian cancer cell line OVCAR-3 
[66], the esophageal carcinoma cell line EC-109 [70], and 
hepatoblasma cell line HepG2 [70]. Oncolytic Adenoviral 
vector technologies have been approved in some countries 
for treatment of cancer in humans [71].

Advantages and Disadvantages of Adenovirus (AdV)
AdV offers several advantages for gene therapy, 

including high transduction ability, which allows efficient 
infection of various cell types, both dividing and non-
dividing [68]. This ability will help adenoviruses to be 
flexible in targeting gene delivery to various tissues and 

increase the potential effectiveness of gene therapy or gene 
delivery [68, 72]. This flexibility enhances its potential 
for targeting diverse tissues. AdV also has a large genetic 
payload capacity, enabling it to carry complex or multiple 
genes, and is genetically stable, reducing the likelihood 
of mutation. Additionally, it is easy to produce in large 
quantities [13, 16]. However, AdV has notable drawbacks. 
A major disadvantage is the strong immune response 
triggered by its capsid, which can neutralize the virus 
before gene delivery, reducing therapy effectiveness [58]. 
Although AdV does not integrate its genetic material into 
the host DNA, there remains a risk of mutagenic effects 
from random integration into the host chromosome. 
These factors require further research to ensure the safety 
and efficacy of AdV in gene delivery and therapeutic 
applications.

Clinical Trials and Success Rates of Adenovirus (AdV)
The potential of Adv as a gene therapy for cancer 

can be reviewed based on an in vivo study that explored 
the therapeutic potential of Apolipoprotein A1-based 
oncolytic adenovirus to treat triple-negative breast cancer 
(TNBC). In a TNBC mouse model, ADV-ApoA1 was 
found to inhibit tumor growth, reduce lung metastasis, 
and prolong survival, while showing good tolerance in 
rhesus monkeys and Syrian hamsters at high doses [73]. 

As for clinical testing, it can be seen based on a study 
by Garcia-Carbonero et all. [74] using adenovirus type 
VCN-01 (AdV type 5) in 12-16 patients with pancreatic 
adenocarcinoma who had not undergone previous 
treatment. The results showed that in patients with 
pancreatic adenocarcinoma, the overall response rate 
reached 50% in phases II and III. Despite adverse events 
such as grade 4 aspartate aminotransferase elevation in 
one patient (Phase I), grade 4 febrile neutropenia in one 
patient and grade 5 thrombocytopenia plus enterocolitis 
in another patient (Phase II), treatment with VCN-O1 was 
feasible and safe [74].
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From these examples, it can be concluded that the use 
of adenovirus as gene therapy has been well tested in vivo 
up to phase III with an acceptable level of safety, making 
it one of the potential approaches for cancer treatment in 
the future.

Adeno-Associated Virus Mechanism and Applications in 
Gene Therapy 
Definition of Adeno-Associated Viruses (AAV)

Adeno-associated viruses (AAV) are small viruses 
with a single-stranded DNA (ssDNA) genome that is 
encapsulated in a random mixture of VP1, VP2, or VP3 
proteins and belongs to the genus Dependoparvovirus 
and rely on co-infection with helper viruses, such as 
herpesviruses or adenoviruses, in order to replicate 
which is reliance on helper viruses, along with their low 
immunogenic profile, meaning they do not easily trigger 
an immune response, makes AAVs ideal candidates as 
gene therapy vectors [75]. The natural genome capacity 
of AAV is around 4.8 kilobases (kb) [76].

 
Structure of AAV

AAV consists of a single-stranded DNA (ssDNA) 
genome that is 4.8 kb in size, with two inverted terminal 
repeats (ITRs) on either end of the genome [76]. These 
ITRs form a T-shaped hairp in structure that initiates the 
replication process. The ITRs flank the rep and cap genes. 
Within the rep region, there are three promoters: p5, p19, 
and p40 [77]. These promoters drive the transcription of 
six different mRNA transcripts. The p5 promoter produces 
two large Rep proteins through alternative splicing, while 
p19 drives the transcription of two smaller Rep proteins. 
The AAV capsid is composed of 60 viral protein (VP) 
molecules [78]. The structure of the AAV can be seen in 
Figure 7.

Mechanism of AAV Infection
Adeno-Associated Virus (AAV) initiates infection by 

binding to specific receptors on the surface of the target 
cell, which vary depending on the AAV serotype [78]. 
The virus then enters the cell through endocytosis, where 

it is transported into the cytoplasm and subsequently to 
the cell nucleus. Once inside, AAV becomes trapped 
in an endosomal vesicle. The endosome carrying AAV 
then undergoes maturation, during which its internal pH 
decreases, creating an acidic environment that triggers 
structural changes in the AAV capsid, allowing the virus to 
escape from the endosome into the cytoplasm [79]. After 
successfully exiting the endosome, AAV moves toward 
the nucleus to deliver its genetic material.

The uncoating phase of Adeno-Associated Virus 
(AAV) infection involves the release of the viral genome 
from its protective capsid after the virus has entered the 
host cell [80]. After the uncoating process, the ssDNA 
can be converted into a double-stranded form for further 
integration into the host genome or remain in episomal 
form for replication [80]. Then, AAV can proceed to the 
replication cycle. In the absence of a helper virus, the 
AAV genome can persist in a latent state as an episome 
or may integrate into the host DNA chromosome. Then, 
dsDNA can integrate into the host genome, leading to 
stable expression of the encoded genes, or it may remain in 
episomal form, allowing for transcription and translation 
processes [80]. The mechanism of the AAV infection can 
be seen in Figure 8.

Figure 7. Structure of Adeno Assosiated-Virus (AAV) 
[97]

Figure 8. Mechanism of Adeno Assosiated-Virus (AAV) Infection [98]
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Transduction Efficiency of Adeno-Associated Virus in 
Cancer

AAV (Adeno-Associated Virus) has proven to be an 
effective virus in inducing gene transduction in lung cancer 
cells, with transduction rates ranging from 30% to 50% 
[81]. Research shows that using the AAV2/1 virus type, 
the highest transduction rate achieved is between 30% 
and 50% when using a Multiplicity of Infection (MOI) 
of 100 [81]. This means that from 100 AAV2/1 virus 
particles added to each target cell, only 30% to 50% of 
those cells successfully get infected and receive genetic 
material from the virus. Although using a higher MOI can 
increase the likelihood of cell being infected, the efficiency 
rate achieved by AAV2/1 still indicates limitations in its 
ability to optimally induce gene transduction.

Additionally, another study reported that transduction 
mediated by recombinant AAV (rAAV) in A549 cells 
demonstrated that sTRAIL (soluble Tumor necrosis factor-
Related Apoptosis-Inducing Ligand) was quite effective in 
inducing apoptosis [82]. The transduction rate of AAV in 
A549 lung cancer cells can reach approximately 70% when 
using a very high MOI of 5 × 10^4 [83]. The following 
research indicates that AAV transduction efficiency in 
NIH:OVCAR-3 ovarian cancer cells ranges from 65–70%, 
depending on cell temperature conditions [83]. AAV also 
shows varying transduction rates in other cancer cell lines 
such, achieving 70% in Caki-2 renal carcinoma cells and 
75% in PC-3 prostate cancer cells [82].

Types of Cancer Cell Lines for Assosiated Adeno-Virus 
(AAV) Applications

Adeno-associated virus (AAV) gene therapy is 
emerging as a powerful approach for treating various 
types of cancer, leveraging the ability to deliver 
therapeutic genes directly to cancer cells . Known for its 
high efficiency as a vector and minimal pathogenicity, 
AAV is well-suited for targeted gene delivery, allowing 
researchers to design therapies that address specific genetic 
abnormalities or critical pathways within different types of 
cancer [84]. By tailoring the AAV approach to individual 
cancer cell lines, it’s possible to target genetic mutations 
or cellular mechanisms unique to each cancer type, 
enhancing the precision and effectiveness of treatment 
[85]. For instance, the approach can be applied to the 
Lung Cancer cell line A549, the Chronic Ovarian Cancer 
cell line NIH:OVCAR-3 , Carcinoma cell line Caki-2, 
and Prostate cancer cell line PC-3 [82, 83] . In these 
models, AAV therapy shows potential in slowing cancer 
progression by targeting cancer cells directly, promoting 
cell death, and enhancing immune responses against the 
tumour. This ability to address both cell proliferation and 
immune activation provides a comprehensive strategy that 
underscores AAV’s versatility and effectiveness as a gene 
therapy option for multiple cancer types, paving the way 
for more personalized and targeted cancer treatments.

Advantages and Disadvantages of AAV
AAV offers the advantage of infecting various cell 

types and maintaining long-term gene expression, 
providing sustained therapeutic benefits [86]. Its ability 
to deliver therapeutic genes for prolonged periods is 

particularly valuable for chronic conditions and cancers, 
reducing the need for repeated treatments and minimizing 
patient exposure to viral vectors [82, 87]. The advantage of 
AAV’s ability to deliver a gene that continues to function 
and produce necessary proteins for an extended period 
lies in its potential for sustained therapeutic effects [86]. 
However, a major disadvantage of AAV is its limited gene-
carrying capacity of approximately 4.8 kilobases (kb), 
restricting its ability to deliver larger genes [86]. Many 
therapeutic genes exceed this size limit, necessitating 
alternative strategies like splitting genes across multiple 
vectors or using other viral vectors with larger capacities 
[84], [88]. These methods can be more complex, 
reduce delivery efficiency, and sometimes lead to lower 
therapeutic outcomes, making AAV’s size constraint a 
significant challenge in gene therapy for larger genes [89].

 
Clinical Trials and Success Rates of AAV

Based on research conducted by Naoto Sato et al. [90], 
AAV has been shown to inhibit tumor cells in cervical 
cancer. The experiment was conducted using five-year-
old SCID mice. These mice were inoculated with cervical 
cancer cells subcutaneously, meaning the cancer cells 
were injected into the mice. Then, AAV containing a 
vector was injected into the area surrounding the tumor 
cells. Tumor size changes were recorded after the AAV 
injection, indicating that AAV could reduce tumor cell size 
and inhibit cancer cell growth by inducing apoptosis. The 
use of AAV in this study did not produce any effects, as 
indicated by the absence of weight loss or abnormalities 
at the site injected with AAV [90]. The absence of side 
effects is due to the proven safety of gene therapy using 
AAV [82]. One reason for this is that AAV is non-toxic 
when injected into the body, as it does not attack healthy 
cells and minimizes the risk of side effects or damage to 
normal body tissues [91].

However, in a study by Ya Feng Lv et al. [91], 
which tested the effectiveness of AAV using mice by 
subcutaneously introducing breast cancer tumor cells and 
then injecting AAV into tumor-bearing mice, the results 
showed that AAV could infect breast cancer cells and 
inhibit tumor growth by delivering apoptotic genes. This 
research indicated that AAV might pose a risk of liver 
cell damage, potentially caused by the “suicide gene” it 
carries [92]

Limitation
While this literature review provides a comprehensive 

comparison of viral vectors and highlights Adenovirus 
(AdV) as a promising candidate for gene therapy, certain 
limitations are inherent to the nature of the review. 
Differences in study designs, target cell types, and 
research objectives across the sources may influence 
the consistency of the comparisons. Additionally, the 
availability of data may be influenced by publication 
trends, with studies showing positive outcomes for AdV 
being more frequently reported. Although every effort 
was made to include relevant and recent literature, some 
studies may have been unintentionally missed due to 
language or access limitations. These considerations do 
not diminish the value of the findings but rather emphasize 
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the need for continued research and systematic approaches 
in future evaluations.

In conclusion, the findings of this review suggest 
that Adenovirus (AdV) remains the most promising 
viral vector for gene therapy, particularly due to its 
high transduction efficiency and capacity for carrying 
larger genes. This is consistent with previous evidence 
highlighting AdV’s clinical progression to phase III 
trials. However, the continued emergence of novel 
vector engineering techniques and increasing interest 
in alternative vectors, such as Lentivirus and AAV with 
enhanced tropism or immune evasion properties, indicate 
that the field is rapidly evolving. Future research should 
focus on optimizing vector safety, improving tumor 
specificity, and evaluating long-term outcomes in diverse 
patient populations to fully realize the clinical potential 
of virotherapy.
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