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Introduction

Lung cancer, especially renal cell carcinoma (RCC), 
is a severe global health problem and contributes to high 
mortality from malignancy. As the prevalence of lung 
cancer continues to rise, better tools for diagnosing disease 
earlier and improving outcomes in patients are warranted. 
Existing diagnostic methods predominantly involve 
imaging modalities such as CT, MRI, and ultrasound, 
in addition to biopsy through histopathology [1-3]. 
However, this is not enough to guarantee high diagnostic 
performance in distinguishing between malignant 
and benign tumours, as well as to assess cancer stage/
prognosis. Conventional imaging modalities often have 
low specificity and sensitivity, potentially resulting in 
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overdiagnosis or detection at a later stage. Consequently, 
there is an urgent need for such innovative strategies that 
are suited and possible with state-of-the-art technologies 
to support correct diagnosis as well as earlier disease 
intervention [4-5].

Deep Learning, is a subset of artificial intelligence 
(AI), has made unprecedented transformations in medical 
imaging by providing tools for automated image analysis. 
One of the more popular deep learning architectures 
used for image classification and object detection is 
Convolutional Neural Networks (CNNs). CNNs are very 
useful for automatically learning hierarchical features 
from images, which makes them well-suited for medical 
imaging [6-8]. Given the numerous CNN models that 
exist, VGG 16, ResNet 50, and DenseNet are some of 
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the most promising in detecting cancer. VGG 16 is a 
deeper model and is able to capture finer details quickly, 
but it may be computationally expensive. ResNet 50 uses 
well-known residual connections to address the vanishing 
gradient problem and improve the training of deeper 
networks, resulting in better performance on feature 
extraction and classification. Dense connectivity improves 
feature reuse and gradient flow, thus increasing image 
classification accuracy. All of them have demonstrated a 
remarkable ability to enhance the diagnostic performance 
for lung cancer, but many issues still need to be solved, 
and barriers that are related mainly to their overfitting 
or computational complexity must be overcome [9-10].

The ant colony optimisation method is a metaheuristic 
algorithm with which the foraging behaviour of ants has 
been simulated. Feature selection in machine learning 
is a type of optimisation problem where ACO has been 
successfully applied. To reduce data dimensionality, 
improve model performance, and minimise computational 
expenses, feature selection is one of the significant 
steps. The ACO aims to mimic how ants search for the 
shortest path between food sources and their nests while 
automating which features are most important in a dataset 
[11-13]. This feature selection algorithm works in the best 
way when one weights and rates features appropriately, 
then ants also converge on a better subset of pheromones 
considering such feature factorisation. Several previous 
studies have shown the utility of ACO in improving 
machine learning models in different applications, 
including some related to medical diagnostics. ACO is 
proposed to optimise the selection of features in lung 
cancer and, thereby, could have a potential impact on 
enhancing feature selection approaches for more accurate 
classification models with high performance [14-15].

Combining ACO and deep learning models provides 
a promising path toward improving model performance, 
more specifically in medical diagnostics. Some earlier 
researchers have investigated the synergy of ACO and 
deep learning frameworks since they can provide better 
outcomes than using a single approach. ACO improves the 
selection of features through which the relevant attributes 
from complex data sets are selected, and these are sent to 
deep learning models for training as well as prediction. 
By integrating dotted lesions into the dataset(label), these 
networks increase accuracy in detecting subtle patterns of 
abnormality through medical images. The features of the 
] image are optimised by ACO in VGG 16, ResNet50 and 
DenseNet at the feature level to improve their performance 
on lung cancer detection, for example. Many studies have 
shown that improving diagnostic accuracy and reducing 
the risk of overfitting this approach was beneficial by 
improving model generalization capabilities[16-17]. 

LSTM (Long Short-Term Memory) networks are a 
class of RNNs designed to recognize sequential data or 
temporal patterns. Since LSTMs can capture dependencies 
across time and have a powerful ability to predict 
sequence outcomes, they are helpful in the modelling of 
medical records (exceptionally patient history datasets). 
LSTMs are a valuable addition to deep learning models, 
providing another perspective when interpreting temporal 
data such as patient symptoms, treatment history and 

therapy response in the context of lung cancer diagnosis 
[18-20]. Combining CNN models with LSTMs allows 
a holistic analysis of the convolutional features learned 
from medical imaging and clinical temporal patterns in 
large-scale electronic health records. This combination of 
data sources significantly improves diagnostic accuracy 
globally and provides a complete image of the patient’s 
health perspective. There has been much research on 
the efficiency of using LSTMs for medical applications, 
including cancer detection, which has been shown to 
increase prediction and classification performances.

Although new techniques of integrating ACO, deep 
learning and LSTM networks for cancer diagnosis 
have been beneficial in yielding better results, the 
current state-of-the-art research leaves several gaps. 
Although integrating these techniques has shown more 
excellent diagnostic as well as methodologic accuracy, 
challenges remain with respect to how best they can 
be applied [21- 22]. Failures related to problems such 
as feature selection, model complexity balancing and 
the integration of different data sources should be 
systematically analyzed. Furthermore, more inclusive 
studies to investigate integrated approaches for different 
types and stages of lung cancer are also required. Frequent 
research in this area will help to fill these gaps, and the 
results can provide potential pathways for integrating 
swarm intelligence with deep learning for more qualitative 
medical diagnostics. Avoiding the vanishing-gradient, 
enhancing feature propagation, reusing features and 
lowering the number of training parameters are some of 
the benefits as compared with other models. This is the 
reason why highest accuracy is achieved as compared 
with other models. The major strength of this work is that 
it deals with forecasting the possibilities of lung cancer 
occurrences apart from the diagnosis.

Materials and Methods

The method of this research includes the combination 
of Ant Colony Optimization (ACO) with deep learning 
models to improve diagnosis and prognosis in lung cancer, 
specifically in relation to lung cancer. The work combines 
convolutional neural networks (CNNs) with recurrent 
neural networks (RNNs) to predict cancer stages on a 
dataset including 1,500 CT scan images of lung cancer 
at various levels and related medical history records. The 
proposed research is shown in Figure 1(a) and Figure 1(b).

The CT scan images dataset is obtained from internet 
sources as well as hospital datasets that give a global 
insight into the pathology of lung cancer in various stages. 
The sample images are shown in Figure 2. This dataset 
has been used in the training of CNN models (ResNet 50, 
DenseNet and VGG 16) for lung cancer, whether present 
or not, along with its stage. These are used for image 
recognition tasks(they have been shown to work well) and 
are great tools available for analysing medical images. A 
CNN (Convolutional Neural Network) model is used as 
the data processing algorithm for CT scan images, from 
which we extract key features to predict cancer tissue.

The study employs medical history records in addition 
to image-based analysis to diagnose more effectively. The 
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records are then analyzed using the RNN model(LSTM 
MODEL). LSTM is preferable to CAP for this task 
because it models the long-range dependencies present 
in sequential data that represent patient history. This 
helps the model to take time series data over time, such 
as how symptoms advance and vary in lab results with 

the forecasting of disease.
The third important detail in the method is applying 

ACO to optimise feature selection. ACO, motivated by 
the foraging behaviour of ants, is employed to improve 
both CNN and LSTM models’ performance in feature 
selection from the data sets. In the case of CT scan 

Figure 1(a). Block Diagram for the Proposed Research

Figure 1(b). Working of the Proposed Research

Figure 2. Deep Learning Model Dataset
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The images, which portray different cancer stages, 
are employed to teach the CNN models for determining 
if the illness is deficient and at what stage. Similar to 
backpropagation, CNNs are designed to automatically 
and adaptively learn spatial hierarchies of features through 
the process called convolution. Types of Layers in CNN 
Initiative layers are Convolutional layer, Pooling Layer, 
and Fully connected layers. The convolutional layers apply 
a set of filters to the input image to create feature maps, 
which learn various features such as edges, textures and 
essential details in an image. The feature maps are then 
down sampled using pooling layers that reduce the spatial 
dimensions but keep only necessary information. The last 
layers are fully connected, meaning they deal with feature 
maps and classify the image into one of several labels.

ResNet 50 is one of the principal architectures in this 
research. It is designed to allow intense networks from the 
train and not suffer vanishing gradients associated with 
deeply placed weights in a backpropagation algorithm. 
The major innovation in ResNet 50 is the introduction of 
residual blocks, which permits fits for adding identified 
with input and fitting out of unrestricted functions. 
Mathematically, the expression of the function:

y=F(x,{Wi})+x

Where x is the input to the residual block, F(x,{Wi}) 
denotes what we want it to learn as residual mapping, 
and y represents output. Where the output x of one or 
more layers is directly added back to it, together with a 
special skip connection called an identity function, which 
retains information from the previous layer and enables 
easy training thanks to Backward Propagation, ensuring 
that gradients remain intact, the deep architecture of 
ResNet 50 in this research works well to capture complex 
patterns available in the CT scan images and helps identify 
cancerous regions accurately.

Another model used in this research is DenseNet, 
which connects each layer using a feed-forward method 
for the vanishing gradient problem. Unlike those above 
architectures, which only take the last output as input, 
each layer in a DenseNet will get its feed-forward from 
all layers before it and provide features to all subsequent 
layers. Symbolically, this dense connectivity pattern is 
written as:

xl=Hl([x0,x1,…,xl-1])

In the above definitions, xℓ are layer lℓth outputs, and 
Hℓ denotes a series of operations that resembles batch 
normalization followed by ReLU before convolution, 
etc., while [x0,x1…, xxl−1] is carrying concatenation 
over feature maps from layers 0 to ℓ−1. This rich 
interconnectivity not only facilitates the passage of 
information and gradients throughout the network but 
also results in more effective use of parameters. Therefore, 
DenseNet has the potential for high accuracy with fewer 
parameters, which is well-suited for deployment tasks 
such as medical image analysis (the precise structures 
on CT images are essential due to differential diagnosis).

Another CNN model, VGG 16 (a variant of the 

analysis, it all starts with extracting features from images 
through deep learning models. Some of these features 
to facilitate possible patterns, textures or anything 
higher than the de-noised level are then fed to the ACO 
algorithm. Usually, ACO works by simulation and actions 
of laying pheromones, iteratively extracting features that 
lead to accurate classification. Its goal is to identify the 
features that achieve an optimal balance between model 
complexity and prediction accuracy of whether a CT slice 
exhibits cancer or normal tissue.

ACO is also employed in the information clearinghouse 
of medical history records to optimise the feature set. 
The ACO algorithm ingests this data, including a series 
of features derived from the records, such as clinical 
indicators, lab results, and patient history. The algorithm 
thus repeats this process and selects, at each iteration, the 
features that are most informative for an accurate disease 
diagnosis or prognosis. The idea is to find some features 
that have a strong predictive power, thus improving the 
performance of LSTM.

Deep Learning Models
In this research, deep learning models are central to 

the task of diagnosing lung cancer, mainly through the 
analysis of lung cancer. The primary models employed 
include Convolutional Neural Networks (CNNs), such 
as ResNet 50, DenseNet, and VGG 16, alongside Long 
Short-Term Memory (LSTM) networks, which are used 
for analysing sequential data, including medical history 
records. Each of these models brings unique strengths to 
the research, enabling precise and robust predictions that 
significantly contribute to early diagnosis and effective 
treatment planning.

In this research, we took lung CT images from the 
LIDC-IDRI dataset located at The Cancer Imaging 
Archive (TCIA). This dataset contains 1,018 patients 
with scans of their chests and had their lung nodules 
expertly annotated. We extracted a total of 1,500 CT 
slices representing patients at different stages of lung 
cancer. The selection ensured that nodules were visible 
and relevant in terms of diagnostic classification to 
provide adequate representation across diverse stages of 
the disease as well as patient age and sex. This dataset has 
been frequently cited in lung cancer research for enabling 
classification and segmentation tasks supporting both 
tasks.As part of image preprocessing steps, important 
features underwent contrast enhancement using histogram 
equalization techniques alongside noise reduction via 
Gaussian or median filtering methods to smooth image 
details. Normalization was additionally applied to 
standardize pixel values. For clinical text data (history or 
lab results), normalization along cleaning and formatting 
were designed for streamlining the information for input 
into LSTM networks making it ready to be processed by 
artificial intelligence algorithms showing deep learning 
functions. To train the model, data was split into two sets 
in an 80:20 ratio where 80% of it was used for training and 
the rest 20% set aside for testing. This approach balanced 
giving the model enough data to work with while also 
reserving some data for testing.
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network), is used in this research. VGG 16 — simple 
and consequently more effective, this network has only 
tiny (3x3) convolutional filters with depths increasing 
further in the early sections of their architecture. With a 
straightforward architecture of VGG (each convolution 
layer followed by ReLU and max-pooling), it excels 
at acquiring high-level features in images. The final 
Convolutional Layer output is flattened and runs through 
several Fully Connected layers before classifying the 
input. When dealing with medical images, subtle changes 
in the texture of tissue or border characteristics can be very 
important to discriminate different stages of cancer, so 
having longer deep models like VGG 16 helps us extract 
better representation from our input data.

This research uses CNNs as well as Long Short-Term 
Memory (LSTM) networks to process sequential data like 
health history records. LSTMs are a RNN model trained 
to learn sequence dependencies. The LSTM network is 
the heart of this algorithm, called the memory cell, which 
allows the recording of information across multiple 
periods. LSTM uses gates (input gate, forget gate and 
output gate) to control the information flow into and out 
of a memory cell, enabling the network to remember or 
discard previous states. The equations for each of these 
gates are as follows.

ft=σ(Wf.[ht-1,xt]+bf)
it=σ(Wi.[ht-1,xt]+bi)
ot=σ(Wo.[ht-1,xt]+bo)
Ct=ft*Ct-1+it*tanh(WC.[ht-1,xt]+bC)
ht=ot*tanh(Ct)

In the equation, ft, it , and  represent the forget gate, 
input gate and output gates, respectively, where itis 
the cell state and ht is LSTM’s hidden states at step, 
respectively, with σ(t) denoting sigmoid function and 
tanh(x ) representing hyperbolic tangent. These gates 
allow the LSTM to learn which bits of information are 
helpful and should be remembered as in medical history 
where medical events affect this future (i.e. patient 
histories). By joining the LSM model with the CNN 
models, they make use of both spatial feature extractions 
provided by a multi-channel convolutional layer and 
temporal predictions accomplished via long-term, short-
term memory networks, generating better data analysis.

These deep learning models are then integrated with an 
Ant Colony Optimization (ACO) based feature selection 
technique to improve its diagnostic and prognostic 
accuracy of lung cancer. This ensures that deep learning 
models’ predictive power is enhanced as they avoid being 
confused by redundant and irrelevant CT scan images and 
medical records.

Ant Colony Optimization
This study uses a heuristic algorithm known as Ant 

Colony Optimization (ACO) to solve this feature selection 
optimization in CT scan image analysis, including medical 
history records. Within this framework, ACO is utilized 
to improve the performance of deep learning models by 
feature selection, further refining diagnosis and prognosis 
accuracy for the specific disease type like lung cancer in 

our study.
ACO is based on the actual ant colony foraging 

behavior where ants find a path between their colony 
and food linearly by leaving traces (pheromones) from 
which others can follow. In this study, the word ant colony 
optimization is used to travel through the real collocation 
space of CT scan images and medical records. The goal is 
to find a subset of the features that best balance between 
model complexity and predictive accuracy.

It starts with the feature extraction from CT scan 
images using deep learning models such as ResNet 50, 
DenseNet, etc. These are features such as patterns, textures 
and other image characteristics that the ACO algorithm 
takes as input. Attributes present in medical history 
records (clinical signs, lab results and patient background) 
are also extracted and introduced into the ACO procedure.

In ACO, the solution space (for this problem in terms 
of possibilities of different feature subsets) is explored 
by a set of artificial ants. This one shows an ant as the 
potential candidate solution that is possibly selected 
features Where the probability pijk of an ant k to move 
from the node I (a particular feature) towards j-th one 
is regulated by a pheromone trail τij and heuristic 
information ηij expressed as follows.

Where τij is the intensity of pheromone on the path 
from feature I to j and ηij heuristic information, often 
related to the importance or relevance degree that a given 
characteristic has in the classification task. The importance 
of the pheromone over that of heuristic information is 
determined by parameters α and β, respectively.

While ants test various feature subsets, they rank them 
as to how well these would perform in the classification 
of CT scan images or disease progression prediction 
from medical records by training the deep models on 
images and studying their generalisation capabilities. The 
accuracy of these models is used in updating pheromone 
trails. Pheromone update rule :

Where the ρ is called as evaporation, which helps to 
prevent a rapid convergence of algorithm on a suboptimal 
solution by decreasing pheromone intensity with every 
time, this is denoted by Δτijk, which indicates the total 
pheromone deposited on that particular path between 
feature ‘I’ and ‘j’ of ant kg, which is dependent with 
respect to performance(accuracy) achieved through the 
Deep Learning model trained upon the subset selected.

ACO progressively updates the selection of features 
by exploring new paths (feature subsets) and updating 
pheromone deposits based on the path quality scores 
achieved. The algorithm repeats this process until it 
reaches an optimal feature subset that can best predict 
the deep learning models.

The best feature subset identified by ACO in this 

𝑝𝑝𝐾𝐾𝑖𝑖𝑖𝑖 =
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research is then applied to the CNN model (ResNet 
50, DenseNet, VGG 16) for CT scan image analysis 
and LSTM for medical history record analysis. ACO 
dramatically improves the performance of these models 
by emphasizing only the most pertinent features, resulting 
in a better understanding of lung cancer stages from CT 
scans and more reason-science-based predictions for 
disease progression based on patient records.

Preprocessing of Dataset
Dataset preprocessing is an essential factor in this 

research, through which clean and standard input data 
are provided to the deep learning models for accurate 
diagnosis and prognosis of lung cancer. The image 
data and textual records both must go through multiple 
preprocessing steps in order for them to be effectively 
trained on and analyzed by deep learning models.

The raw CT scan data are gathered from hospitals and 
online resources and present different resolution levels 
as well as contrast/noise. Many preprocessing steps are 
applied to standardize these images. Initially, we resize 
all images to a specific solution because of entering 
proportions for Convolutional Neural Networks (CNNs) 
like ResNet 50, DenseNet and VGG19. This is an essential 
step because CNNs require that the input images be a fixed 
size being passed to it. The images are usually rescaled to 
224x224 pixels, which is a standard input size for many 
deep-learning models.

After that, a couple of contrast enhancement techniques 
are applied to enhance the visibility of important structures 
in the images (like tumour boundaries or abnormal tissue 
targets). There are various techniques for improving 
contrast in an image, and histogram equalization is one 
method of doing so. It spreads the intensities of the 
pixels across different levels, thus accentuating features 
otherwise difficult to see. Even in medical imaging, it is 
essential as slight variations of tissue density can imply 
the presence of disease.

Another crucial preprocessing step is noise reduction 
since medical images are highly prone to presenting noises 
that can blur out significant visual information. The images 
are then generally smoothed using different filters like 
Gaussian or median filtering to remove the noise. This 
step is to identify those artefacts in order to minimize the 
interference with its learning process of relevant features 
from images.

After enhancement and denoising of the images, they 
are normalized. This step is crucial because it helps to 
standardize the pixel intensity values at a higher level of 
0 and n-1 (generally between 0–255), which eventually 
leads to more stable deep learning models. This ensures 
that the input features are on a similar scale, which, in 
turn, can help speed up the convergence of our model 
during training.Also, the medical history records, clinical 
indicators, lab results and the patient’s previous famous 
are cleared up in order to be input within a Long Short-
Term Memory (LSTM) network. Several steps should be 
performed in order for these textual and numerical files 
to act as input and pre-processing.

Missing values are often present in medical records, 
so first of all, we clean the data to manage these missing 

values. It uses several imputation techniques, which 
depend on the mechanism of missing data. Then, the mean 
of the data is used to fill in missing numerical values and 
the most frequent value among categories for categorical 
data or a 0/1 Placeholder Value. This step ensures that 
the data needs for a complete dataset have been satisfied 
and that the LSTM network can be trained on all relevant 
patient information.Then, the categories in medical notes 
are turned into numeric shapes via one hot encoding, like 
being or not having a particular symptom. This is required 
because deep learning models are based on numerical data, 
and converting the categorical data into such a format 
helps provide an efficient way to represent the variable.

Also, the numerical data in a record is brought on 
feature scaling and normalized in a range similar to the 
image data, the numerical values. This is of particular 
importance in the context of LSTMs because it will 
prevent any one feature from having a higher weighted 
sum than others just because they have larger values; 
therefore, each feature (assuming same-scale numerical 
data) becomes equally relevant to model prediction.

As part of image preprocessing steps, important 
features underwent contrast enhancement using histogram 
equalization techniques alongside noise reduction via 
Gaussian or median filtering methods to smooth image 
details. Normalization was additionally applied to 
standardize pixel values. For clinical text data (history or 
lab results), normalization along cleaning and formatting 
were designed for streamlining the information for input 
into LSTM networks making it ready to be processed by 
artificial intelligence algorithms showing deep learning 
functions.

Finally, structuring the data in a temporal sequence 
allows the retrieval of the sequential nature of medical 
records. Some information is time-dependent, such 
as lab results or symptoms evolving. It requires pre-
postprocessing of the data to frame it over time and map 
dependencies for an LSTM sequence network, which is 
essential in predicting the disease progression as well as 
the outcome.

In addition to medical records, CT scan images were 
also integrated into this study. This multimodal input 
enabled the models to learn spatial and contextual features 
enhancing diagnostic accuracy.

Results

All models were trained and rigorously tested 
to objectively evaluate their accuracy at predicting 
patient lung cancer from CT scans with clinical record 
information. The results are shown in Figure 3. After 
evaluation, ACO+LSTM with DenseNet was the most 
accurate among all, obtaining an accuracy of 97.876%. 
The high precision may be explained by the advantage of 
DenseNet over the residual network to capture detailed 
features in CT scan images and its further optimisation 
through ACO, as well as complementarity temporal 
analysis from patient history with LSTM that leads work 
upon identifying lung cancer. The ResNet 50 model paired 
with LSTM and optimised using ACO also resulted in a 
vital accuracy of 95.6%. While DenseNet -Agro achieved 
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the best result among all others, ResNet 50 has yet shown 
to be a powerful feature extractor and obtained almost 
similar performance as its counterpart. ACO algorithm 
enhances the classification accuracy by mimicking the 
foraging behavior of ants and checking pheromone trails 
to find optimal feature subsets, thus helping the model 
focus on critical features.

The VGG 16 model, which was equipped with ACO 
and LSTM, achieved an accuracy of 90.23%. Even though 
VGG 16 is very good, it provides evidence that the model 
might only be able to capture some aspects of variance 
in data as well as DenseNet and ResNet 50. These results 
together provide pieces of evidence that the DenseNet 
model performs better in all cases than other models and is, 
therefore, the best option for predicting lung cancer stages.

The performance score shown in Figure 4 compares 
three deep learning models (DenseNet, ResNet 50 
VGG19) with Ant Colony Optimization and the Long 

Short-Term Memory network in terms of predicting lung 
cancer based on CT scans along with medical record

Discussion

The model is trained by splitting it into two sets in an 
80:20 ratio where 80% of  it was used for training and 
the rest 20% set aside for testing. This approach balanced 
giving the model enough data to work with while also 
reserving some data for testing.

The DenseNet model, achieving a precision and 
recall of 0.98, exhibits a balanced and highly accurate 
performance, as reflected in its F1-score of 0.98. The 
AUC-ROC value of 0.99 further highlights DenseNet’s 
exceptional capability in distinguishing between 
cancerous and non-cancerous cases, making it the most 
reliable model in this study.

ResNet 50, with a precision, recall and F1 score of 

Figure 3.Accuracy of Each Model

Figure 4.Performance Score of Each Model



Sujatha K et al

Asian Pacific Journal of Cancer Prevention, Vol 27136
Figure 5.Confusion Matrices of Each Model

Performance Parameter DenseNet VGG-16 ResNet-50 DenseNet +ACO VGG16+ACO ResNet-50+ACO
Accuracy (%) 95.432 87.23 91.26 97.876 90.23 95.62

Table 1. Accuracy Values for the Proposed Algorithm with and with-out ACO can be Included

Performance Parameter DenseNet VGG-16 ResNet-50 DenseNet +ACO VGG16 +ACO ResNet-50 +ACO 
Accuracy (%) 95.432 87.23 91.26 97.876 90.23 95.62
Sensitivity (%) 94.121 87.14 90.33 97.145 90.11 95.72
Specificity (%) 94.342 86.22 91.42 97.211 91.24 94.33
F1-score (%) 94.781 86.25 90.07 97.03 91.13 94.21

Table 2. Performance Analysis Proposed Model

0.96, is also predictive but slightly behind DenseNet. It has 
an AUC-ROC value of 0.97, implying it is still an effective 
model for lung cancer diagnosis but not among the best-
performing models available today. VGG 16 model shows 
slightly lower performance of precision=0.91, recall=0.89 
and F1-score= 0.90. The AUC-ROC value of 0.92 is 
considered to be good but not exceptional discriminative 
ability. Conclusively, DenseNet gives the best result 
with better reliability and accuracy performance over 
all these models for this application. The primary focus 
is towards the use of ACO focusing on features director 
selection which in turn enhances wide deep learning base 
frameworks by providing focused feature extraction from 
cluttered complex medical data. 

The following confusion matrices shown in Figure 5 
show the model’s classification performance to predict 
overseen lung cancer. The DenseNet model (which has 
the best accuracy) correctly classified 950 actual positive 
cases and also 965 true negatives, with only 15 false 
positives and a few more false negatives 20. This means 
DenseNet can detect both cancerous cases and non-cancer 
cases. Although the ResNet 50 model also had satisfactory 
performance, it identified true positives and 950 false 
negatives compared to a slightly higher error rate of 
adequate magic number. ResNet 50 also performs well, 
although slightly worse than DenseNet. VGG 16- though 
with more mistakes, was able to identify a large number of 
true positives (890) and true negatives (925), but also made 
quite a few false positive errors. VGG 16 had the highest 
wrong answer output. It shows that VGG 16 performs 
quite worse compared to DenseNet and ResNet 50 in 
terms of correctly classifying lung cancer. The ensemble 
uses predictive strengths of DenseNet, ResNet 50, VGG 
16 while also incorporating LSTM . ACO guarantees 
optimum feature input while outputs are averaged or 
decided via majority vote for final prediction.

These models image-based tasks such as classifying 

images or predicting sequences have been successfully 
used. The synergetic weak points of the models as 
DenseNet’s feature reuse, ResNet’s depth handling, 
VGG’s simplicity combined with LSTM’s temporal 
learning further add to predominant performance. 

The evaluation was performed based on accuracy, 
precision, recall and F1-score derived metrics. The best 
performance of 97.9% was achieved using ACO + LSTM 
+ DenseNet which indicate feature optimization was 
effective.

The ensemble uses predictive strengths of DenseNet, 
ResNet 50, VGG 16 while also incorporating LSTM . 
ACO guarantees optimum feature input while outputs are 
averaged or decided via majority vote for final prediction.

To assess the strength of integrated ACO and deep 
learning models performed, first 5-fold validation is used 
for analysis. This involved random generation of five 
equal parts within the dataset, four of which would serve 
as a training session while one part would be dedicated 
to testing.

Figure 6 displays the accuracy values and data loss 
for three deep learning models by each integration with 
Ant Colony Optimization Algorithm Parameters and 
LSTM. The DenseNet model outperforms VGG16 as 
training progresses from 10 to 120 epochs and reaches 
a test accuracy of about 97.9% with minimal data loss 
(0.09) at the end of epoch-120 only for both models. The 
results reveal that denseNet will be a fast learner with high 
accuracy and converge quickly to the optimal because of 
low error rate closing.

Table 1 provides the accuracy values for the proposed 
algorithm with and without ACO can be included.

The accuracy, sensitivity, specificity and F1 score 
were calculated to check performance standards. Table 
2 provides the performance analysis of various model.

ResNet 50 performed similarly well, reaching an 
accuracy of 96.2% and a data loss at only about 0.12 data 
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Figure 6. Training Curves for Each Model

loss on 120 epochs. ResNet 50 is quite behind DenseNet, 
but it has continuously improved for the subsequent 
epochs. VGG 16 has the lowest result, with an accuracy of 
75.0% and data loss of.052 at epoch 10. It does converge 
eventually, with the highest accuracy of 92.3% and data 
loss reaching down to 0.18 at epoch number 120. The 
VGG 16 makes considerable improvement, but not to the 
extent that it surpasses DenseNet and Resnet 50, so more 
training or tuning is likely required for a similar result. In 
this research, DenseNet stands out as the most efficient 
and accurate model.

T h e  h y b r i d  V G G 1 6 + L S T M + A C O , 
ResNet50+LSTM+ACO, and DenseNet+LSTM+ACO 
models for lung cancer detection show distinct training 
dynamics, with DenseNet achieving the fastest 
convergence to 98.2% training and 94.2% validation 
accuracy alongside the lowest losses. Dual subplot training 
curves showing DenseNet+LSTM+ACO converges 
fastest with highest validation accuracy (94.2%) and 
lowest loss, followed by ResNet50 and VGG16 hybrids. 
ResNet50+LSTM+ACO follows closely, hitting 91.4% 
validation accuracy by epoch 50 with balanced loss 

reduction. VGG16+LSTM+ACO converges slowest to 
88% validation accuracy, showing higher validation loss 
variance indicative of greater overfitting risk.

The hybrid CNN-LSTM-ACO models for lung 
cancer detection exhibit distinct training behaviors, 
with DenseNet achieving the highest accuracy (98.2%) 
and lowest loss (0.18) by epoch 50, indicating optimal 
optimization via ACO hyperparameter tuning.

Training loss curves showing DenseNet+LSTM+ACO 
achieves lowest training loss (0.18) and highest accuracy 
(98.2%) by epoch 50. ResNet50+LSTM+ACO shows 
strong gains to 96% accuracy and 0.22 loss, benefiting 
from residual blocks enhanced by LSTM sequencing. 
VGG16+LSTM+ACO lags with 90.5% accuracy and 0.33 
loss, reflecting challenges in deeper feature extraction 
despite ACO integration. DenseNet+LSTM+ACO 
converges most efficiently, dropping loss from 1.65 to 
0.18 while steadily climbing accuracy.

In conclusion, in this research, , Ant Colony 
Optimization (ACO) anomaly-based learning framework 
integration with improved deep models, including 
DenseNet, ResNet 50, and VGG16, along with LSTM 
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Networks, can predict the class of lung cancer from CT 
Scans and medical records more accurately. This indicates 
that the proposed ACO-based DenseNet with LSTM 
exceeds all other models with an accuracy of 97.9%, 
which suggests the great potential of its ability in the 
management of complex medical imaging and temporal 
data. ResNet 50, another model optimised by ACO, has 
an accuracy of 96.2%, which reassures robustness and 
efficiency. However, although VGG 16 is showing marked 
increases in subsequent training epochs, its accuracy is 
90.23%, which is less compared to other models. Given 
the strong performance of an ACO in this research, 
feature selection is crucial for deep learning models by 
capturing essential features that are helpful in disease 
classification. The validation of this swarm-based deep 
learning approach in the medical field suggests its potential 
applicability to other disease diagnoses and prognoses. 
A 5-fold cross-validation technique was used, where the 
dataset was randomly divided into five equal parts-four 
used for training and one for testing in each iteration.

The capability of performing diagnosis and prognosis 
of lung cancer outcomes displayed by these ACO+DL 
models outdid SVM and Random Forest features through 
enhanced optimization for classification effectiveness 
obtaining higher values for accuracy along with other 
benchmarks tested as well like sensitivity and F1-score. 
ACO+DL models showed better lung cancer outcomes’ 
diagnosis and prognosis accuracy than SVM and Random 
Forest due to improved optimization for classification 
effectiveness. They also outperformed these benchmarks 
on accuracy, sensitivity, as well as F1-score. The 
results highlight the significance of integrating robust 
optimization algorithms with cutting-edge deep learning 
architectures for fostering enhanced accuracy, reliability, 
and generalizability. In the future, AI-mediated healthcare 
solutions will be responsive to enriching patient outcomes 
and streamlining medical proceedings.

In future work, statistical validation using measures 
like standard deviation and p-values will be incorporated 
to strengthen result reliability. Additionally, explainability 
techniques such as Grad-CAM will be applied to enhance 
clinical transparency and support trust in AI-driven 
diagnostic decisions.
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