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Abstract

Objective: The goal of this study is to increase the accuracy and reliability in diagnosing lung cancer with a new
approach that employs Ant Colony Optimization in an ensemble with deep learning models: DenseNet, ResNet 50, VGG
16, and Long Short-Term Memory networks. In this study, Ant Colony Optimization has been united with advanced
deep learning models like DenseNet, ResNet 50, VGG 16, Long Short-Term Memory networks, for improved detection
of lung cancer from CT images and medical records. ACO optimization in feature selection was performed, greatly
enhancing the performance of models, which when tested showed high accuracy rates in Al-driven health care solutions.

DenseNet, combined with ACO and LSTM, achieved an accuracy of 97.9%. The study demonstrates the effectiveness
of ACO in improving diagnostic precision, setting a foundation for future Al-driven healthcare solutions to improve
lung cancer diagnosis and patient outcomes. Methods: This research integrates Ant Colony Optimization (ACO) with
advanced deep learning models-DenseNet, ResNet 50, and VGG 16-and Long Short-Term Memory (LSTM) networks
to improve lung disease diagnosis from CT scans and medical records. Results: This research enhances lung cancer
diagnosis by integrating Ant Colony Optimization (ACO) with advanced deep learning models like DenseNet, ResNet
50, VGG 16, and LSTM networks. ACO optimizes feature selection, improving model accuracy. DenseNet with ACO
and LSTM achieved the highest accuracy of 97.9%. ResNet 50 reached 96.2%, while VGG 16 had 92.3%. The study
demonstrates the effectiveness of combining swarm intelligence with deep learning for improved medical diagnosis.
Conclusion: The ACO approach effectively optimizes feature selection, significantly improving model performance.
With DenseNet achieving an accuracy of 97.9%, this study highlights promising advancements in Al-driven healthcare
solutions for more precise and reliable lung cancer diagnosis and prognosis.

Keywords: Ant Colony Optimization- Deep Learning- lung cancer- Feature Selection- CT Scans

Asian Pac J Cancer Prev, 27 (1), 129-139

Introduction

Lung cancer, especially renal cell carcinoma (RCC),
is a severe global health problem and contributes to high
mortality from malignancy. As the prevalence of lung
cancer continues to rise, better tools for diagnosing disease
earlier and improving outcomes in patients are warranted.
Existing diagnostic methods predominantly involve
imaging modalities such as CT, MRI, and ultrasound,
in addition to biopsy through histopathology [1]-[3].
However, this is not enough to guarantee high diagnostic
performance in distinguishing between malignant
and benign tumours, as well as to assess cancer stage/
prognosis. Conventional imaging modalities often have
low specificity and sensitivity, potentially resulting in

overdiagnosis or detection at a later stage. Consequently,
there is an urgent need for such innovative strategies that
are suited and possible with state-of-the-art technologies
to support correct diagnosis as well as earlier disease
intervention [4], [5].

Deep Learning, is a subset of artificial intelligence
(AI), has made unprecedented transformations in medical
imaging by providing tools for automated image analysis.
One of the more popular deep learning architectures
used for image classification and object detection is
Convolutional Neural Networks (CNNs). CNNss are very
useful for automatically learning hierarchical features
from images, which makes them well-suited for medical
imaging [6]-[8]. Given the numerous CNN models that
exist, VGG 16, ResNet 50, and DenseNet are some of the
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most promising in detecting cancer. VGG 16 is a deeper
model and is able to capture finer details quickly, but
it may be computationally expensive. ResNet 50 uses
well-known residual connections to address the vanishing
gradient problem and improve the training of deeper
networks, resulting in better performance on feature
extraction and classification. Dense connectivity improves
feature reuse and gradient flow, thus increasing image
classification accuracy. All of them have demonstrated a
remarkable ability to enhance the diagnostic performance
for lung cancer, but many issues still need to be solved,
and barriers that are related mainly to their overfitting or
computational complexity must be overcome [9], [10]
The ant colony optimisation method is a metaheuristic
algorithm with which the foraging behaviour of ants has
been simulated. Feature selection in machine learning
is a type of optimisation problem where ACO has been
successfully applied. To reduce data dimensionality,
improve model performance, and minimise computational
expenses, feature selection is one of the significant steps.
The ACO aims to mimic how ants search for the shortest
path between food sources and their nests while automating
which features are most important in a dataset [11]-[13].
This feature selection algorithm works in the best way
when one weights and rates features appropriately, then
ants also converge on a better subset of pheromones
considering such feature factorisation. Several previous
studies have shown the utility of ACO in improving
machine learning models in different applications,
including some related to medical diagnostics. ACO is
proposed to optimise the selection of features in lung
cancer and, thereby, could have a potential impact on
enhancing feature selection approaches for more accurate
classification models with high performance [14], [15].
Combining ACO and deep learning models provides
a promising path toward improving model performance,
more specifically in medical diagnostics. Some earlier
researchers have investigated the synergy of ACO and
deep learning frameworks since they can provide better
outcomes than using a single approach. ACO improves the
selection of features through which the relevant attributes
from complex data sets are selected, and these are sent to
deep learning models for training as well as prediction.
By integrating dotted lesions into the dataset(label), these
networks increase accuracy in detecting subtle patterns of
abnormality through medical images. The features of the
] image are optimised by ACO in VGG 16, ResNet50 and
DenseNet at the feature level to improve their performance
on lung cancer detection, for example. Many studies have
shown that improving diagnostic accuracy and reducing
the risk of overfitting this approach was beneficial by
improving model generalization capabilities[16], [17].
LSTM (Long Short-Term Memory) networks are a
class of RNNs designed to recognize sequential data or
temporal patterns. Since LSTMs can capture dependencies
across time and have a powerful ability to predict
sequence outcomes, they are helpful in the modelling of
medical records (exceptionally patient history datasets).
LSTMs are a valuable addition to deep learning models,
providing another perspective when interpreting temporal
data such as patient symptoms, treatment history and
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therapy response in the context of lung cancer diagnosis
[18]-[20]. Combining CNN models with LSTMs allows
a holistic analysis of the convolutional features learned
from medical imaging and clinical temporal patterns in
large-scale electronic health records. This combination of
data sources significantly improves diagnostic accuracy
globally and provides a complete image of the patient’s
health perspective. There has been much research on
the efficiency of using LSTMs for medical applications,
including cancer detection, which has been shown to
increase prediction and classification performances.

Although new techniques of integrating ACO, deep
learning and LSTM networks for cancer diagnosis have
been beneficial in yielding better results, the current
state-of-the-art research leaves several gaps. Although
integrating these techniques has shown more excellent
diagnostic as well as methodologic accuracy, challenges
remain with respect to how best they can be applied [21],
[22]. Failures related to problems such as feature selection,
model complexity balancing and the integration of
different data sources should be systematically analyzed.
Furthermore, more inclusive studies to investigate
integrated approaches for different types and stages of
lung cancer are also required. Frequent research in this
area will help to fill these gaps, and the results can provide
potential pathways for integrating swarm intelligence with
deep learning for more qualitative medical diagnostics.
Avoiding the vanishing-gradient, enhancing feature
propagation, reusing features and lowering the number of
training parameters are some of the benefits as compared
with other models. This is the reason why highest accuracy
is achieved as compared with other models. The major
strength of this work is that it deals with forecasting the
possibilities of lung cancer occurrences apart from the
diagnosis.

Materials and Methods

The method of this research includes the combination
of Ant Colony Optimization (ACO) with deep learning
models to improve diagnosis and prognosis in lung cancer,
specifically in relation to lung cancer. The work combines
convolutional neural networks (CNNs) with recurrent
neural networks (RNNs) to predict cancer stages on a
dataset including 1,500 CT scan images of lung cancer
at various levels and related medical history records. The
proposed research is shown in Figure 1(a) and Figure 1(b).

The CT scan images dataset is obtained from internet
sources as well as hospital datasets that give a global
insight into the pathology of lung cancer in various stages.
The sample images are shown in Figure 2. This dataset
has been used in the training of CNN models (ResNet 50,
DenseNet and VGG 16) for lung cancer, whether present
or not, along with its stage. These are used for image
recognition tasks(they have been shown to work well) and
are great tools available for analysing medical images. A
CNN (Convolutional Neural Network) model is used as
the data processing algorithm for CT scan images, from
which we extract key features to predict cancer tissue.

The study employs medical history records in addition
to image-based analysis to diagnose more effectively. The
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records are then analyzed using the RNN model(LSTM
MODEL). LSTM is preferable to CAP for this task
because it models the long-range dependencies present
in sequential data that represent patient history. This
helps the model to take time series data over time, such
as how symptoms advance and vary in lab results with

Figure 2. Deep Learning Model Dataset

the forecasting of disease.

The third important detail in the method is applying
ACO to optimise feature selection. ACO, motivated by the
foraging behaviour of ants, is employed to improve both
CNN and LSTM models’ performance in feature selection
from the data sets. In the case of CT scan analysis, it all
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starts with extracting features from images through deep
learning models. Some of these features—to facilitate
possible patterns, textures or anything higher than the
de-noised level are then fed to the ACO algorithm.
Usually, ACO works by simulation and actions of
laying pheromones, iteratively extracting features that
lead to accurate classification. Its goal is to identify the
features that achieve an optimal balance between model
complexity and prediction accuracy of whether a CT slice
exhibits cancer or normal tissue.

ACO s also employed in the information clearinghouse
of medical history records to optimise the feature set.
The ACO algorithm ingests this data, including a series
of features derived from the records, such as clinical
indicators, lab results, and patient history. The algorithm
thus repeats this process and selects, at each iteration, the
features that are most informative for an accurate disease
diagnosis or prognosis. The idea is to find some features
that have a strong predictive power, thus improving the
performance of LSTM.

Deep Learning Models

In this research, deep learning models are central to
the task of diagnosing lung cancer, mainly through the
analysis of lung cancer. The primary models employed
include Convolutional Neural Networks (CNNs), such
as ResNet 50, DenseNet, and VGG 16, alongside Long
Short-Term Memory (LSTM) networks, which are used
for analysing sequential data, including medical history
records. Each of these models brings unique strengths to
the research, enabling precise and robust predictions that
significantly contribute to early diagnosis and effective
treatment planning.

In this research, we took lung CT images from the
LIDC-IDRI dataset located at The Cancer Imaging
Archive (TCIA). This dataset contains 1,018 patients
with scans of their chests and had their lung nodules
expertly annotated. We extracted a total of 1,500 CT
slices representing patients at different stages of lung
cancer. The selection ensured that nodules were visible
and relevant in terms of diagnostic classification to
provide adequate representation across diverse stages of
the disease as well as patient age and sex. This dataset has
been frequently cited in lung cancer research for enabling
classification and segmentation tasks supporting both
tasks.As part of image preprocessing steps, important
features underwent contrast enhancement using histogram
equalization techniques alongside noise reduction via
Gaussian or median filtering methods to smooth image
details. Normalization was additionally applied to
standardize pixel values. For clinical text data (history or
lab results), normalization along cleaning and formatting
were designed for streamlining the information for input
into LSTM networks making it ready to be processed by
artificial intelligence algorithms showing deep learning
functions. To train the model, data was split into two sets
in an 80:20 ratio where 80% of it was used for training and
the rest 20% set aside for testing. This approach balanced
giving the model enough data to work with while also
reserving some data for testing.
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The images, which portray different cancer stages,
are employed to teach the CNN models for determining
if the illness is deficient and at what stage. Similar to
backpropagation, CNNs are designed to automatically
and adaptively learn spatial hierarchies of features through
the process called convolution. Types of Layers in CNN
Initiative layers are Convolutional layer, Pooling Layer,
and Fully connected layers. The convolutional layers apply
a set of filters to the input image to create feature maps,
which learn various features such as edges, textures and
essential details in an image. The feature maps are then
down sampled using pooling layers that reduce the spatial
dimensions but keep only necessary information. The last
layers are fully connected, meaning they deal with feature
maps and classify the image into one of several labels.

ResNet 50 is one of the principal architectures in this
research. It is designed to allow intense networks from the
train and not suffer vanishing gradients associated with
deeply placed weights in a backpropagation algorithm.
The major innovation in ResNet 50 is the introduction of
residual blocks, which permits fits for adding identified
with input and fitting out of unrestricted functions.
Mathematically, the expression of the function:

y=F(x,{Wi})+x

Where x is the input to the residual block, F(x,{Wi})
denotes what we want it to learn as residual mapping,
and y represents output. Where the output x of one or
more layers is directly added back to it, together with a
special skip connection called an identity function, which
retains information from the previous layer and enables
easy training thanks to Backward Propagation, ensuring
that gradients remain intact, the deep architecture of
ResNet 50 in this research works well to capture complex
patterns available in the CT scan images and helps identify
cancerous regions accurately.

Another model used in this research is DenseNet,
which connects each layer using a feed-forward method
for the vanishing gradient problem. Unlike those above
architectures, which only take the last output as input,
each layer in a DenseNet will get its feed-forward from
all layers before it and provide features to all subsequent
layers. Symbolically, this dense connectivity pattern is
written as:

xI=HI([x0,x1,...,xI-1])

In the above definitions, x{ are layer 10th outputs, and
HU denotes a series of operations that resembles batch
normalization followed by ReLU before convolution,
etc., while [x0,x1..., xxI—1] is carrying concatenation
over feature maps from layers 0 to —1. This rich
interconnectivity not only facilitates the passage of
information and gradients throughout the network but
also results in more effective use of parameters. Therefore,
DenseNet has the potential for high accuracy with fewer
parameters, which is well-suited for deployment tasks
such as medical image analysis (the precise structures
on CT images are essential due to differential diagnosis).

Another CNN model, VGG 16 (a variant of the



network), is used in this research. VGG 16 — simple
and consequently more effective, this network has only
tiny (3x3) convolutional filters with depths increasing
further in the early sections of their architecture. With a
straightforward architecture of VGG (each convolution
layer followed by ReLU and max-pooling), it excels
at acquiring high-level features in images. The final
Convolutional Layer output is flattened and runs through
several Fully Connected layers before classifying the
input. When dealing with medical images, subtle changes
in the texture of tissue or border characteristics can be very
important to discriminate different stages of cancer, so
having longer deep models like VGG 16 helps us extract
better representation from our input data.

This research uses CNNs as well as Long Short-Term
Memory (LSTM) networks to process sequential data like
health history records. LSTMs are a RNN model trained
to learn sequence dependencies. The LSTM network is
the heart of this algorithm, called the memory cell, which
allows the recording of information across multiple
periods. LSTM uses gates (input gate, forget gate and
output gate) to control the information flow into and out
of a memory cell, enabling the network to remember or
discard previous states. The equations for each of these
gates are as follows.

ft=o(Wf.[ht-1.xt] +bf)
it=o(Wi.[ht-1,xt] +bi)
ot=c(Wo.[ht-1,xt]+bo)
Ct=ft*Ct-1+it*tanh(WC.[ht-1,xt]+bC)
ht=ot*tanh(Ct)

In the equation, ft, it, and represent the forget gate,
input gate and output gates, respectively, where itis
the cell state and ht is LSTM’s hidden states at step,
respectively, with o(t) denoting sigmoid function and
tanh(x ) representing hyperbolic tangent. These gates
allow the LSTM to learn which bits of information are
helpful and should be remembered as in medical history
where medical events affect this future (i.e. patient
histories). By joining the LSM model with the CNN
models, they make use of both spatial feature extractions
provided by a multi-channel convolutional layer and
temporal predictions accomplished via long-term, short-
term memory networks, generating better data analysis.

These deep learning models are then integrated with an
Ant Colony Optimization (ACO) based feature selection
technique to improve its diagnostic and prognostic
accuracy of lung cancer. This ensures that deep learning
models’ predictive power is enhanced as they avoid being
confused by redundant and irrelevant CT scan images and
medical records.

Ant Colony Optimization

This study uses a heuristic algorithm known as Ant
Colony Optimization (ACO) to solve this feature selection
optimization in CT scan image analysis, including medical
history records. Within this framework, ACO is utilized
to improve the performance of deep learning models by
feature selection, further refining diagnosis and prognosis
accuracy for the specific disease type like lung cancer in
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our study.

ACO is based on the actual ant colony foraging
behavior where ants find a path between their colony
and food linearly by leaving traces (pheromones) from
which others can follow. In this study, the word ant colony
optimization is used to travel through the real collocation
space of CT scan images and medical records. The goal is
to find a subset of the features that best balance between
model complexity and predictive accuracy.

It starts with the feature extraction from CT scan
images using deep learning models such as ResNet 50,
DenseNet, etc. These are features such as patterns, textures
and other image characteristics that the ACO algorithm
takes as input. Attributes present in medical history
records (clinical signs, lab results and patient background)
are also extracted and introduced into the ACO procedure.

In ACO, the solution space (for this problem in terms
of possibilities of different feature subsets) is explored
by a set of artificial ants. This one shows an ant as the
potential candidate solution that is possibly selected
features Where the probability pijk of an ant k to move
from the node I (a particular feature) towards j-th one
is regulated by a pheromone trail tij and heuristic
information nij expressed as follows.

K _ [Tij]a[nij]ﬁ
Y MIENK[t;]%[ng 1P

p

Where tij is the intensity of pheromone on the path
from feature I to j and nij heuristic information, often
related to the importance or relevance degree that a given
characteristic has in the classification task. The importance
of the pheromone over that of heuristic information is
determined by parameters o and B, respectively.

While ants test various feature subsets, they rank them
as to how well these would perform in the classification
of CT scan images or disease progression prediction
from medical records by training the deep models on
images and studying their generalisation capabilities. The
accuracy of these models is used in updating pheromone
trails. Pheromone update rule :

m
Tij «— (1 _p) 'T[j +ZATijk
k=1

Where the p is called as evaporation, which helps to
prevent a rapid convergence of algorithm on a suboptimal
solution by decreasing pheromone intensity with every
time, this is denoted by Artijk, which indicates the total
pheromone deposited on that particular path between
feature ‘I’ and °j” of ant kg, which is dependent with
respect to performance(accuracy) achieved through the
Deep Learning model trained upon the subset selected.

ACO progressively updates the selection of features
by exploring new paths (feature subsets) and updating
pheromone deposits based on the path quality scores
achieved. The algorithm repeats this process until it
reaches an optimal feature subset that can best predict
the deep learning models.

The best feature subset identified by ACO in this
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research is then applied to the CNN model (ResNet
50, DenseNet, VGG 16) for CT scan image analysis
and LSTM for medical history record analysis. ACO
dramatically improves the performance of these models
by emphasizing only the most pertinent features, resulting
in a better understanding of lung cancer stages from CT
scans and more reason-science-based predictions for
disease progression based on patient records.

Preprocessing of Dataset

Dataset preprocessing is an essential factor in this
research, through which clean and standard input data
are provided to the deep learning models for accurate
diagnosis and prognosis of lung cancer. The image
data and textual records both must go through multiple
preprocessing steps in order for them to be effectively
trained on and analyzed by deep learning models.

The raw CT scan data are gathered from hospitals and
online resources and present different resolution levels
as well as contrast/noise. Many preprocessing steps are
applied to standardize these images. Initially, we resize
all images to a specific solution because of entering
proportions for Convolutional Neural Networks (CNNs)
like ResNet 50, DenseNet and VGG19. This is an essential
step because CNN's require that the input images be a fixed
size being passed to it. The images are usually rescaled to
224x224 pixels, which is a standard input size for many
deep-learning models.

After that, a couple of contrast enhancement techniques
are applied to enhance the visibility of important structures
in the images (like tumour boundaries or abnormal tissue
targets). There are various techniques for improving
contrast in an image, and histogram equalization is one
method of doing so. It spreads the intensities of the
pixels across different levels, thus accentuating features
otherwise difficult to see. Even in medical imaging, it is
essential as slight variations of tissue density can imply
the presence of disease.

Another crucial preprocessing step is noise reduction
since medical images are highly prone to presenting noises
that can blur out significant visual information. The images
are then generally smoothed using different filters like
Gaussian or median filtering to remove the noise. This
step is to identify those artefacts in order to minimize the
interference with its learning process of relevant features
from images.

After enhancement and denoising of the images, they
are normalized. This step is crucial because it helps to
standardize the pixel intensity values at a higher level of
0 and n-1 (generally between 0-255), which eventually
leads to more stable deep learning models. This ensures
that the input features are on a similar scale, which, in
turn, can help speed up the convergence of our model
during training.Also, the medical history records, clinical
indicators, lab results and the patient’s previous famous
are cleared up in order to be input within a Long Short-
Term Memory (LSTM) network. Several steps should be
performed in order for these textual and numerical files
to act as input and pre-processing.

Missing values are often present in medical records,
so first of all, we clean the data to manage these missing
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values. It uses several imputation techniques, which
depend on the mechanism of missing data. Then, the mean
of the data is used to fill in missing numerical values and
the most frequent value among categories for categorical
data or a 0/1 Placeholder Value. This step ensures that
the data needs for a complete dataset have been satisfied
and that the LSTM network can be trained on all relevant
patient information. Then, the categories in medical notes
are turned into numeric shapes via one hot encoding, like
being or not having a particular symptom. This is required
because deep learning models are based on numerical data,
and converting the categorical data into such a format
helps provide an efficient way to represent the variable.

Also, the numerical data in a record is brought on
feature scaling and normalized in a range similar to the
image data, the numerical values. This is of particular
importance in the context of LSTMs because it will
prevent any one feature from having a higher weighted
sum than others just because they have larger values;
therefore, each feature (assuming same-scale numerical
data) becomes equally relevant to model prediction.

As part of image preprocessing steps, important
features underwent contrast enhancement using histogram
equalization techniques alongside noise reduction via
Gaussian or median filtering methods to smooth image
details. Normalization was additionally applied to
standardize pixel values. For clinical text data (history or
lab results), normalization along cleaning and formatting
were designed for streamlining the information for input
into LSTM networks making it ready to be processed by
artificial intelligence algorithms showing deep learning
functions.

Finally, structuring the data in a temporal sequence
allows the retrieval of the sequential nature of medical
records. Some information is time-dependent, such
as lab results or symptoms evolving. It requires pre-
postprocessing of the data to frame it over time and map
dependencies for an LSTM sequence network, which is
essential in predicting the disease progression as well as
the outcome.

In addition to medical records, CT scan images were
also integrated into this study. This multimodal input
enabled the models to learn spatial and contextual features
enhancing diagnostic accuracy.

Results

All models were trained and rigorously tested
to objectively evaluate their accuracy at predicting
patient lung cancer from CT scans with clinical record
information. The results are shown in Figure 3. After
evaluation, ACO+LSTM with DenseNet was the most
accurate among all, obtaining an accuracy of 97.876%.
The high precision may be explained by the advantage of
DenseNet over the residual network to capture detailed
features in CT scan images and its further optimisation
through ACO, as well as complementarity temporal
analysis from patient history with LSTM that leads work
upon identifying lung cancer. The ResNet 50 model paired
with LSTM and optimised using ACO also resulted in a
vital accuracy of 95.6%. While DenseNet -Agro achieved
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the best result among all others, ResNet 50 has yet shown
to be a powerful feature extractor and obtained almost
similar performance as its counterpart. ACO algorithm
enhances the classification accuracy by mimicking the
foraging behavior of ants and checking pheromone trails
to find optimal feature subsets, thus helping the model
focus on critical features.

The VGG 16 model, which was equipped with ACO
and LSTM, achieved an accuracy of 90.23%. Even though
VGG 16 is very good, it provides evidence that the model
might only be able to capture some aspects of variance
in data as well as DenseNet and ResNet 50. These results
together provide pieces of evidence that the DenseNet
model performs better in all cases than other models and is,
therefore, the best option for predicting lung cancer stages.

The performance score shown in Figure 4 compares
three deep learning models (DenseNet, ResNet 50
VGG19) with Ant Colony Optimization and the Long

Short-Term Memory network in terms of predicting lung
cancer based on CT scans along with medical record

Discussion

The model is trained by splitting it into two sets in an
80:20 ratio where 80% of it was used for training and
the rest 20% set aside for testing. This approach balanced
giving the model enough data to work with while also
reserving some data for testing.

The DenseNet model, achieving a precision and
recall of 0.98, exhibits a balanced and highly accurate
performance, as reflected in its Fl-score of 0.98. The
AUC-ROC value of 0.99 further highlights DenseNet’s
exceptional capability in distinguishing between
cancerous and non-cancerous cases, making it the most
reliable model in this study.

ResNet 50, with a precision, recall and F1 score of

CNN Model Performance Metrics
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Figure 4.Performance Score of Each Model
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Table 1. Accuracy Values for the Proposed Algorithm with and with-out ACO can be Included

Performance Parameter DenseNet VGG-16  ResNet-50  DenseNet +tACO  VGG16+ACO ResNet-50+ACO
Accuracy (%) 95.432 87.23 91.26 97.876 90.23 95.62

Table 2. Performance Analysis Proposed Model
Performance Parameter DenseNet VGG-16  ResNet-50  DenseNet +tACO  VGG16 +ACO  ResNet-50 +ACO
Accuracy (%) 95.432 87.23 91.26 97.876 90.23 95.62
Sensitivity (%) 94.121 87.14 90.33 97.145 90.11 95.72
Specificity (%) 94.342 86.22 91.42 97.211 91.24 94.33
F1-score (%) 94.781 86.25 90.07 97.03 91.13 94.21

0.96, is also predictive but slightly behind DenseNet. It has
an AUC-ROC value of 0.97, implying it is still an effective
model for lung cancer diagnosis but not among the best-
performing models available today. VGG 16 model shows
slightly lower performance of precision=0.91, recall=0.89
and Fl-score= 0.90. The AUC-ROC value of 0.92 is
considered to be good but not exceptional discriminative
ability. Conclusively, DenseNet gives the best result
with better reliability and accuracy performance over
all these models for this application. The primary focus
is towards the use of ACO focusing on features director
selection which in turn enhances wide deep learning base
frameworks by providing focused feature extraction from
cluttered complex medical data.

The following confusion matrices shown in Figure 5
show the model’s classification performance to predict
overseen lung cancer. The DenseNet model (which has
the best accuracy) correctly classified 950 actual positive
cases and also 965 true negatives, with only 15 false
positives and a few more false negatives 20. This means
DenseNet can detect both cancerous cases and non-cancer
cases. Although the ResNet 50 model also had satisfactory
performance, it identified true positives and 950 false
negatives compared to a slightly higher error rate of
adequate magic number. ResNet 50 also performs well,
although slightly worse than DenseNet. VGG 16- though
with more mistakes, was able to identify a large number of
true positives (8§90) and true negatives (925), but also made
quite a few false positive errors. VGG 16 had the highest
wrong answer output. It shows that VGG 16 performs
quite worse compared to DenseNet and ResNet 50 in
terms of correctly classifying lung cancer. The ensemble
uses predictive strengths of DenseNet, ResNet 50, VGG
16 while also incorporating LSTM . ACO guarantees
optimum feature input while outputs are averaged or
decided via majority vote for final prediction.

These models image-based tasks such as classifying

images or predicting sequences have been successfully
used. The synergetic weak points of the models as
DenseNet’s feature reuse, ResNet’s depth handling,
VGG’s simplicity combined with LSTM’s temporal
learning further add to predominant performance.

The evaluation was performed based on accuracy,
precision, recall and F1-score derived metrics. The best
performance of 97.9% was achieved using ACO + LSTM
+ DenseNet which indicate feature optimization was
effective.

The ensemble uses predictive strengths of DenseNet,
ResNet 50, VGG 16 while also incorporating LSTM .
ACO guarantees optimum feature input while outputs are
averaged or decided via majority vote for final prediction.

To assess the strength of integrated ACO and deep
learning models performed, first 5-fold validation is used
for analysis. This involved random generation of five
equal parts within the dataset, four of which would serve
as a training session while one part would be dedicated
to testing.

Figure 6 displays the accuracy values and data loss
for three deep learning models by each integration with
Ant Colony Optimization Algorithm Parameters and
LSTM. The DenseNet model outperforms VGG16 as
training progresses from 10 to 120 epochs and reaches
a test accuracy of about 97.9% with minimal data loss
(0.09) at the end of epoch-120 only for both models. The
results reveal that denseNet will be a fast learner with high
accuracy and converge quickly to the optimal because of
low error rate closing.

Table 1 provides the accuracy values for the proposed
algorithm with and without ACO can be included.

The accuracy, sensitivity, specificity and F1 score
were calculated to check performance standards. Table
2 provides the performance analysis of various model.

ResNet 50 performed similarly well, reaching an
accuracy of 96.2% and a data loss at only about 0.12 data

ACO & LSTM ACO & LSTM | ACO& LSTM

Actual Positive Negative Positive Negative Positive Negative
Positive 950 20 930 40 890 80
Negative 15 965 30 950 58 925
Predicted

Figure 5.Confusion Matrices of Each Model
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Training Accuracy: CNN-LSTM-ACO Models
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Hybrid CNN-LSTM-ACO Lung Cancer

— VGGIG+HLSTM+ACO —— ResNetS0+LSTM+ACO

Training Loss

DenseNet+LSTM+ACO

Figure 6. Training Curves for Each Model

loss on 120 epochs. ResNet 50 is quite behind DenseNet,
but it has continuously improved for the subsequent
epochs. VGG 16 has the lowest result, with an accuracy of
75.0% and data loss of.052 at epoch 10. It does converge
eventually, with the highest accuracy of 92.3% and data
loss reaching down to 0.18 at epoch number 120. The
VGG 16 makes considerable improvement, but not to the
extent that it surpasses DenseNet and Resnet 50, so more
training or tuning is likely required for a similar result. In
this research, DenseNet stands out as the most efficient
and accurate model.

The hybrid VGG16+LSTM+ACO,
ResNet50+LSTM+ACO, and DenseNet+LSTM+ACO
models for lung cancer detection show distinct training
dynamics, with DenseNet achieving the fastest
convergence to 98.2% training and 94.2% validation
accuracy alongside the lowest losses. Dual subplot training
curves showing DenseNet+tLSTM+ACO converges
fastest with highest validation accuracy (94.2%) and
lowest loss, followed by ResNet50 and VGG16 hybrids.
ResNet50+LSTM+ACO follows closely, hitting 91.4%
validation accuracy by epoch 50 with balanced loss

reduction. VGG16+LSTM+ACO converges slowest to
88% validation accuracy, showing higher validation loss
variance indicative of greater overfitting risk.

The hybrid CNN-LSTM-ACO models for lung
cancer detection exhibit distinct training behaviors,
with DenseNet achieving the highest accuracy (98.2%)
and lowest loss (0.18) by epoch 50, indicating optimal
optimization via ACO hyperparameter tuning.

Training loss curves showing DenseNet+LSTM+ACO
achieves lowest training loss (0.18) and highest accuracy
(98.2%) by epoch 50. ResNetSO+LSTM+ACO shows
strong gains to 96% accuracy and 0.22 loss, benefiting
from residual blocks enhanced by LSTM sequencing.
VGG16+LSTM+ACO lags with 90.5% accuracy and 0.33
loss, reflecting challenges in deeper feature extraction
despite ACO integration. DenseNet+tLSTM+ACO
converges most efficiently, dropping loss from 1.65 to
0.18 while steadily climbing accuracy.

In conclusion, in this research, , Ant Colony
Optimization (ACO) anomaly-based learning framework
integration with improved deep models, including
DenseNet, ResNet 50, and VGG16, along with LSTM
137
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Networks, can predict the class of lung cancer from CT
Scans and medical records more accurately. This indicates
that the proposed ACO-based DenseNet with LSTM
exceeds all other models with an accuracy of 97.9%,
which suggests the great potential of its ability in the
management of complex medical imaging and temporal
data. ResNet 50, another model optimised by ACO, has
an accuracy of 96.2%, which reassures robustness and
efficiency. However, although VGG 16 is showing marked
increases in subsequent training epochs, its accuracy is
90.23%, which is less compared to other models. Given
the strong performance of an ACO in this research,
feature selection is crucial for deep learning models by
capturing essential features that are helpful in disease
classification. The validation of this swarm-based deep
learning approach in the medical field suggests its potential
applicability to other disease diagnoses and prognoses.
A 5-fold cross-validation technique was used, where the
dataset was randomly divided into five equal parts-four
used for training and one for testing in each iteration.

The capability of performing diagnosis and prognosis
of lung cancer outcomes displayed by these ACO+DL
models outdid SVM and Random Forest features through
enhanced optimization for classification effectiveness
obtaining higher values for accuracy along with other
benchmarks tested as well like sensitivity and F1-score.
ACO+DL models showed better lung cancer outcomes’
diagnosis and prognosis accuracy than SVM and Random
Forest due to improved optimization for classification
effectiveness. They also outperformed these benchmarks
on accuracy, sensitivity, as well as Fl-score. The
results highlight the significance of integrating robust
optimization algorithms with cutting-edge deep learning
architectures for fostering enhanced accuracy, reliability,
and generalizability. In the future, Al-mediated healthcare
solutions will be responsive to enriching patient outcomes
and streamlining medical proceedings.

In future work, statistical validation using measures
like standard deviation and p-values will be incorporated
to strengthen result reliability. Additionally, explainability
techniques such as Grad-CAM will be applied to enhance
clinical transparency and support trust in Al-driven
diagnostic decisions.

Author Contribution Statement

All authors contributed equally to the conception,
implementation, analysis, and manuscript preparation of
this work.

Acknowledgements

The authors collectively acknowledge the valuable
support of their respective institutions and express
gratitude to all individuals and teams who contributed to
the successful completion of this research work.

Funding Statement

This research received no specific grant from any
funding agency in the public, commercial, or not-for-
profit sectors.

138  Asian Pacific Journal of Cancer Prevention, Vol 27

Approval by Scientific Body / Student Thesis

The study is part of an approved student thesis
work and was conducted under institutional academic
supervision.

Ethical Approval

Ethical approval was not required as the study used
publicly available, anonymized datasets. No human or
animal subjects were involved.

Data Availability
The datasets used in this study are publicly available
from open-access sources (e.g., Kaggle, TCIA).

Study Registration
This study was not registered, as it is not a clinical trial
or meta-analysis requiring registration.

Conflict of Interest
The authors declare no conflict of interest.

References

1. Akter S, Amina M, Mansoor N. Early Diagnosis and
Comparative Analysis of Different Machine Learning
Algorithms for Myocardial Infarction Prediction, IEEE
Region 10 Humanitarian Technology Conference, R10-
HTC, vol. 2021-Septe, 2021. https://doi.org/10.1109/R10-
HTC53172.2021.9641080

2. Li M, Zhang Y, Zhang Q, Li J. Tumor extracellular matrix
modulating strategies for enhanced antitumor therapy of
nanomedicines. Mater Today Bio. 2022;16:100364. https://
doi.org/10.1016/j.mtbi0.2022.100364.

3. Wang YR, Yang SY, Chen GX, Wei P. Barbaloin loaded
polydopamine-polylactide-tpgs (pla-tpgs) nanoparticles
against gastric cancer as a targeted drug delivery system:
Studies in vitro and in vivo. Biochem Biophys Res
Commun. 2018;499(1):8-16. https://doi.org/10.1016/j.
bbrc.2018.03.069.

4. Rabbani N, Kim GYE, Suarez CJ, Chen JH. Applications of
machine learning in routine laboratory medicine: Current
state and future directions. Clin Biochem. 2022;103:1-7.
https://doi.org/10.1016/j.clinbiochem.2022.02.011.

5. Mavani NR, Mohd Ali J, Hussain MA, Abd Rahman N,
Hashim H. Determining food safety in canned food using
fuzzy logic based on sulphur dioxide, benzoic acid and sorbic
acid concentration. Heliyon. 2024;10(4):€26273. https://doi.
org/10.1016/j.heliyon.2024.e26273.

6.Bah A, Davud M. Analysis of breast cancer classification with
machine learning based algorithms. In2022 2nd International
Conference on Computing and Machine Intelligence
(ICMI) 2022 Jul 15, pp. 1-4. IEEE. https://doi.org/10.1109/
ICMI55296.2022.9873696.

7. Bharathi P, Shalini C. Advanced hybrid attention-based deep
learning network with heuristic algorithm for adaptive
ct and pet image fusion in lung cancer detection. Med
Eng Phys. 2024;126:104138. https://doi.org/10.1016/j.
medengphy.2024.104138.

8. Jain S, Dhakate S, Gujar P, Rajbhoj P, Sathawane U. Skin
cancer detection and classification using deep learning.
In2024 International Conference on Emerging Systems
and Intelligent Computing (ESIC) 2024. vol. 235,
no. 2023, pp. 249-254, 2024, https://doi.org/10.1109/
ESIC60604.2024.10481538.

9. Khuriwal N, Mishra N. Breast cancer diagnosis using



10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

deep learning algorithm. In2018 international conference
on advances in computing, communication control and
networking. IEEE. ICACCCN 2018, pp. 98-103, 2018,
https://doi.org/10.1109/ICACCCN.2018.8748777.
Fernando KRM, Tsokos CP. Deep and statistical learning in
biomedical imaging: State of the art in 3d mri brain tumor
segmentation. Information Fusion. 2023;92:450-65. https://
doi.org/10.1016/j.inffus.2022.12.013.

CaoF, Zhang J, Li D, Qian Y, Tang C, Zhang X, et al. Optimal
granularity selection for indoor localization detection with
wireless iot networks. Wireless Commun Mob Comput.
2022;2022:1-9. https://doi.org/10.1155/2022/8156917.
Sujatha K, Bhavani NPG, Cao S-Q, Ram Kumar KS. Soft
sensor for flame temperature measurement and iot based
monitoring in power plants. Mater Today. 2018;5(4, Part
3):10755-62. https://doi.org/https://doi.org/10.1016/].
matpr.2017.12.359.

LiY,MaL, Huang J, Disse M, Zhan W, Li L, et al. Machine
learning parallel system for integrated process-model
calibration and accuracy enhancement in sewer-river
system. Environ Sci Ecotech. 2024;18:100320. https://doi.
org/10.1016/j.ese.2023.100320.

Nagarajan SM, Deverajan GG, Chatterjee P, Alnumay W,
Muthukumaran V. Integration of iot based routing process
for food supply chain management in sustainable smart
cities. Sustain Cities Soc. 2022;76:103448. https://doi.
org/10.1016/j.s¢s.2021.103448.

Abd Algani YM, Marquez Caro OJ, Robladillo Bravo
LM, Kaur C, Al Ansari MS, Kiran Bala B. Leaf discase
identification and classification using optimized deep
learning. Meas: Sens. 2023;25:100643. https://doi.
org/10.1016/j.measen.2022.100643.

Han H, Tang J, Jing Z. Wireless sensor network routing
optimization based on improved ant colony algorithm in
the internet of things. Heliyon. 2024;10(1):e23577. https://
doi.org/10.1016/j.heliyon.2023.e23577.

Murugesan M, R K, G DK, D D. Enhancing network lifetime
of ' wsns through the implementation of a modified ant colony
optimization algorithm. Procedia Comput Sci. 2023;230:368-
76. https://doi.org/10.1016/j.procs.2023.12.092.

Sakhawat A, Abbas S, Khan M, Ghazal T, Adnan K,
Mosavi A. A secure healthcare 5.0 system based on
blockchain technology entangled with federated learning
technique. Comput Biol Med. 2022;150:106019. https://doi.
org/10.1016/j.compbiomed.2022.106019.

Arora D, Gupta S, Anpalagan A. Evolution and adoption of
next generation iot-driven health care 4.0 systems. Wirel Pers
Commun. 2022;127(4):3533-613. https://doi.org/10.1007/
s11277-022-09932-3.

Passarelli-Araujo H, Passarelli-Araujo H, Urbano MR,
Pescim RR. Machine learning and comorbidity network
analysis for hospitalized patients with covid-19 in a city in
southern brazil. Smart Health. 2022;26:100323. https://doi.
org/10.1016/j.smhl1.2022.100323.

Raja MS, Anurag M, Reddy CP, Sirisala NR. Machine
learning based heart disease prediction system. In2021
International conference on computer communication and
informatics. ICCCL. pp. 04, 2021, https://doi.org/10.1109/
ICCCI50826.2021.9402653.

Poly TN, Islam MM, Walther BA, Lin MC, Li Y-C. Artificial
intelligence in diabetic retinopathy: Bibliometric analysis.
Comput Methods Prog Biomed. 2023;231(C):9. https://doi.
org/10.1016/j.cmpb.2023.107358.

DOI:10.31557/APJCP.2026.27.1.129
Lung Cancer Diagnosis

Glolel

This work is licensed under a Creative Commons Attribution-

Non Commercial 4.0 International License.

Asian Pacific Journal of Cancer Prevention, Vol 27

139



