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Introduction

Breast cancer (BC) is a significant global health issue, 
particularly among women, with 2.3 million diagnoses 
and 670,000 deaths in 2022 [1], representing a quarter 
of all female cancers. In South-East Asia, BC deaths 
are projected to rise by 61.7% by 2040, and in India, it 
accounts for 28.2% of female cancers, with an estimated 
98,337 deaths in 2022 [2, 3]. Approximately 2.4 billion 
people in rural areas rely on solid fuels for cooking 
[4, 5], leading to harmful emissions such as carbon 
monoxide (CO) and Particulate Matter (PM), which are 
linked to adverse health effects in women. The average 
concentration of black carbon was 14.54, 14.28, and 24.69 
μg/m³ in various kitchen styles, including indoor, outdoor, 
and semi-open kitchens. Notably, it was also estimated 
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that the excess lifetime carcinogenic risk in these kitchens 
with cooking for around four hours a day was 1.25 × 10−7, 
1.22 × 10−7, and 2.12 × 10−7, respectively [6]. An increase 
in Particulate Matter with a diameter of 2.5 micrometers 
or smaller (PM2.5) levels has been associated with higher 
odds of BC [7, 8]. Our previous research indicates that 
indoor air pollution may cause mitochondrial stress and 
alter epigenetic mechanisms [9, 10], which could increase 
BC risk. The Surveillance, Epidemiology, and End Results 
(SEER) database shows that the probability of developing 
BC rises with age, from 2.4% at ages 50-59 to 7.0% at 
70 and older [11, 12]. This study analyzed peripheral 
lymphocyte expression profiles to assess their role in 
BC among women exposed to household air pollution 
(HAP) and aimed to determine the prognostic value 
of these profiles. Our transcriptome analysis indicated 
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regulation of numerous genes associated with BC 
progression [19], highlighting the need to understand the 
impacts of indoor air pollutants for better risk assessment 
strategies. Alongside, Artificial intelligence (AI)-driven 
approaches have the potential to enhance early detection 
and personalized treatment strategies for BC significantly. 
Collectively, this pilot research explores the potential 
interplay between biomass smoke exposure, mitochondrial 
epigenetic modifications, and age-associated BC risk, 
establishing a conceptual and methodological basis 
for future in-depth research. These findings contribute 
to a growing body of evidence linking environmental 
exposures to molecular alterations and provide a critical 
foundation for large-scale validation studies. Eventually, 
this work aims to inform the development of personalized 
cancer prevention strategies tailored to environmentally 
exposed populations.

Study design and sample collection
Women aged 18 to 70 (n=205) from rural areas of 

Morena, Sagar, Chhindwara, Gwalior, Dhar, and Betul 
in Madhya Pradesh, India, were recruited for the study, 
focusing on those regularly exposed to biomass smoke 
(Figure S1). Participants were divided into two groups: 23 
individuals in Group A (ages 18-25) and 182 in Group B 
(over 25) to examine differences in expression biomarkers. 
Inclusion criteria included healthy homemakers and 
non-smokers who used biomass for cooking. Pregnant 
or lactating women, smokers, and those with chronic 
illnesses were excluded. The study was approved by 
the Institutional Ethics Committee, following ICMR 
guidelines, and informed consent was obtained from all 
subjects. A questionnaire collected data on socioeconomic 
status, habits, health, and exposure (Table S1).

Materials and Methods

Peripheral blood samples were collected via 
venipuncture, followed by plasma separation and 
lymphocyte isolation using density gradient centrifugation. 
DNA, RNA, miRNA, and protein were extracted from the 
isolated lymphocytes for downstream analyses. Oxidative 
DNA damage was assessed using Formamidopyrimidine 
Glycosylase (FPG) digestion, and Reactive oxygen species 
(ROS) levels were measured with 5-(-6)-Chloromethyl-20, 
70-dichlorodihydrofluorescein Diacetate Acetyl Ester 
(CM-H₂DCFDA) [13]. Mitochondrial dysfunction 
was evaluated by examining the expression of the 
following; fission/fusion, Integrated Stress Response  
(ISR), and repair genes, along with mitochondrial DNA 
methylation[14]. To assess inflammation, levels of 
Nuclear Factor kappa B (NF-κB), Interleukin-6 (IL-6), 
and Tumor Necrosis Factor Alpha (TNF-α) were analyzed, 
while breast cancer biomarkers Granulocyte-Colony 
Stimulating Factor (G-CSF) , Alpha-fetoprotein (AFP), 
CEA were measured with Enzyme Linked Immunosorbent 
Assay (ELISA) [15]. The expression of miRNAs ;miR-
7a, miR-7b, miR-21 was profiled using poly-A tailing, 
cDNA synthesis, and RT-PCR (Insta Q-96, India) [16]. 
Expression levels of lncRNA/mRNA targets [17, 18], 
RNA methylation, and Telomerase Reverse Transcriptase 

(TERT) were also analyzed [18-20]. Data were processed 
using R, and multivariate correlation analysis was carried 
out using machine learning techniques. Building on our 
earlier work in predictive modeling [21-23], we developed 
an AI-based breast cancer risk prediction model. This 
model integrates clinical and molecular biomarker data, 
with logistic regression selected for its interpretability 
and reliable performance. For detailed methodology 
please refer to Supplementary Information: Materials 
and Methods.

Results

Estimation of household air pollutant exposure assessment
Pearson correlation analysis was conducted to examine 

the relationships among PM, age (AG), and total exposure 
(TE) (Figure S2). The correlation matrix heatmap 
revealed a very weak negative correlation between age 
and particulate matter (AG vs PM: -0.04), indicating 
minimal impact of age on PM exposure. Subsequently, a 
slight positive correlation was observed between age and 
total exposure (AG vs TE: 0.53), suggesting that total 
exposure rises with age. A more pronounced positive 
correlation was established between PM levels and total 
exposure (PM vs TE: 0.66), indicates greater PM levels 
are associated with increase in total exposure. The scatter 
plot matrix and line plots reinforced these patterns visually, 
indicating no relationship between AG and PM, a moderate 
upward trend between AG and TE, and a strong upward 
trend between PM and TE. The bar chart illustrating 
the correlation coefficients further demonstrated these 
associations, with AG vs PM close to zero, AG vs TE 
moderate, and PM vs TE strong.

Multivariate correlation analysis
Age and inflammation levels

The immunological response to aging is significantly 
correlated with cytokine concentrations by age. 
Significantly, IL-6 levels rise with age (R = 0.95, p < 
0.001), which exacerbates inflammation, especially in 
women who have been exposed to Indoor Air Pollution 
(IAP). Furthermore, TNF-α and IL-6 have a substantial 
association (R = 0.99, p < 0.000), indicating a coordinated 
inflammatory response. Age also has a significant 
correlation with the anti-inflammatory cytokine IL-10 (R 
= 0.88, p < 0.005), indicating an adaptive mechanism to 
combat inflammation. Additionally, IL-4 levels increase 
with age (R = 0.86, p < 0.001). The intricate interaction of 
inflammatory and anti-inflammatory signals is indicated 
by the significant connection between TNF-α and IL-10 
(R = 0.95, p < 0.000) (Figure S3). 

Analysis of mitochondrial epigenetic alterations
Variables such as AGE, oxidative damage, Repair 

genes, the ISR gene, mitochondrial biogenesis factors 
(fusion and fission), TFAM, and mitochondrial DNA 
(mtDNA) methylation were analyzed. Each plot includes 
a line of best fit with R-squared (R²) values ranging 
from 0.81 to 0.97, indicating strong correlations, and 
p-values of 0.000, indicating statistical significance. This 
illustrates the relationships between aging and various 
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the correlations among variables such as Mitochondrial 
Transcription Factor A (TFAM), CEA, G-CSF, AFP, and 
mtDNA methylation (Figure 3). A positive correlation was 
found, indicating that IL-6 levels rise with age, which is 
associated with chronic inflammation. Additionally, higher 
mtDNA methylation levels correlate with increased TNFα 

epigenetic factors (Figure S4). We emphasize the disease’s 
heterogeneity and suggest that mtDNA methylation 
may influence tumor behavior and exposed individual 
outcomes (Figure 1). A correlation matrix displays the 
relationships between BC-related genes or biomarkers 
(Figure 2). In contrast, a scatterplot matrix visualizes 

Figure 1. This Type of Plot Combines Features of Both a Box Plot and a Density Plot to Illustrate the Distribution 
and Density of Data Points. The x-axis categorizes different methylation levels, while the y-axis displays CEA levels 
ranging from 0 to 400. This distribution suggests potential correlations, indicating that higher mtDNA methylation 
may be linked to increased CEA levels. The plot visually conveys how CEA levels are distributed across varying 
methylation levels, with each group showing how these levels fluctuate. The pattern suggests a potential correlation, 
where higher mtDNA methylation levels may be associated with elevated CEA levels in BC cases, offering insight 
into possible biological relationships between these factors. 

Figure 2. The Heatmap Conveys the Relationships between the Selected Variables Listed with Age through a Color-
Coded System. Red squares indicate a strong positive correlation, where co-regulated gene groups or biological 
pathways increase together. In contrast, blue squares represent a strong negative correlation, showing that as one 
variable rises, the other declines. Yellow squares highlight weak or no correlation, suggesting minimal or absent 
relationships. This visual representation aids in identifying patterns of co-regulation and interactions among biological 
pathways. 
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Figure 3. The Scatter Plots and Pair Plots are Color-Coded to Represent Different Groups, such as Various Stages of BC 
or Distinctions between Control and High-Risk Group Groups. Along the diagonal of the matrix, histograms display 
the distribution of each individual variable. The histogram for TFAM reveals its frequency present in the dataset in 
correlation with the CEA, GCSF, AFP, TR (TERT), and mtDNA methylation. This combined approach facilitates a 
clear visualization of relationships between variables while illustrating individual measurements' distribution. 

concentration (Figure 4). Notably, older women exhibited 
a higher rate of RNA methylation (Figure S5).

Our results showed altered expression of miRNA-21 
with fold change of 2.9255±0.05, highest in the women, 

Figure 4. Features Scatter Plots that Provide a Comprehensive Overview of the Relationships Depicted in the Plot. 
The X-axis represents a) Age and b) mtDNA methylation, showcasing the age of individuals and revealing age-
related trends. The Y-axis displays IL-6 and TNFα concentration, indicating potential inflammatory responses. Each 
data point corresponds to an individual and is color-coded to distinguish between different groups, such as control 
and High-Risk Group. A trend line illustrates the positive correlation between age and IL-6 concentration, indicating 
that IL-6 levels also tend to rise as age increases. Additionally, higher levels of mtDNA methylation are linked to 
increased TNFα concentration, highlighting a connection between genetic regulation and inflammatory responses. 
These findings underscore the relevance of age, IL-6, and TNFα in understanding chronic inflammation and its health 
implications, emphasizing the importance of monitoring these factors with aging and inflammation. 
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in group B among all miR-7a, miR-21, and miRNA-
7b studied (Figure S6 a). Our results showed altered 
expression of  lncRNAs, i.e., Gas-5, H19, and PVT, among 
the women exposed to HAP. The PVT was highly expressed 
with a fold change of 2.61755±0.05 in the Group B women 
category and found to be downregulated in Group A 
women (Figure S6 b). The expression of PTEN, MYC, 
PIK3CA and BCL2 were found to be downregulated 
and the expression of PDCD4, FOXO3, APAF1, CDK2, 
E2F2 and CCND1 were highly upregulated with fold 
change 2.05198±0.005, 1.15871±0.05, 2.08744±0.05, 
1.08706±0.005, 3.44449±0.05 respectively, in Group B 
females in comparison to Group A women (Figure S6 c).

AI-based BC risk prediction models were developed 
using a dataset of genetic expression and clinical records, 
which included features like age, mitochondrial DNA 
methylation, G-CSF, and TERT levels. Various machine 
learning algorithms were applied, such as Logistic 
Regression, Random Forest, Support Vector Machine  
(SVM),  K-Nearest Neighbors (KNN), and Gradient 
Boosting (Figure 5). Stratified K-Fold cross-validation 
yielded average accuracy scores: Logistic Regression 
(90.18%), Random Forest (89.14%), SVM (90.18%), 
KNN (90.18%), and Gradient Boosting (90.18%). 
Logistic Regression achieved the highest accuracy with 
a confusion matrix showing 29 true negatives and 10 
true positives, resulting in 100% recall and precision for 
both classes. The F1-score was 1.00, and the Receiver 
Operating Characteristic (ROC) curve showed an 
Area under curve (AUC) of 1.00, indicating excellent 
discrimination (Figure 6). The Precision-Recall curve 
also confirmed high precision and recall rates. The trained 
Logistic Regression model is saved for future use in 
clinical settings for timely BC risk assessments (Figure 7).

Discussion

In this study, we explored the impact of PM and black 
carbon exposure on age-related changes in mitochondrial 
epigenetics, which may increase BC susceptibility. We 
conducted a cross-sectional pilot study in India with two 
groups: 23 younger adults (Group A, 18-25) and 182 
older individuals (Group B, above 25). Results showed 
significant differences in mitoepigenetic profiling in 
Group B, indicating that aging-related mitochondrial 
changes may increase BC susceptibility. We investigated 
mtDNA methylation status and found alterations linked 
to aging and environmental factors, with the older 
group exhibiting higher DNA expression levels. We 
noted that PM exposure correlates with abnormal DNA 
methylation patterns. Our result indicate elevated levels 
of DNA repair enzymes OGG1, APE1, and POLG in 
the older group, confirming base excision repair (BER) 
activation in response to oxidative damage. Notably, 
OGG1 activity was significantly higher than APE1’s, 
suggesting that APE1 enhances OGG1 function. The 
relationship between OGG1 and unhealthy aging, 
especially with increased TNF-α levels, emphasizes the 
role of mitochondrial dysfunction in cancer susceptibility 
[24]. miRNAs crucial in regulating mitochondrial stress-
related gene transcription and act as a link between 
genomic and epigenomic mechanisms [25]. Our study 
found altered miRNA expression in women exposed to 
PM2.5 and black carbon, with older women showing 
significantly increased miR-21, which has both tumor-
suppressive and oncogenic roles. Previous research also 
linked PM2.5 exposure to miRNA expression changes 
[26]. lncRNAs influence angiogenesis, mitochondrial 
function, and mRNA regulation via miRNA interaction 

Figure 5. The Bar Chart Illustrates the Average Cross-Validation Accuracy of Five Machine Learning Models Applied 
to a Dataset, Potentially Related to BC Classification or Prediction. Logistic Regression shows the highest cross-
validation accuracy, just above 0.90, making it the best-performing model in this comparison. Gradient Boosting 
follows closely, with an accuracy slightly below 0.90, while SVM and KNN perform similarly, around 0.88. Random 
Forest, though slightly lower in performance, achieves an accuracy of approximately 0.87. The Y-axis ranges from 
0.65 to 1.0, where all models demonstrate high accuracy, indicating their effectiveness in BC prediction. Overall, this 
graph suggests that while all the models are reliable, Logistic Regression slightly outperforms the others, making it 
the most accurate for this dataset. 
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Figure 6. The Confusion Matrices for the Five Machine Learning Models Used to Predict BC are Represented as 
Follows: each corresponds to a different algorithm. a) The Logistic Regression model illustrates its performance in 
classifying cancer cases. b) The Random Forest model highlights its ability to balance sensitivity and specificity. c) 
The SVM emphasizes its strength in identifying true negatives while showing a tendency for false positives. d) The 
KNN model showcases effective true positive and true negative rates. Finally, the e) Gradient Boosting model reveals 
challenges with misclassifications. These matrices provide valuable insights into the strengths and weaknesses of each 
algorithm in predicting BC. 

Figure 7. The x-axis Represents the False Positive Rate (FPR), which Measures the Proportion of Negative Instances 
Incorrectly Classified as Positive. In contrast, the y-axis represents the True Positive Rate (TPR), indicating the 
model's accuracy in identifying positive instances. The orange line on the plot reaches the top left corner, which 
suggests the model perfectly distinguishes between positive and negative classes. The AUC, displayed as 1.00, 
confirms this perfect classification. An AUC of 1.00 represents the ideal scenario where the model correctly classifies 
all instances without false positives or negatives. This ROC curve indicates that the logistic regression model is highly 
accurate. However, in real-world applications, such a perfect curve is rare and could indicate exceptional performance 
or possible overfitting, depending on the data. 

[27]. Increased PVT in older women and downregulation 
of PVT and H19 in Group A indicate ncRNA imbalance, 
potentially promoting mitochondrial dysfunction and 
tumor progression. Our findings revealed notable change 
in mRNA expression associated to stress and proliferation-
related genes, especially in Group B, suggesting disruption 
of the miRNA-lncRNA-mRNA axis due to BC exposure. 
Additionally, we found age-related changes in the 
expression of OMA1, DELE1, and HRI genes in Group 

B, with Previous research has found that abnormalities 
in mitochondrial integrity are closely linked to ISR 
induction [16].  Along with increased proinflammatory 
cytokines, reflecting chronic inflammation linked to 
aging. Following this Studies have linked aging to 
chronic “inflamm-aging” driven by immunosenescence 
and adipose-derived cytokines [28]. Elevated IL-6, IL-
8, and TNF-α may promote tumor growth [29]. This 
study suggests a connection between elevated cytokine 



Asian Pacific Journal of Cancer Prevention, Vol 26 4075

DOI:10.31557/APJCP.2025.26.11.4069
Mitochondrial Epigenetics in Age-Related Breast Cancer associated with Exposure to Solid Biomass Fumes

Figure 8. The Figure Illustrates the Comprehensive Impact of Our Study, commencing with blood collection, followed 
by processing, and culminating in the application of artificial intelligence to predict the risk of breast cancer.  

levels, tumor growth, and hormonal receptor expression, 
warranting further investigation.

This study found a significant association between 
mtDNA methylation and TR expression, highlighting its 
potential role in BC risk, particularly with aging. Higher 
mtDNA methylation was linked to advanced age and 
increased BC risk. Additionally, exposure to PM2.5 was 
associated with abnormal DNA methylation patterns 
in healthy individuals, and early-life exposure to IAP 
correlated with methylation patterns in breast tumors [30]. 
There is a relationship between TR activity and mtDNA, 
suggesting physiological connections. Research indicates 
that telomere length (TL) and mtDNA are co-regulated, 
both related to BC risk[31]. Oxidative stress damages 
telomeric DNA, and antioxidants may help reduce this 
damage [32]. Our analysis showed a modest increase 
in AFP levels associated with mtDNA methylation, 
suggesting a link between mitochondrial DNA changes 
and BC. Increased levels of AFP may indicate possible 
mitochondrial dysfunction associated with cancer, and 
recent studies propose that mtDNA methylation could be 

a marker of overall cellular stress [33]. It is important to 
recognize that DNA methylation exhibits strong tissue 
specificity [34], influenced by cell-type composition, 
chromatin context, and local transcriptional activity. 
Consequently, methylation alterations detected in 
peripheral blood leukocytes may not accurately mirror 
those occurring within breast epithelial tissue, particularly 
in the context of tumor heterogeneity and  distinct 
epigenetic regulation. While peripheral blood provides a 
practical and minimally invasive source for population-
level screening, its use as a surrogate for breast tissue 
epigenetic profiling has limitations. Therefore, future 
research should include matched tissue-based analyses 
and functional validation and resolve cell-type specific 
methylation dynamics to confirm the biological relevance 
of peripheral methylation signatures in breast cancer.

Machine learning models are employed for BC 
classification to predict tumor malignancy based on 
features like DNA methylation, biomarkers from biopsies, 
imaging, and genetic tests. Various models, including 
Logistic Regression, Random Forest, Gradient Boosting, 
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SVM, and KNN, are used to capture patterns in labeled data. 
Cross-validation ensures model reliability by splitting data 
into training and testing sets, and performance is assessed 
through metrics like accuracy, precision, recall, F1-score, 
and ROC-AUC. Logistic Regression is is especially 
appreciated for its interpretability, aiding clinicians 
understand the impact of biomarkers on risk. Despite 
the model’s impressive results, certain limitations must 
be acknowledged. The cross-sectional design restricts 
the ability to draw causal conclusions, and the small, 
age-discrepant group decreases statistical power and 
generalizability. Uncontrolled confounding factors such 
as hormonal status, menopause, genetics, and lifestyle 
may have impacted the outcomes. Although significant 
alterations in mitoepigenetics and non-coding RNA 
expression were noted, functional studies are necessary for 
mechanical validation. Furthermore, the machine learning 
model was created using a single dataset without external 
validation, which limits its clinical applicability. Future 
research should involve larger, longitudinal cohorts, 
incorporate multi-omics data, and implement robust 
model validation to enhance and broaden these findings. 
Additionally, the model’s performance depends on the 
quality of the input data; thus, ongoing data updates and 
monitoring are essential to ensure sustained accuracy 
over time.

In conclusion, this research highlights a crucial 
connection between prolonged exposure to IAP, age-
related modifications in mitochondrial epigenetics, and 
an increased likelihood of BC among rural women in 
India. Our findings show significant relationships between 
exposure to particulate matter, changes in mitochondrial 
DNA methylation, levels of inflammatory cytokines, and 
irregular expression of non-coding RNA, especially in 
older female participants. Multivariate Cox regression 
identified mtDNA methylation as a key biomarker for 
age-related BC risk. In addition, integrating molecular 
biomarkers with AI-optimized models demonstrates 
a high degree of predictive precision for BC risk, 
indicating promising potential for non-invasive early 
detection strategies that support personalized medicine 
by elucidating environmental cancer links, and guiding 
future preventive research (Figure 8). However, the 
cross-sectional design, limited sample size, and absence 
of tissue-specific validation calls for larger, longitudinal 
studies. Future work should include breast tissue epigenetic 
profiling, toxicological PM2.5 analysis, and multi-omics 
approaches to refine our understanding of environmental 
contributions to BC and advance personalized prevention 
strategies. 
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