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Introduction

Cancer has emerged as a significant health issue in 
the 21st century, with rising prevalence and far-reaching 
impacts on physical, mental, and social well-being [1]. 
The disease affects 1-2% of the population in developed 
countries, with a notable annual increase of nearly 5% in 
less developed nations [2]. Globally, cancer claims over 
7 million lives annually, with projections indicating a rise 
from 10 to 15 million new cases [3]. Breast cancer is the 
most common malignancy among women worldwide, 
with over a million new cases annually. Despite India’s 
lower age-adjusted incidence rate (25.8 per 100,000) 
compared to the UK (95 per 100,000), mortality rates are 
similar. Recent studies indicate rising cancer incidence 
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and mortality in India, with breast cancer now surpassing 
cervical cancer as the leading cause of cancer-related 
deaths among Indian women [4].

Breast cancer has a complex etiology dating back to 
around 3500 BCE. It is characterised by uncontrolled 
cell growth in breast tissue, often originating in the 
milk-producing glands or ducts. Various types of breast 
cancer exist, including invasive ductal carcinoma, 
invasive lobular carcinoma, and ductal carcinoma in situ 
(DCIS). Several risk factors contribute to breast cancer 
development, including genetic mutations. Inherited 
mutations in genes like BRCA1 and BRCA2 significantly 
increase breast cancer risk, particularly among women 
aged 40-55. Hormonal influences, such as exposure to 
oestrogen and progesterone. Age factors that have been 
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reported in women over 50 years. Also, family history 
has been studied as a significant risk factor, especially 
among first-degree relatives who have been diagnosed, 
with approximately 20% of breast cancer patients having a 
family history linked to a predisposing gene, highlighting 
the importance of genetic factors in breast cancer etiology 
[5], as represented in Figure 1. Lifestyle factors, such 
as alcohol consumption, lack of physical activity, and 
obesity, may contribute to breast cancer development. 
In addition, environmental factors such as exposure to 
radiation, certain chemicals, and viruses have also been 
linked to these risk factors.

A viewpoint may not resolve the risk factors of breast 
cancer; researchers have also suggested that viruses, such 
as human papillomavirus (HPV) and mouse mammary 
tumour virus (MMTV), might contribute to breast cancer 
development, although the exact mechanisms are still 
being studied [6]. 

Researchers continue to develop practical solutions 
for breast cancer; meanwhile, early treatments focused 
on localised approaches, including surgery and radiation. 
Historical milestones included radical Mastectomy, 
which William Halsted pioneered in the late 19th century, 
involving the removal of the breast, axillary lymph nodes, 
and chest muscles. The next progress was reported in 
radiation therapy, which was introduced by Marie Curie 
in 1898 [7]. Radiation induces DNA damage via ionising 
radiation (IR) or reactive oxygen species (ROS), leading 
to oxidative stress and DNA damage in cancer cells. 
Then, the 1960s marked a significant shift in breast 
cancer treatment, focused on systemic interventions 
driven by a deeper understanding of the disease. Systemic 
interventions, including hormonal, chemotherapy, and 
biological therapies, were introduced, expanding treatment 
options beyond localised approaches.

While chemotherapy uses common active agents 
like Anthracyclines (e.g., doxorubicin), Taxanes (e.g., 
paclitaxel), Fluoropyrimidines (e.g., 5-fluorouracil), and 
Platinum agents (e.g., carboplatin), anti-cancer drugs 
target and kill rapidly dividing cancer cells, shrinking 

or eliminating tumours, controlling disease progression, 
and relieving symptoms [8, 9]. Biological therapies, 
which focus on HER2-targeted therapies: Trastuzumab 
(Herceptin), a monoclonal antibody, improve outcomes 
in HER2-positive breast cancer patients when combined 
with chemotherapy. Next-generation HER2-targeted 
therapies include Lapatinib (tyrosine kinase inhibitor) 
and Pertuzumab (monoclonal antibody). These therapies 
have significantly improved treatment outcomes, 
reducing recurrence and mortality rates in HER2-positive 
breast cancer patients. Despite significant advances in 
diagnosis and treatment, developing targeted therapies 
that selectively inhibit signalling pathways crucial for 
cancer cell survival and proliferation is an area of ongoing 
research. The heterogeneity of breast cancer, characterised 
by diverse molecular subtypes, underscores the need for 
novel therapeutic strategies that can effectively target 
specific pathways involved in tumorigenesis. 

This can be strategically achieved by predicting 
biological interactions between potential chemotherapeutic 
agents and biomarkers using in silico methods. This 
approach offers significant benefits, like optimising drug 
development, reducing costs, and streamlining clinical 
trials, ultimately bringing effective treatments to market 
faster. Hence, by harnessing computational power, 
researchers can enhance the efficiency and effectiveness 
of cancer treatment development.

Discovering Anti-Cancer Drugs via Computational 
Methods

Despite significant advancements in biotechnologies 
and a better understanding of disease biology, developing 
new, practical, and innovative small molecule drugs 
remains a complicated, time-consuming, and expensive 
project that necessitates collaborations from many experts 
in multidisciplinary fields such as medicinal chemistry, 
computational chemistry, biology, drug metabolism, 
clinical research, and so on. Furthermore, the effective 
discovery and development of a new treatment takes 12 
years, a significant investment. Novel drug development 

Figure 1. Evidence for Polygenic Susceptibility 
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authors used side effect similarity to identify potential 
drug-target interactions. In another study, the author 
leveraged the FDA’s AERS to predict large-scale drug-
target interactions, which remains a crucial adverse event 
reporting system. In addition, recent studies have shown 
that deep learning, particularly neural networks, can 
outperform other methods in predicting drug targets [12]. 
These computational approaches have advanced the field 
of drug target prediction, enabling researchers to identify 
potential therapeutic targets and develop more effective 
treatments.

Ligand-Based Drug Discovery
A) Similarity searching

Ligand-based drug development relies on the concept of 
molecular similarity, where structurally similar molecules 
tend to exhibit similar biological effects. This approach 
uses structural information of active ligands to identify 
and predict new chemical entities with similar properties. 
It’s an indirect protocol that doesn’t require knowledge of 
the target protein’s 3D structure, making it useful when 
the structure is unknown or unpredictable. Molecular 
descriptors, such as physicochemical parameters and 
2D/3D similarity searches, are used to represent reference 
molecules. Hence, this method is frequently used to screen 
novel ligands with intriguing biological activities in 
silico and to optimise the biological activities of ligands 
to improve drug pharmacokinetics, including ADMET 
characteristics (Adsorption, Distribution, Metabolism, 
Excretion, Toxicity).

Molecular descriptors provide the basis for this simple 
and frequently utilised approach. To represent the reference 
molecules, physicochemical parameters (e.g., molecular 
weight, logP, Energy of highest occupied molecular orbital 
(EHOMO), Energy of lowest unoccupied molecular 
orbital (ELUMO), charges) as well as 2D fingerprint and 
3D shape-similarity searches can be used as coordinates. 
For molecular representation in virtual screening, the 2D 
fingerprint (Molprint2D and Unity 2D) and 3D shape 
similarity approaches (MACCS), extended-connectivity 
fingerprints (ECFP), rapid overlay of chemical structures 
(ROCS), and Phase Shape are more commonly utilised. 
For example, Bologa et al. (2006) used 2D fingerprint 
and 3D shape-similarity approaches to find new agonists 
for the GPR30 receptor of the estradiol receptor family. 
Furthermore, both methods have been successfully used in 
virtual screens, and both technologies have outperformed 
docking methods in terms of scalability and computing 
time against various targets. The fundamental issue with 
such approaches is their preference for input molecules 
and difficulty determining which input structures to utilise 
[13].

B) Ligand-Based Pharmacophore Mapping
The pharmacophore-based technique, which develops 

a pharmacophore model (PH4) based on a collection 
of active substances, is another more precise approach 
than molecular descriptors. A pharmacophore is “a set 
of spatial and electronic features necessary to achieve 
effective supramolecular interactions with specific 
biological targets and to initiate (or stop) their biological 

procedures with lower time and money costs and increased 
efficiency are in high demand and could help to improve 
global health and life expectancy. Computational methods 
have been an essential tool in drug discovery projects and 
a cornerstone for novel drug development methodologies 
since the successful creation of HIV protease inhibitor 
Viracept in the United States in 1997, which was the first 
drug design wholly driven by its target structure. This 
speeds up and lowers the cost of drug development. Recent 
developments in computational capacity, especially 
massively parallel computing on graphics processing units 
(GPUs), and AI technologies have converted fundamental 
research into practical applications in the drug discovery 
area. Their excellent success in presenting fresh potential 
ideas and solutions to tackle life-threatening diseases drew 
much attention [10, 11].

Anti-Cancer Drug Target Prediction
Despite the vast number of potential pharmaceutical 

targets (~6,000-8,000 sites) among human genes, only 
about 400 encoded proteins have been successfully 
utilised in medication development. Cancer offers 
numerous potential therapeutic targets, but traditional drug 
development often focuses on single targets, overlooking 
complex disease mechanisms and polypharmacological 
effects. In addition to these limitations of the current 
approaches, Undruggable targets with certain proteins, 
such as phosphatases, transcription factors, and RAS 
family members, lack efficient, enzymatically active 
sites, making them challenging to target. Off-target effects 
are another unintended interaction that can lead to side 
effects, particularly in cancer medications. In addition, 
unknown targets associated with many drugs, including 
anticancer treatments, have unknown or uncharacterised 
target proteins. However, with innovative opportunities 
for drug target prediction and repositioning, identifying 
new indications for existing medicines can accelerate drug 
development. Bioinformatic target prediction can also 
facilitate high-quality methodologies that are essential 
for reliable drug target prediction and discovery. By 
addressing these challenges and leveraging innovative 
approaches, researchers can uncover new therapeutic 
targets and develop more effective treatments.

Various interactive web servers and databases, such 
as SEA (htts://omictools.com/sea-2-tool), Pharmmapper 
(htts://www.lilab-ecust.cn/pharmmapper/), SwissTarget 
Prediction (htts://www.swisstargetprediction.ch/), 
DrugBank (https://www.drugbank.ca/), ChEMBL(http://
www.ebi.ac.uk/chembldb), and BindingDB (http://www.
bindingdb.org/), amongst others, have been developed to 
facilitate drug target prediction. These resources provide 
valuable computational models and tools for researchers. 
Several computational models have been employed 
to investigate drug-protein interactions, including 
network-based models that analyse relationships between 
drugs, targets, and biological networks. Machine learning-
based models, as well, which utilise supervised learning, 
bipartite graph learning, and other approaches to predict 
drug-target interactions.

These tools provide notable studies, such as side 
effect similarity analysis. For instance, one of the 



Piyush Kumar et al

Asian Pacific Journal of Cancer Prevention, Vol 264230

responses,” according to the IUPAC. As a result, the most 
likely chemical properties are represented by the structural 
overlap of essential molecular features generated from 
active chemicals or a binding site in space. The newly 
discovered compounds that fit and complement the 
designed pharmacophore will likely be active against the 
desired target protein. As a result, they can be chosen as 
candidates for further research. Without macromolecular 
structures, this approach has become a fundamental 
computational strategy for promoting and guiding drug 
discovery.

The process of pharmacophore modelling can be 
summarised as follows

(i) Selection of a training set of ligands (active and 
inactive compounds).

(ii) Molecular preparation (low-energy conformations).
(iii) Ligand alignment/superimposition and 

pharmacophore model generation.
(iv) Validation of pharmacophore models.
The availability of a suitable training set of compounds 

exhibiting the same binding mode is critical for 
pharmacophore modelling based on ligands [14, 15].

Materials and Methods

Experimental 
Materials and Instrumentation

All reagents used were of analytical grades and 
sourced from various suppliers: Ranbaxy Laboratories 
Ltd. (Mohali, India); E-Merck (India) Ltd. (Mumbai, 
India) for sodium bicarbonate and sulphanilic acids; 
Hi-Media Lab Pvt. Ltd (Mumbai) for DMEM, MEM, 
antibiotic solution, trypsin, and other chemicals; Acros 
Organics (New Jersey, USA) for MTT; Sigma Aldrich 
(Mumbai) for FBS, NBCS, PI, AO, and EB; S.D. Fine 
Chemicals Ltd. (Mumbai) is responsible for DMSO and 
paraformaldehyde, and Merck Pvt Ltd. (Mumbai) is 
responsible for glutaraldehyde. The MCF7 cell line was 
obtained from the National Centre for Cell Sciences, 
Pune, India. These epithelial cells were isolated from the 
breast tissue of a 69-year-old white woman with metastatic 
adenocarcinoma, making them suitable for breast cancer 
research. The cell line characteristics include human 
epithelial morphology, mammary gland tissue origin, and 
adenocarcinoma disease classification, with applications 
in 3D cell culture, immuno-oncology, anticancer activity, 
and cytotoxicity studies.

The following equipment were utilised: autoclave 
(Equitron), balance (Denver Instruments Apx 203), 
centrifuge (Remi R 24), CO2 incubator (NAPCO series 
5400), deep freezer (-85°C, Krisp cold), ELISA microplate 
reader (Bio-Rad 550), filtration unit (Millipore), borosil 
glassware, hot air oven (American Universal), inverted 
microscope (Olympus IX 70), laminar airflow (Klenzaids), 
liquid nitrogen container (Cryocan BA 20), microtitre 
plates (Tarsons), Milli-Q water purification system 
(Millipore), pH meter (U Tech), water bath (NSW India), 
and gel electrophoresis system (Genie electrophoretic).

Methodology and Preparation
Preparation of Lead Compounds and Virtual Chemical 
Library

The 10 structurally diverse compounds of C1–C18 
were selected to construct a virtual library of the lead 
compound. The chemical structure of all the compounds 
was prepared by ChemBioDraw Ultra Version 12.0. 
The conformational energies of the inhibitors have been 
reduced [16].

Drug Targets Prediction and Validation of Drug Targets
PharmMapper is a web server that uses pharmacophore 

mapping to identify potential drug targets. Capsaicin’s 
molecular file was downloaded from the PubChem 
database (CID: 1548943) and uploaded to PharmMapper. 
The server generated conformations and mapped them 
to pharmacophore models in PharmTargetDB. Then, 
the N best-fitted hits with appropriate target annotations 
and aligned poses were listed. In addition, capsaicin’s 
molecular file was submitted to DRAR-CPI and DDI-CPI 
servers for computational drug repositioning via chemical-
protein interaction (CPI) analysis. All parameters were 
then set to default values [17–21].

Virtual Screening and Molecular Docking
Virtual screening techniques were deployed to identify 

the potential lead compounds from large databases. The 
pharmacophore features of the selected compounds were 
submitted to ZINCPharmer, a virtual screening software 
that searches over 176 million conformations [22]. This 
identified potential lead compounds. Molecular docking 
was then performed using PyRx 0.9 to understand ligand-
receptor interactions. Bioinformatics tools and databases 
(PDB, PubChem, Marvin Sketch) were utilised in the 
research.

Preparation of Protein and Identification of Active Sites
By utilising the offline program protein data bank 

(PDB), the human VHL (PDB id.4W9H) with a resolution 
of 2.10 Å was obtained. The crystal water was removed 
from the protein (4W9H), followed by the addition of 
missing hydrogens, protonation, ionisation, and energy 
minimisation. The SPDBV (Swiss protein data bank 
viewer) force field was applied to minimise energy. 
The prepared protein was validated by utilising the 
Ramachandran plot. The amino acid residues present in 
the protein’s active site were detected using Protein-ligand 
interaction profile (PLIP) https://plip-tool.biotec.tu-
dresden.de/plip web/plip/index, an offline tool in Google.

Preparation of Ligands and Docking Analysis
A library of compounds was selected using 

ZINCPharmer and designed using Marvin Sketch. 
Docking analysis was conducted using PyRx 0.9 to 
identify top-scoring molecules, including a pyrazole 
analogue. Derivatives were designed and ranked based on 
binding affinity and energy values. The top 5 derivatives 
were selected based on binding energy values for further 
studies. 
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ADME, Toxicity, and Carcinogenicity Activity Predictions
Furthermore, the pharmacological and toxicological 

profiles of the compounds were evaluated via ADME 
(Absorption, Distribution, Metabolism, and Excretion), 
toxicity, and carcinogenicity properties of the designed 
pyrazole derivatives using:

1. SwissADME tool for ADME properties.
2. PreADMET online tool for toxicity and 

pharmacological properties.
3. CarcinoPred-EL for carcinogenicity prediction.
The study assessed various parameters, including 

Lipophilicity (logP value), blood-brain barrier 
(BBB) penetration, GI absorption, mutagenicity, and 
carcinogenicity.

In Vitro Cytotoxicity Assay
Determination of Cell Viability by MTT Assay

To provide a quantitative measure of cellular metabolic 
activity, the MTT (3-(4,5-dimethylthiazole-2-yl)-2,5-
diphenyl tetrazolium bromide) assay was used to assess 
cell viability and cytotoxicity by the reduction of MTT 
by mitochondrial enzyme succinate dehydrogenase in 
living cells, resulting in the formation of a blue-coloured 
formazan product. 

Briefly, exponentially growing cells (1×105cells/mL) 
were seeded in 96-well plates and treated with different 
concentrations in a 10–1000 μg/mL series for 24, 48, and 
72 h with FCS-free complete medium. 100 μg of MTT (5 
mg/mL) was added to 24, 48, and 72 h treated wells. After 
the plates were incubated at 37°C for 4 h, the supernatant 
was aspirated, and 200 μl of DMSO was added to each 
well to dissolve the Formozan crystals. Absorbance was 
measured at 540 nm using a 96-well microplate reader 
[23, 24].

HOECHST 33342 Staining for Nuclear Apoptosis
The MCF7 was seeded in 6-well plates and maintained 

at 37°C with 5% CO2 in a humidified CO2 incubator 
for 48 h Subsequently, the cells were treated with C12 
and C18 at their IC50 concentrations obtained in various 
incubation durations, such as 24 h, 48 h and 72 h, which 
were selected for this staining. At the indicated times, the 
medium was removed gently, and the cells were washed 
twice with phosphate-buffered saline (PBS), fixed in 4% 
paraformaldehyde for 20 min, re-washed, and stained 
with HOECHST 33342 (10μg/mL) at 37°C for 20 min in 
the dark. Stains were washed with methanol, followed by 
PBS, and the plate was immediately observed in the blue 
channel fluorescence with fluorescent microscopy [25]. 

Direct Fluorescence Microscopic Analysis for Apoptosis 
Induction by AO/EtBr

1µl of EtBr dye mixture (100 mg/ml acridine orange 
(AO) and 100 mg/ml ethidium bromide (EtBr), in distilled 
water) was directly stained with C12-treated cells grown 
on clean microscope cover slips. After staining, the cancer 
cells were washed with PBS (pH 7.2) and incubated for 1 
min. The cells were then visualised under a fluorescence 
microscope at 400X magnification with an excitation filter 
at 480 nm [25].

Analysis of Mitochondrial Membrane Potential (∆Ψm) by 
Rhodamine 123 Staining

MCF-7 cells were seeded in 6-well plates (1×105cells/
well) and allowed to grow for a day before exposure to 
IC50 concentrations of C12 and C18. After the specific time 
intervals (24, 48, and 72 h), the cells were fixed in 4% 
paraformaldehyde, washed twice with PBS, and exposed 
to the ∆Ψm-specific stain Rhodamine 123 (Rh-123) (10 
µg/ml) for 30 min at 37°C. The cells were washed twice 
with methanol to remove the excess stain, rewashed 
with PBS, and analysed for changes in ∆Ψm using a 
fluorescence microscope with an excitation and emission 
wavelengths of 505 nm and 534 nm, respectively [25].

Measurement of DNA Damage by DNA Fragmentation
DNA damage by apoptosis was evaluated by genomic 

DNA fragmentation. The cells (1×106 cells) were 
separately suspended in 10 mL of buffer containing 10 
mm Tris HCl and 10 mm EDTA (pH 8.0). The cells were 
treated with C12 fractions in 10 ml solution containing 
10 mm Tris HCl, 10 mm EDTA (pH 8.0), and 20 mg/ml 
proteinase K. The mixture was incubated at 37°C for 3 
h, followed by DNA extraction with phenol:chloroform: 
isoamyl alcohol solution (25:24:1). The extracted DNA 
was treated with DNase free RNase at a concentration of 
20 mg/ml at 4°C for 45 min and precipitated with 100 
ml of 2.5 M sodium acetate and 3 volumes of ethanol. 
The DNA fragmentation analysis was then carried out by 
electrophoresis using 10 µg of the extracted DNA from 
the selected cancer cells for a period of 45 min at 100 V 
on a 2% agarose gel containing ethidium bromide and 
visualised under the Gel Doc System [25].

Analysis of the Potential Pathway/Interaction Effects of 
Chemical Mixture

The ChemDIS-Mixture tool was used to identify 
the potential effects and mechanisms of coexposure to 
multiple chemicals. The tool integrates multiple databases 
(STITCH, Gene Ontology, KEGG, Reactome, SMPDB, 
Disease Ontology). Then, chemical-protein interactions, 
GO terms, pathways, and disease associations are analysed. 
The joint p-value for prioritisation were visualised using 
Venn diagrams. With the ChemDIS-Mixture, insights into 
the complex interactions between multiple chemicals and 
biological systems are predicted [26].

Results

Identification of the Potential Drug Target Using 
Pharmacophore Mapping Approach

The tool identified the target proteins for 20 
compounds C1-C20. It compared the pharmacophores 
of the most active compounds with the built database of 
pharmacophore models. It provided the target information 
of 300 proteins, including their fitness score, number of 
pharmacophoric features, indication, and importance of 
each protein. The 300 proteins retrieved were ranked 
according to their fitness score. The top 10 proteins with 
fitness scores over 5.0 were studied to identify the possible 
target protein of all the compounds, and target selection 
was done based on the importance of the protein in cancer 
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Figure 2. Molecule and Pharmacophore Model for C12

Ranks PDB ID Target Name Features Fit Score Normalized z'-score 
Fit Score 

1 4O75 Serine-threonine protein kinase 3 3.761 0.8245 0.301238
2 2PE2 3-phosphoinositide-dependent protein 5 2.474 0.7523 3.34059

kinase 1
3 2WI1 Orally Active 2-Amino Thienopyrimidine 4 2.815 0.7037 1.24798

Inhibitors of the Hsp90 Chaperone
4 1CA7 Macrophage migration inhibitory factor 4 2.806 0.7016 1.22039
5 2CLX Cell division protein kinase 2 4 2.777 0.6941 1.15494
6 1RTK Complement factor B 4 2.765 0.6912 1.02773
7 2RKU Serine/threonine-protein kinase PLK1 4 2.71 0.6776 0.915384
8 2BKZ Cyclin-A2 4 2.565 0.6412 0.291971
9 2ZKC Estrogen-related receptor gamma 4 2.421 0.6053 -0.163952
10 1XDC Superoxide dismutase [Mn], mitochondrial 5 2.951 0.5902 1.65023

Table 1. C12 - Prediction of Drug Target using Pharmacophore Mapping Approach

Hydrophobic Positive Negative Donor Acceptor Aromatic
1 0 0 0 2 0

Table 2. C12 - Pharmacophore Modelling

disease (Tables 1, 2). Several proteins from Table 2 scored 
high fitness scores for C12 but weren’t directly linked to 
diseases. However, Serine-threonine protein kinase AKT1, 
with a fitness score of 3.761, plays a crucial role in cancer. 
Growth factors activate AKT1 and promote cell survival 
by inhibiting apoptosis. It’s also involved in growth-
promoting signals and tumour growth. Notably, AKT1 
deficiency can lead to cancer resistance and growth delays. 
A specific genetic variation in AKT1 can cause Proteus 
syndrome. The graphical pharmacophore models of C-12 
and C-18 are represented in Figures 2- 5, respectively.

The protein MAP3K5 (ASK1) scored a high fitness 
score of 3.991 for C-18 and plays a crucial role in inducing 
apoptosis, as recorded in Table 3, with its pharmacophoric 
corresponding values in Table 4. ASK1 is a key regulator 
of cellular stress response, activating JNK and p38 
pathways. It’s implicated in various diseases, including 
cancer, diabetes, and neurodegenerative disorders. ASK1’s 
activity is tightly regulated by proteins like thioredoxin 
and CIB1, which inhibit its function under normal 
conditions. Upon stress, ASK1 is activated through a 
complex mechanism involving TRAF2 and TRAF6, 
leading to its full activation and induction of apoptosis 
[2]. ASK1 expression is regulated at multiple levels: 

inflammatory cytokines like IL-1 and TNF-α can induce 
its transcription, while TNF-α also stabilises the ASK1 
protein by preventing its degradation. This unique dual 
regulation sets ASK1 apart from other MAP kinase family 
members [13].

Virtual Screening and Docking 
In PyRx, binding affinity parameters were considered 

for selecting the best “HITS” and compared with the co-
crystal. PyRx binding energy is the interaction energy 
between the protein and the ligand. This RMSD value 
strongly indicates the extent of the interaction of proteins 
and ligands. The compounds whose binding energy was 
above standard (co-crystal) are shown in Figures 4-7 and 
Table 5, indicating that the compounds were effectively 
bound to the active site of proteins (6HHG and 4O75). 
The interactions of these proteins and these compounds 
were analysed. 

ADMET Analysis and Drug-Likeness Analysis 
The ADMET properties and drug-likeness properties 

of all selected compounds were predicted. The pre-
ADMET analysis predicts that two compounds have 
medium to high blood-brain barrier (BBB) penetration 

Figure 3. C18 - Molecule and Pharmacophore Model
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Ranks PDB ID Target Name Features Fit Score Normalized  z'-score 
Fit Score 

1 6HHG MAP3K5 3 3.991 0.997 1.27722
2 1III Transthyretin 3 2.97 0.9901 1.28169
3 2PIO Androgen receptor 3 2.965 0.9883 1.21432
4 1BM6 Stromelysin-1 3 2.963 0.9877 1.16901
5 1PMV Mitogen-activated protein kinase 10 3 2.929 0.9762 1.04632
6 1UKI Mitogen-activated protein kinase 8 3 2.903 0.9676 0.959501
7 1YXX Proto-oncogene serine/threonine-protein 3 2.893 0.9644 1.014

kinase Pim-1
8 1PME Mitogen-activated protein kinase 1 3 2.885 0.9615 0.929245
9 1RS0 Complement factor B 3 2.878 0.9595 0.914489
10 3EQM Cytochrome P450 19A1 3 2.844 0.9481 0.824923

Table 3. C18 - Prediction of Drug Target using Pharmacophore Mapping Approach

Hydrophobic Positive Negative Donor Acceptor Aromatic
2 0 0 0 1 0

Table 4. C18 - Pharmacophore Colour Scheme

Figure 4. ligand: 4-(4- hydroxyphenyl) – 2 butanone, Protein: AKT1 

based on the Cbrain/Cblood ratio. Then, 18 of the 20 
compounds were screened, and compounds C-12 and C-18 
progressed for further testing. Hence, they were evaluated 
for drug-likeness, which assesses pharmacological 
and toxicity properties. The analysis revealed that all 
compounds met Lipinski’s rule, with ≤5 hydrogen bond 
donors, <10 hydrogen bond acceptors, molecular weight 
<500, and ClogP <5. Compounds CH15, CH17, CH29, 
and CH47 showed strong binding affinity (<<0.1µm). 
Most compounds satisfied the CMC rule (no violations), 
the MDDR rule (value of 1), and the WDI rule (no 
violations). These results indicate favourable drug-like 
properties for the compounds. Also, CarcinoPred-EL was 
used to assess the carcinogenicity of two compounds. The 
results indicate no mutagenic activity in the Ames test (no 

point or frameshift mutations). No negative mutagenicity 
in a carcinoma mouse model and medium risk of hERG 
inhibition, potentially prolonging the QTc interval 
and increasing the risk of cardiac arrhythmias. These 
findings suggest the compounds may have a relatively 
safe carcinogenicity profile, but the hERG inhibition risk 
warrants further evaluation.

The corresponding outstanding ADMET, toxicity, and 
drug-likeness properties of C12 and C18 were statistically 
reported in Supplementary Tables 1-3. The compounds 
are firmly bound to plasma proteins and exhibit good GI 
absorption, making them suitable for oral dosage forms. 

Carcinogenicity Activity of Compounds
Carcinogenicity is one of the cell-killing properties 
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Figure 5. Ligand: 4-Hydroxyvalerophenone, Protein: MAP3K5 

Figure 6. Ligand: PACLITAXEL(STD), Protein: AKT1 

S. No. Ligand Protein Binding Affinity
1 4-(4-Hydroxyphenyl)2- butanone AKT1 -5.9
2 4-Hydroxyvalerophenone MAP3K5 -6.6
3 Paclitaxel AKT1 -7.9

MAP3K5 -7.1

Table 5. Docking Results of the Selected Compounds

of the chemical compound. CarcinoPred-EL was used 
to determine the carcinogenic nature of the compound. 
The results showed that neither compound is mutagenic 
in the Ames test, either by point frameshift mutation 
(Supplementary Table 4), and none of the compounds 
showed negative mutagenicity on a carcinoma mouse 
model. Inhibition of these prolongs QTC intensity and the 

risk of cardiac arrhythmias. Both compounds showed a 
medium risk of hERG inhibition (Supplementary Table 4).

 In vitro Cytotoxicity by MTT Assay
In vitro cytotoxicity using MTT was performed for 

the two compounds (C12 and C18). The authenticated 
cell morphology of MCF7 by MTCC is graphically 
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Figure 7. Ligand: PACLITAXEL(STD), Protein: MAP3K5 

Figure 8. Cytotoxic Effects of Compound C12 on MCF7 Breast Cancer Cells as Determined by MTT assay. Cells 
were treated with varying concentrations of C12 for 72 hours, and cell viability was measured based on mitochondrial 
metabolic activity. IC₅₀ value was calculated to assess cytotoxic potency. 

Figure 9. Cytotoxic Effects of Compound C18 on MCF7 Breast Cancer Cells as Determined by MTT assay. Cells 
were treated with varying concentrations of C18 for 72 hours, and cell viability was measured based on mitochondrial 
metabolic activity. IC₅₀ value was calculated to assess cytotoxic potency. 
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represented in Figure S1. The IC50 value was calculated 
using the standard method. The percentage of Viability was 
calculated, and the percentage inhibition was calculated. 
The MCF7 cell line was used for the cytotoxicity study. 
4-(4-Hydroxyphenyl)-2-Butanone showed IC50 value 
of 22.49±1.01 µg/ml and 4-Hydroxyvalerophenone 
showed IC50 value of 14.61±0.01 µg/ml respectively. This 
cytotoxic concentration will be used for further study in 
the MCF7 cell line (Figures 8 and 9). 

Discussion

HOECHST 33342 Staining for Nuclear Apoptosis
The treatment with compounds C12 and C18 at CTC50 

induced apoptosis in cancer cells. HOECHST 33342 
staining revealed characteristic apoptotic features Figure 
S2a-b. These included reduced nuclear size, condensed 
chromatin, and nuclear fragmentation. The results suggest 
that growth inhibition (apoptotic nuclei of treated cells) 
was associated with apoptosis induction. C12 and C18’s 
anti-proliferative effects are linked to their ability to induce 
apoptosis. Many authors observed the apoptosis of drug-
treated cancer cells using morphological characteristics 
such as chromatin condensation, nuclear pyknosis, 
formation of apoptotic bodies, and atomic fragmentation 
using HOECHST. Therefore, the anti-proliferation effect 
of compounds C12 and C18 would be associated with their 
potential to induce apoptosis in the selected cancer cells. 

Direct Fluorescence Analysis for Apoptosis Induction by 
AO/ EtBr

Cell morphological changes were observed using 
AO/EtBr fluorescence staining after treating them with 
compounds C12 and C18 at their CTC50 concentration. 
The result revealed that the apoptotic cells containing 
the condensed form of nuclei and apoptotic bodies were 
stained orange. Whereas the necrotic cells were stained 
red, the untreated MCF7 cells were stained uniformly 
green. Significant differences in apoptosis induction 
were observed between the control and MCF7 cells after 
treatment with C12 and C18 (Figure S3a and b). Clear 
apoptosis was detected in MCF7cells treated with C12 
and C18.

Analysis of Mitochondrial Membrane Potential by 
Rhodamine 123 Staining

The mitochondrial membrane potential loss of MCF7 
cells was analysed using the dye Rh-123, and a decrease 
in mean fluorescence intensity was observed following 
the treatment of cells with C12 and C18. The fluorescence 
images demonstrated the loss of mitochondrial membrane 
potential (Figure S4a and b) due to mitochondrial 
membrane depolarisation, an initial and irreversible step 
of apoptosis. The data indicated that the induction of 
apoptosis in cells by C12 was higher than that of C18, 
accompanied by alterations in the mitochondrial membrane 
potential. Besides, it was reported that mitochondria 
played an essential role in an intrinsic apoptotic pathway 
by releasing cytochrome c, leading to the activation of the 
caspase cascade. The results demonstrated that both C12 
and C18 could disrupt the functions of mitochondria at 

the early stages of apoptosis, subsequently coordinating 
caspase three activation through the cleavage of caspases 
by the release of cytochrome c.

Determination of Apoptosis by DNA Fragmentation Assay
A DNA fragmentation assay was carried out to 

confirm the apoptosis induced by C12 and C18. We 
examined the nuclear DNA fragmentation by agarose 
gel electrophoresis, and the results are shown below. A 
DNA ladder pattern was observed after treating MCF7 
cells with both compounds. This suggested that these C12 
caused DNA fragmentation characteristic of the apoptotic 
process, with the generation of multiple DNA fragments, 
and induced apoptosis in these MCF7 cells at different 
incubation durations. A biochemical hallmark of apoptosis 
was the cleavage of chromatin into small pieces, including 
oligonucleosomes, which were described as DNA ladders 
in the electrophoresed gel Figure S5. DNA laddering was 
compared for apoptosis, and both compounds showed 
multiple bands. This confirms the apoptotic-inducing 
nature of C12 and C18.

In conclusion, this study employed a virtual screening 
approach to identify potential lead compounds and validate 
the compounds’ in vitro activities against cancer targets, 
including serine-threonine protein kinase and MAP3K5, 
which play crucial roles in cancer and apoptosis. 
Molecular docking: PyPx docking showed strong binding 
affinities of compounds C12 and C18 to protein targets. 
ADMET analysis: Both compounds exhibited favourable 
pharmacokinetic properties, including high plasma 
protein binding and GI absorption. These potential lead 
compounds demonstrated cytotoxic effects against MCF7 
breast cancer cells, with IC50 values of 22.49±1.01 µg/ml 
and 14.61±0.01 µg/ml, respectively. Apoptosis induction: 
Fluorescence microscopy and DNA fragmentation assays 
revealed characteristic apoptotic features, including 
nuclear condensation, fragmentation, and DNA laddering. 
These findings suggest that compounds C12 and C18 
exhibit promising anticancer activity and merit further 
investigation for therapeutic development.
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