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Abstract

Objective: To investigate the relationship between age, mitochondrial epigenetics, and BC risk among women
exposed to biomass smoke, and the development of a predictive model for BC detection. Methods: A cross-sectional
study was conducted among a total of 205 women exposed to biomass smoke and were divided into two age groups
(18-25 and >25 years). mtDNA methylation, inflammatory cytokines (IL-6, TNF-a, IL-10), and carcinoembryonic
antigen (CEA) levels were assessed. Machine learning models were developed using clinical and molecular data to
predict BC risk. Results: Prolonged HAP exposure was assoc to increased mitochondrial dysfunction, particularly in
older women. mtDNA methylation changes were significantly correlated with elevated CEA levels, signifies a role in
BC risk. Multivariate analysis revealed strong positive correlations between age and inflammatory cytokines: IL-6 (R
=0.95,p <0.001), TNF-a (R =0.99, p <0.000), and IL-10 (R = 0.88, p < 0.005), indicating heightened inflammation
with age. Logistic Regression outperform predictive performance with accuracy: 90.18% and AUC: 1.00. Conclusion:
Age and mitochondrial epigenetic changes such as mtDNA methylation and inflammatory cytokine levels are strongly
linked to BC risk in women exposed to biomass smoke. These results highlight the role of mitochondrial epigenetics
in BC and the potential of Al-based tools for early detection in high-risk populations. However, the study’s cross-
sectional design limits causal inference, emphasizing the need for longitudinal studies to clarify timing and causality.
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that the excess lifetime carcinogenic risk in these kitchens
with cooking for around four hours a day was 1.25 x 1077,
1.22 x 107, and 2.12 x 107, respectively [6]. An increase

Introduction

Breast cancer (BC) is a significant global health issue,

particularly among women, with 2.3 million diagnoses
and 670,000 deaths in 2022 [1], representing a quarter
of all female cancers. In South-East Asia, BC deaths
are projected to rise by 61.7% by 2040, and in India, it
accounts for 28.2% of female cancers, with an estimated
98,337 deaths in 2022 [2, 3]. Approximately 2.4 billion
people in rural areas rely on solid fuels for cooking
[4, 5], leading to harmful emissions such as carbon
monoxide (CO) and Particulate Matter (PM), which are
linked to adverse health effects in women. The average
concentration of black carbon was 14.54, 14.28, and 24.69
pg/m? in various kitchen styles, including indoor, outdoor,
and semi-open kitchens. Notably, it was also estimated

in Particulate Matter with a diameter of 2.5 micrometers
or smaller (PM2.5) levels has been associated with higher
odds of BC [7, 8]. Our previous research indicates that
indoor air pollution may cause mitochondrial stress and
alter epigenetic mechanisms [9, 10], which could increase
BC risk. The Surveillance, Epidemiology, and End Results
(SEER) database shows that the probability of developing
BC rises with age, from 2.4% at ages 50-59 to 7.0% at
70 and older [11, 12]. This study analyzed peripheral
lymphocyte expression profiles to assess their role in
BC among women exposed to household air pollution
(HAP) and aimed to determine the prognostic value
of these profiles. Our transcriptome analysis indicated
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regulation of numerous genes associated with BC
progression [19], highlighting the need to understand the
impacts of indoor air pollutants for better risk assessment
strategies. Alongside, Artificial intelligence (AI)-driven
approaches have the potential to enhance early detection
and personalized treatment strategies for BC significantly.
Collectively, this pilot research explores the potential
interplay between biomass smoke exposure, mitochondrial
epigenetic modifications, and age-associated BC risk,
establishing a conceptual and methodological basis
for future in-depth research. These findings contribute
to a growing body of evidence linking environmental
exposures to molecular alterations and provide a critical
foundation for large-scale validation studies. Eventually,
this work aims to inform the development of personalized
cancer prevention strategies tailored to environmentally
exposed populations.

Study design and sample collection

Women aged 18 to 70 (n=205) from rural areas of
Morena, Sagar, Chhindwara, Gwalior, Dhar, and Betul
in Madhya Pradesh, India, were recruited for the study,
focusing on those regularly exposed to biomass smoke
(Figure S1). Participants were divided into two groups: 23
individuals in Group A (ages 18-25) and 182 in Group B
(over 25) to examine differences in expression biomarkers.
Inclusion criteria included healthy homemakers and
non-smokers who used biomass for cooking. Pregnant
or lactating women, smokers, and those with chronic
illnesses were excluded. The study was approved by
the Institutional Ethics Committee, following ICMR
guidelines, and informed consent was obtained from all
subjects. A questionnaire collected data on socioeconomic
status, habits, health, and exposure (Table S1).

Materials and Methods

Peripheral blood samples were collected via
venipuncture, followed by plasma separation and
lymphocyte isolation using density gradient centrifugation.
DNA, RNA, miRNA, and protein were extracted from the
isolated lymphocytes for downstream analyses. Oxidative
DNA damage was assessed using Formamidopyrimidine
Glycosylase (FPG) digestion, and Reactive oxygen species
(ROS) levels were measured with 5-(-6)-Chloromethyl-20,
70-dichlorodihydrofluorescein Diacetate Acetyl Ester
(CM-H:DCFDA) [13]. Mitochondrial dysfunction
was evaluated by examining the expression of the
following; fission/fusion, Integrated Stress Response
(ISR), and repair genes, along with mitochondrial DNA
methylation[14]. To assess inflammation, levels of
Nuclear Factor kappa B (NF-kB), Interleukin-6 (IL-6),
and Tumor Necrosis Factor Alpha (TNF-a)) were analyzed,
while breast cancer biomarkers Granulocyte-Colony
Stimulating Factor (G-CSF) , Alpha-fetoprotein (AFP),
CEA were measured with Enzyme Linked Immunosorbent
Assay (ELISA) [15]. The expression of miRNAs ;miR-
7a, miR-7b, miR-21 was profiled using poly-A tailing,
cDNA synthesis, and RT-PCR (Insta Q-96, India) [16].
Expression levels of IncRNA/mRNA targets [17, 18],
RNA methylation, and Telomerase Reverse Transcriptase
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(TERT) were also analyzed [18-20]. Data were processed
using R, and multivariate correlation analysis was carried
out using machine learning techniques. Building on our
earlier work in predictive modeling [21-23], we developed
an Al-based breast cancer risk prediction model. This
model integrates clinical and molecular biomarker data,
with logistic regression selected for its interpretability
and reliable performance. For detailed methodology
please refer to Supplementary Information: Materials
and Methods.

Results

Estimation of household air pollutant exposure assessment

Pearson correlation analysis was conducted to examine
the relationships among PM, age (AG), and total exposure
(TE) (Figure S2). The correlation matrix heatmap
revealed a very weak negative correlation between age
and particulate matter (AG vs PM: -0.04), indicating
minimal impact of age on PM exposure. Subsequently, a
slight positive correlation was observed between age and
total exposure (AG vs TE: 0.53), suggesting that total
exposure rises with age. A more pronounced positive
correlation was established between PM levels and total
exposure (PM vs TE: 0.66), indicates greater PM levels
are associated with increase in total exposure. The scatter
plot matrix and line plots reinforced these patterns visually,
indicating no relationship between AG and PM, a moderate
upward trend between AG and TE, and a strong upward
trend between PM and TE. The bar chart illustrating
the correlation coefficients further demonstrated these
associations, with AG vs PM close to zero, AG vs TE
moderate, and PM vs TE strong.

Multivariate correlation analysis
Age and inflammation levels

The immunological response to aging is significantly
correlated with cytokine concentrations by age.
Significantly, IL-6 levels rise with age (R = 0.95, p <
0.001), which exacerbates inflammation, especially in
women who have been exposed to Indoor Air Pollution
(TIAP). Furthermore, TNF-a and IL-6 have a substantial
association (R =0.99, p <0.000), indicating a coordinated
inflammatory response. Age also has a significant
correlation with the anti-inflammatory cytokine IL-10 (R
= 0.88, p < 0.005), indicating an adaptive mechanism to
combat inflammation. Additionally, IL-4 levels increase
with age (R=10.86, p<0.001). The intricate interaction of
inflammatory and anti-inflammatory signals is indicated
by the significant connection between TNF-a and IL-10
(R=0.95, p <0.000) (Figure S3).

Analysis of mitochondrial epigenetic alterations
Variables such as AGE, oxidative damage, Repair
genes, the ISR gene, mitochondrial biogenesis factors
(fusion and fission), TFAM, and mitochondrial DNA
(mtDNA) methylation were analyzed. Each plot includes
a line of best fit with R-squared (R?) values ranging
from 0.81 to 0.97, indicating strong correlations, and
p-values of 0.000, indicating statistical significance. This
illustrates the relationships between aging and various
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CEA Biomarker Distribution by mtDNA Methylation Levels
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Figure 1. This Type of Plot Combines Features of Both a Box Plot and a Density Plot to Illustrate the Distribution
and Density of Data Points. The x-axis categorizes different methylation levels, while the y-axis displays CEA levels
ranging from 0 to 400. This distribution suggests potential correlations, indicating that higher mtDNA methylation
may be linked to increased CEA levels. The plot visually conveys how CEA levels are distributed across varying
methylation levels, with each group showing how these levels fluctuate. The pattern suggests a potential correlation,
where higher mtDNA methylation levels may be associated with elevated CEA levels in BC cases, offering insight
into possible biological relationships between these factors.

epigenetic factors (Figure S4). We emphasize the disease’s
heterogeneity and suggest that mtDNA methylation
may influence tumor behavior and exposed individual
outcomes (Figure 1). A correlation matrix displays the
relationships between BC-related genes or biomarkers
(Figure 2). In contrast, a scatterplot matrix visualizes

the correlations among variables such as Mitochondrial
Transcription Factor A (TFAM), CEA, G-CSF, AFP, and
mtDNA methylation (Figure 3). A positive correlation was
found, indicating that IL-6 levels rise with age, which is
associated with chronic inflammation. Additionally, higher
mtDNA methylation levels correlate with increased TNFa
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Figure 2. The Heatmap Conveys the Relationships between the Selected Variables Listed with Age through a Color-
Coded System. Red squares indicate a strong positive correlation, where co-regulated gene groups or biological
pathways increase together. In contrast, blue squares represent a strong negative correlation, showing that as one
variable rises, the other declines. Yellow squares highlight weak or no correlation, suggesting minimal or absent
relationships. This visual representation aids in identifying patterns of co-regulation and interactions among biological
pathways.
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Pair Plot of Age, TFAM, TR, GCSF, CEA, AFP, mtDNA methylation
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Figure 3. The Scatter Plots and Pair Plots are Color-Coded to Represent Different Groups, such as Various Stages of BC
or Distinctions between Control and High-Risk Group Groups. Along the diagonal of the matrix, histograms display
the distribution of each individual variable. The histogram for TFAM reveals its frequency present in the dataset in
correlation with the CEA, GCSF, AFP, TR (TERT), and mtDNA methylation. This combined approach facilitates a
clear visualization of relationships between variables while illustrating individual measurements' distribution.

concentration (Figure 4). Notably, older women exhibited Our results showed altered expression of miRNA-21
a higher rate of RNA methylation (Figure S5). with fold change of 2.925540.05, highest in the women,
a) IL6 Concentration vs Age b) TNF-A Concentration vs mtDNA Methylation
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Figure 4. Features Scatter Plots that Provide a Comprehensive Overview of the Relationships Depicted in the Plot.
The X-axis represents a) Age and b) mtDNA methylation, showcasing the age of individuals and revealing age-
related trends. The Y-axis displays IL-6 and TNFa concentration, indicating potential inflammatory responses. Each
data point corresponds to an individual and is color-coded to distinguish between different groups, such as control
and High-Risk Group. A trend line illustrates the positive correlation between age and IL-6 concentration, indicating
that IL-6 levels also tend to rise as age increases. Additionally, higher levels of mtDNA methylation are linked to
increased TNFao concentration, highlighting a connection between genetic regulation and inflammatory responses.
These findings underscore the relevance of age, IL-6, and TNFa in understanding chronic inflammation and its health
implications, emphasizing the importance of monitoring these factors with aging and inflammation.
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Average Cross-Validation Accuracy of Different Models
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Figure 5. The Bar Chart Illustrates the Average Cross-Validation Accuracy of Five Machine Learning Models Applied
to a Dataset, Potentially Related to BC Classification or Prediction. Logistic Regression shows the highest cross-
validation accuracy, just above 0.90, making it the best-performing model in this comparison. Gradient Boosting
follows closely, with an accuracy slightly below 0.90, while SVM and KNN perform similarly, around 0.88. Random
Forest, though slightly lower in performance, achieves an accuracy of approximately 0.87. The Y-axis ranges from
0.65 to 1.0, where all models demonstrate high accuracy, indicating their effectiveness in BC prediction. Overall, this
graph suggests that while all the models are reliable, Logistic Regression slightly outperforms the others, making it

the most accurate for this dataset.

in group B among all miR-7a, miR-21, and miRNA-
7b studied (Figure S6 a). Our results showed altered
expression of IncRNAs, i.e., Gas-5, H19, and PVT, among
the women exposed to HAP. The PVT was highly expressed
with a fold change 0f 2.61755+0.05 in the Group B women
category and found to be downregulated in Group A
women (Figure S6 b). The expression of PTEN, MYC,
PIK3CA and BCL2 were found to be downregulated
and the expression of PDCD4, FOXO03, APAF1, CDK2,
E2F2 and CCND1 were highly upregulated with fold
change 2.05198+0.005, 1.15871+0.05, 2.08744+0.05,
1.08706+0.005, 3.44449+0.05 respectively, in Group B
females in comparison to Group A women (Figure S6 c).

Al-based BC risk prediction models were developed
using a dataset of genetic expression and clinical records,
which included features like age, mitochondrial DNA
methylation, G-CSF, and TERT levels. Various machine
learning algorithms were applied, such as Logistic
Regression, Random Forest, Support Vector Machine
(SVM), K-Nearest Neighbors (KNN), and Gradient
Boosting (Figure 5). Stratified K-Fold cross-validation
yielded average accuracy scores: Logistic Regression
(90.18%), Random Forest (89.14%), SVM (90.18%),
KNN (90.18%), and Gradient Boosting (90.18%).
Logistic Regression achieved the highest accuracy with
a confusion matrix showing 29 true negatives and 10
true positives, resulting in 100% recall and precision for
both classes. The Fl-score was 1.00, and the Receiver
Operating Characteristic (ROC) curve showed an
Area under curve (AUC) of 1.00, indicating excellent
discrimination (Figure 6). The Precision-Recall curve
also confirmed high precision and recall rates. The trained
Logistic Regression model is saved for future use in
clinical settings for timely BC risk assessments (Figure 7).

Discussion

In this study, we explored the impact of PM and black
carbon exposure on age-related changes in mitochondrial
epigenetics, which may increase BC susceptibility. We
conducted a cross-sectional pilot study in India with two
groups: 23 younger adults (Group A, 18-25) and 182
older individuals (Group B, above 25). Results showed
significant differences in mitoepigenetic profiling in
Group B, indicating that aging-related mitochondrial
changes may increase BC susceptibility. We investigated
mtDNA methylation status and found alterations linked
to aging and environmental factors, with the older
group exhibiting higher DNA expression levels. We
noted that PM exposure correlates with abnormal DNA
methylation patterns. Our result indicate elevated levels
of DNA repair enzymes OGG1, APE1, and POLG in
the older group, confirming base excision repair (BER)
activation in response to oxidative damage. Notably,
OGGI activity was significantly higher than APE1’s,
suggesting that APE1 enhances OGG1 function. The
relationship between OGG1 and unhealthy aging,
especially with increased TNF-a levels, emphasizes the
role of mitochondrial dysfunction in cancer susceptibility
[24]. miRNAs crucial in regulating mitochondrial stress-
related gene transcription and act as a link between
genomic and epigenomic mechanisms [25]. Our study
found altered miRNA expression in women exposed to
PM2.5 and black carbon, with older women showing
significantly increased miR-21, which has both tumor-
suppressive and oncogenic roles. Previous research also
linked PM2.5 exposure to miRNA expression changes
[26]. IncRNAs influence angiogenesis, mitochondrial
function, and mRNA regulation via miRNA interaction
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Figure 6. The Confusion Matrices for the Five Machine Learning Models Used to Predict BC are Represented as
Follows: each corresponds to a different algorithm. a) The Logistic Regression model illustrates its performance in
classifying cancer cases. b) The Random Forest model highlights its ability to balance sensitivity and specificity. ¢)
The SVM emphasizes its strength in identifying true negatives while showing a tendency for false positives. d) The
KNN model showcases effective true positive and true negative rates. Finally, the e) Gradient Boosting model reveals
challenges with misclassifications. These matrices provide valuable insights into the strengths and weaknesses of each

algorithm in predicting BC.

[27]. Increased PVT in older women and downregulation
of PVT and H19 in Group A indicate ncRNA imbalance,
potentially promoting mitochondrial dysfunction and
tumor progression. Our findings revealed notable change
in mRNA expression associated to stress and proliferation-
related genes, especially in Group B, suggesting disruption
of the miRNA-IncRNA-mRNA axis due to BC exposure.
Additionally, we found age-related changes in the
expression of OMA1, DELEI, and HRI genes in Group

Receiver Operating Characteristic (ROC) for Logistic Regression

B, with Previous research has found that abnormalities
in mitochondrial integrity are closely linked to ISR
induction [16]. Along with increased proinflammatory
cytokines, reflecting chronic inflammation linked to
aging. Following this Studies have linked aging to
chronic “inflamm-aging” driven by immunosenescence
and adipose-derived cytokines [28]. Elevated IL-6, IL-
8, and TNF-0 may promote tumor growth [29]. This
study suggests a connection between elevated cytokine

Precision-Recall for Logistic Regression
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Figure 7. The x-axis Represents the False Positive Rate (FPR), which Measures the Proportion of Negative Instances
Incorrectly Classified as Positive. In contrast, the y-axis represents the True Positive Rate (TPR), indicating the
model's accuracy in identifying positive instances. The orange line on the plot reaches the top left corner, which
suggests the model perfectly distinguishes between positive and negative classes. The AUC, displayed as 1.00,
confirms this perfect classification. An AUC of 1.00 represents the ideal scenario where the model correctly classifies
all instances without false positives or negatives. This ROC curve indicates that the logistic regression model is highly
accurate. However, in real-world applications, such a perfect curve is rare and could indicate exceptional performance
or possible overfitting, depending on the data.
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Figure 8. The Figure Illustrates the Comprehensive Impact of Our Study, commencing with blood collection, followed
by processing, and culminating in the application of artificial intelligence to predict the risk of breast cancer.

levels, tumor growth, and hormonal receptor expression,
warranting further investigation.

This study found a significant association between
mtDNA methylation and TR expression, highlighting its
potential role in BC risk, particularly with aging. Higher
mtDNA methylation was linked to advanced age and
increased BC risk. Additionally, exposure to PM2.5 was
associated with abnormal DNA methylation patterns
in healthy individuals, and early-life exposure to TAP
correlated with methylation patterns in breast tumors [30].
There is a relationship between TR activity and mtDNA,
suggesting physiological connections. Research indicates
that telomere length (TL) and mtDNA are co-regulated,
both related to BC risk[31]. Oxidative stress damages
telomeric DNA, and antioxidants may help reduce this
damage [32]. Our analysis showed a modest increase
in AFP levels associated with mtDNA methylation,
suggesting a link between mitochondrial DNA changes
and BC. Increased levels of AFP may indicate possible
mitochondrial dysfunction associated with cancer, and
recent studies propose that mtDNA methylation could be

a marker of overall cellular stress [33]. It is important to
recognize that DNA methylation exhibits strong tissue
specificity [34], influenced by cell-type composition,
chromatin context, and local transcriptional activity.
Consequently, methylation alterations detected in
peripheral blood leukocytes may not accurately mirror
those occurring within breast epithelial tissue, particularly
in the context of tumor heterogeneity and distinct
epigenetic regulation. While peripheral blood provides a
practical and minimally invasive source for population-
level screening, its use as a surrogate for breast tissue
epigenetic profiling has limitations. Therefore, future
research should include matched tissue-based analyses
and functional validation and resolve cell-type specific
methylation dynamics to confirm the biological relevance
of peripheral methylation signatures in breast cancer.
Machine learning models are employed for BC
classification to predict tumor malignancy based on
features like DNA methylation, biomarkers from biopsies,
imaging, and genetic tests. Various models, including
Logistic Regression, Random Forest, Gradient Boosting,
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SVM, and KNN, are used to capture patterns in labeled data.
Cross-validation ensures model reliability by splitting data
into training and testing sets, and performance is assessed
through metrics like accuracy, precision, recall, F1-score,
and ROC-AUC. Logistic Regression is is especially
appreciated for its interpretability, aiding clinicians
understand the impact of biomarkers on risk. Despite
the model’s impressive results, certain limitations must
be acknowledged. The cross-sectional design restricts
the ability to draw causal conclusions, and the small,
age-discrepant group decreases statistical power and
generalizability. Uncontrolled confounding factors such
as hormonal status, menopause, genetics, and lifestyle
may have impacted the outcomes. Although significant
alterations in mitoepigenetics and non-coding RNA
expression were noted, functional studies are necessary for
mechanical validation. Furthermore, the machine learning
model was created using a single dataset without external
validation, which limits its clinical applicability. Future
research should involve larger, longitudinal cohorts,
incorporate multi-omics data, and implement robust
model validation to enhance and broaden these findings.
Additionally, the model’s performance depends on the
quality of the input data; thus, ongoing data updates and
monitoring are essential to ensure sustained accuracy
over time.

In conclusion, this research highlights a crucial
connection between prolonged exposure to IAP, age-
related modifications in mitochondrial epigenetics, and
an increased likelihood of BC among rural women in
India. Our findings show significant relationships between
exposure to particulate matter, changes in mitochondrial
DNA methylation, levels of inflammatory cytokines, and
irregular expression of non-coding RNA, especially in
older female participants. Multivariate Cox regression
identified mtDNA methylation as a key biomarker for
age-related BC risk. In addition, integrating molecular
biomarkers with Al-optimized models demonstrates
a high degree of predictive precision for BC risk,
indicating promising potential for non-invasive early
detection strategies that support personalized medicine
by elucidating environmental cancer links, and guiding
future preventive research (Figure 8). However, the
cross-sectional design, limited sample size, and absence
of tissue-specific validation calls for larger, longitudinal
studies. Future work should include breast tissue epigenetic
profiling, toxicological PM2.5 analysis, and multi-omics
approaches to refine our understanding of environmental
contributions to BC and advance personalized prevention
strategies.
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Abbreviations

AFP: Alpha-fetoprotein

AG: Age

Al Artificial Intelligence

AUC: Area under curve

BC: Breast Cancer

BER: Base excision repair

CEA: Carcinoembryonic Antigen

CM-H2DCFDA: 5-(and-6)-Chloromethyl-20,
70-dichlorodihydrofluorescein Diacetate Acetyl Ester

CO: Carbon Monoxide

ELISA: Enzyme Linked Immunosorbent Assay

FPG: Formamidopyrimidine Glycosylase

FPR: False Positive Rate

G-CSF: Granulocyte-Colony Stimulating Factor

HAP: Household Air Pollution

IAP: Indoor Air Pollution

IL: Interleukin

IL-6: Interleukin-6

ISR: Integrated Stress Response

KNN: K-Nearest Neighbors

mtDNA: Mitochondrial DNA

ncRNA: Non-coding Ribonucleic Acids

NF-kB: Nuclear Factor kappa B

PM: Particulate Matter

PM2-5: Particulate Matter with a diameter of 2.5
micrometers or smaller

ROC: Receiver Operating Characteristic
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SEER: Surveillance, Epidemiology, and End Results
SVM: Support Vector Machine

TE: Total Exposure

TERT: Telomerase Reverse Transcriptase

TL: Telomere length

TFAM: Mitochondrial Transcription Factor A
TNF-a: Tumor Necrosis Factor Alpha

TPR: True Positive Rate
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