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Abstract

Background: Breast cancer is one of the leading causes of cancer-related mortality globally. Recent advances in
targeted therapies have focused on selectively inhibiting signalling pathways that are vital for cancer cell survival and
proliferation. Identifying novel small molecules with such inhibitory capabilities remains a critical step toward more
effective treatments. Methods: A computational approach was utilized to design and identify small molecule inhibitors
targeting key signalling pathways implicated in breast cancer progression. Virtual screening and molecular docking
analyses were conducted to identify potential lead compounds. The selected compounds were further evaluated in vitro
using MCF7 breast cancer cells to determine cytotoxicity (via IC, ) and to assess apoptotic effects. ADMET profiling
was performed to predict pharmacokinetic properties. Results: Two lead compounds, C12 and C18, demonstrated strong
binding affinities to serine-threonine protein kinase and MAP3KS5, both of which are critical regulators of apoptosis.
In vitro studies revealed significant cytotoxic effects, with IC50 values of 22.49 + 1.01 pg/ml for C12 and 14.61 +
0.01 pg/ml for C18. Microscopic and biochemical analyses showed hallmark features of apoptosis, including nuclear
condensation, DNA fragmentation, and mitochondrial membrane potential loss. ADMET predictions indicated favourable
pharmacokinetic profiles for both compounds. Conclusion: The identified compounds C12 and C18 exhibit potent
cytotoxic and pro-apoptotic activity in breast cancer cells, highlighting their potential as promising novel therapeutic
agents. However, further in vivo studies are essential to validate their efficacy and safety profiles.
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Introduction

Cancer has emerged as a significant health issue in
the 21st century, with rising prevalence and far-reaching
impacts on physical, mental, and social well-being [1].
The disease affects 1-2% of the population in developed
countries, with a notable annual increase of nearly 5% in
less developed nations [2]. Globally, cancer claims over
7 million lives annually, with projections indicating a rise
from 10 to 15 million new cases [3]. Breast cancer is the
most common malignancy among women worldwide,
with over a million new cases annually. Despite India’s
lower age-adjusted incidence rate (25.8 per 100,000)
compared to the UK (95 per 100,000), mortality rates are
similar. Recent studies indicate rising cancer incidence

and mortality in India, with breast cancer now surpassing
cervical cancer as the leading cause of cancer-related
deaths among Indian women [4].

Breast cancer has a complex etiology dating back to
around 3500 BCE. It is characterised by uncontrolled
cell growth in breast tissue, often originating in the
milk-producing glands or ducts. Various types of breast
cancer exist, including invasive ductal carcinoma,
invasive lobular carcinoma, and ductal carcinoma in situ
(DCIS). Several risk factors contribute to breast cancer
development, including genetic mutations. Inherited
mutations in genes like BRCA1 and BRCAZ2 significantly
increase breast cancer risk, particularly among women
aged 40-55. Hormonal influences, such as exposure to
oestrogen and progesterone. Age factors that have been
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reported in women over 50 years. Also, family history
has been studied as a significant risk factor, especially
among first-degree relatives who have been diagnosed,
with approximately 20% of breast cancer patients having a
family history linked to a predisposing gene, highlighting
the importance of genetic factors in breast cancer etiology
[5], as represented in Figure 1. Lifestyle factors, such
as alcohol consumption, lack of physical activity, and
obesity, may contribute to breast cancer development.
In addition, environmental factors such as exposure to
radiation, certain chemicals, and viruses have also been
linked to these risk factors.

A viewpoint may not resolve the risk factors of breast
cancer; researchers have also suggested that viruses, such
as human papillomavirus (HPV) and mouse mammary
tumour virus (MMTV), might contribute to breast cancer
development, although the exact mechanisms are still
being studied [6].

Researchers continue to develop practical solutions
for breast cancer; meanwhile, early treatments focused
on localised approaches, including surgery and radiation.
Historical milestones included radical Mastectomy,
which William Halsted pioneered in the late 19th century,
involving the removal of the breast, axillary lymph nodes,
and chest muscles. The next progress was reported in
radiation therapy, which was introduced by Marie Curie
in 1898 [7]. Radiation induces DNA damage via ionising
radiation (IR) or reactive oxygen species (ROS), leading
to oxidative stress and DNA damage in cancer cells.
Then, the 1960s marked a significant shift in breast
cancer treatment, focused on systemic interventions
driven by a deeper understanding of the disease. Systemic
interventions, including hormonal, chemotherapy, and
biological therapies, were introduced, expanding treatment
options beyond localised approaches.

While chemotherapy uses common active agents
like Anthracyclines (e.g., doxorubicin), Taxanes (e.g.,
paclitaxel), Fluoropyrimidines (e.g., S-fluorouracil), and
Platinum agents (e.g., carboplatin), anti-cancer drugs
target and kill rapidly dividing cancer cells, shrinking

or eliminating tumours, controlling disease progression,
and relieving symptoms [8, 9]. Biological therapies,
which focus on HER2-targeted therapies: Trastuzumab
(Herceptin), a monoclonal antibody, improve outcomes
in HER2-positive breast cancer patients when combined
with chemotherapy. Next-generation HER2-targeted
therapies include Lapatinib (tyrosine kinase inhibitor)
and Pertuzumab (monoclonal antibody). These therapies
have significantly improved treatment outcomes,
reducing recurrence and mortality rates in HER2-positive
breast cancer patients. Despite significant advances in
diagnosis and treatment, developing targeted therapies
that selectively inhibit signalling pathways crucial for
cancer cell survival and proliferation is an area of ongoing
research. The heterogeneity of breast cancer, characterised
by diverse molecular subtypes, underscores the need for
novel therapeutic strategies that can effectively target
specific pathways involved in tumorigenesis.

This can be strategically achieved by predicting
biological interactions between potential chemotherapeutic
agents and biomarkers using in silico methods. This
approach offers significant benefits, like optimising drug
development, reducing costs, and streamlining clinical
trials, ultimately bringing effective treatments to market
faster. Hence, by harnessing computational power,
researchers can enhance the efficiency and effectiveness
of cancer treatment development.

Discovering Anti-Cancer Drugs via Computational
Methods

Despite significant advancements in biotechnologies
and a better understanding of disease biology, developing
new, practical, and innovative small molecule drugs
remains a complicated, time-consuming, and expensive
project that necessitates collaborations from many experts
in multidisciplinary fields such as medicinal chemistry,
computational chemistry, biology, drug metabolism,
clinical research, and so on. Furthermore, the effective
discovery and development of a new treatment takes 12
years, a significant investment. Novel drug development
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procedures with lower time and money costs and increased
efficiency are in high demand and could help to improve
global health and life expectancy. Computational methods
have been an essential tool in drug discovery projects and
a cornerstone for novel drug development methodologies
since the successful creation of HIV protease inhibitor
Viracept in the United States in 1997, which was the first
drug design wholly driven by its target structure. This
speeds up and lowers the cost of drug development. Recent
developments in computational capacity, especially
massively parallel computing on graphics processing units
(GPUs), and Al technologies have converted fundamental
research into practical applications in the drug discovery
area. Their excellent success in presenting fresh potential
ideas and solutions to tackle life-threatening diseases drew
much attention [10, 11].

Anti-Cancer Drug Target Prediction

Despite the vast number of potential pharmaceutical
targets (~6,000-8,000 sites) among human genes, only
about 400 encoded proteins have been successfully
utilised in medication development. Cancer offers
numerous potential therapeutic targets, but traditional drug
development often focuses on single targets, overlooking
complex disease mechanisms and polypharmacological
effects. In addition to these limitations of the current
approaches, Undruggable targets with certain proteins,
such as phosphatases, transcription factors, and RAS
family members, lack efficient, enzymatically active
sites, making them challenging to target. Off-target effects
are another unintended interaction that can lead to side
effects, particularly in cancer medications. In addition,
unknown targets associated with many drugs, including
anticancer treatments, have unknown or uncharacterised
target proteins. However, with innovative opportunities
for drug target prediction and repositioning, identifying
new indications for existing medicines can accelerate drug
development. Bioinformatic target prediction can also
facilitate high-quality methodologies that are essential
for reliable drug target prediction and discovery. By
addressing these challenges and leveraging innovative
approaches, researchers can uncover new therapeutic
targets and develop more effective treatments.

Various interactive web servers and databases, such
as SEA (htts://omictools.com/sea-2-tool), Pharmmapper
(htts://www.lilab-ecust.cn/pharmmapper/), SwissTarget
Prediction (htts://www.swisstargetprediction.ch/),
DrugBank (https://www.drugbank.ca/), ChEMBL (http://
www.ebi.ac.uk/chembldb), and BindingDB (http://www.
bindingdb.org/), amongst others, have been developed to
facilitate drug target prediction. These resources provide
valuable computational models and tools for researchers.
Several computational models have been employed
to investigate drug-protein interactions, including
network-based models that analyse relationships between
drugs, targets, and biological networks. Machine learning-
based models, as well, which utilise supervised learning,
bipartite graph learning, and other approaches to predict
drug-target interactions.

These tools provide notable studies, such as side
effect similarity analysis. For instance, one of the
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authors used side effect similarity to identify potential
drug-target interactions. In another study, the author
leveraged the FDA’s AERS to predict large-scale drug-
target interactions, which remains a crucial adverse event
reporting system. In addition, recent studies have shown
that deep learning, particularly neural networks, can
outperform other methods in predicting drug targets [ 12].
These computational approaches have advanced the field
of drug target prediction, enabling researchers to identify
potential therapeutic targets and develop more effective
treatments.

Ligand-Based Drug Discovery
A) Similarity searching

Ligand-based drug development relies on the concept of
molecular similarity, where structurally similar molecules
tend to exhibit similar biological effects. This approach
uses structural information of active ligands to identify
and predict new chemical entities with similar properties.
It’s an indirect protocol that doesn’t require knowledge of
the target protein’s 3D structure, making it useful when
the structure is unknown or unpredictable. Molecular
descriptors, such as physicochemical parameters and
2D/3D similarity searches, are used to represent reference
molecules. Hence, this method is frequently used to screen
novel ligands with intriguing biological activities in
silico and to optimise the biological activities of ligands
to improve drug pharmacokinetics, including ADMET
characteristics (Adsorption, Distribution, Metabolism,
Excretion, Toxicity).

Molecular descriptors provide the basis for this simple
and frequently utilised approach. To represent the reference
molecules, physicochemical parameters (e.g., molecular
weight, logP, Energy of highest occupied molecular orbital
(EHOMO), Energy of lowest unoccupied molecular
orbital (ELUMO), charges) as well as 2D fingerprint and
3D shape-similarity searches can be used as coordinates.
For molecular representation in virtual screening, the 2D
fingerprint (Molprint2D and Unity 2D) and 3D shape
similarity approaches (MACCS), extended-connectivity
fingerprints (ECFP), rapid overlay of chemical structures
(ROCS), and Phase Shape are more commonly utilised.
For example, Bologa et al. (2006) used 2D fingerprint
and 3D shape-similarity approaches to find new agonists
for the GPR30 receptor of the estradiol receptor family.
Furthermore, both methods have been successfully used in
virtual screens, and both technologies have outperformed
docking methods in terms of scalability and computing
time against various targets. The fundamental issue with
such approaches is their preference for input molecules
and difficulty determining which input structures to utilise
[13].

B) Ligand-Based Pharmacophore Mapping

The pharmacophore-based technique, which develops
a pharmacophore model (PH4) based on a collection
of active substances, is another more precise approach
than molecular descriptors. A pharmacophore is “a set
of spatial and electronic features necessary to achieve
effective supramolecular interactions with specific
biological targets and to initiate (or stop) their biological
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responses,” according to the [IUPAC. As a result, the most
likely chemical properties are represented by the structural
overlap of essential molecular features generated from
active chemicals or a binding site in space. The newly
discovered compounds that fit and complement the
designed pharmacophore will likely be active against the
desired target protein. As a result, they can be chosen as
candidates for further research. Without macromolecular
structures, this approach has become a fundamental
computational strategy for promoting and guiding drug
discovery.

The process of pharmacophore modelling can be
summarised as follows

(1) Selection of a training set of ligands (active and
inactive compounds).

(i) Molecular preparation (low-energy conformations).

(iii) Ligand alignment/superimposition and
pharmacophore model generation.

(iv) Validation of pharmacophore models.

The availability of a suitable training set of compounds
exhibiting the same binding mode is critical for
pharmacophore modelling based on ligands [14, 15].

Materials and Methods

Experimental
Materials and Instrumentation

All reagents used were of analytical grades and
sourced from various suppliers: Ranbaxy Laboratories
Ltd. (Mohali, India); E-Merck (India) Ltd. (Mumbai,
India) for sodium bicarbonate and sulphanilic acids;
Hi-Media Lab Pvt. Ltd (Mumbai) for DMEM, MEM,
antibiotic solution, trypsin, and other chemicals; Acros
Organics (New Jersey, USA) for MTT; Sigma Aldrich
(Mumbai) for FBS, NBCS, PI, AO, and EB; S.D. Fine
Chemicals Ltd. (Mumbai) is responsible for DMSO and
paraformaldehyde, and Merck Pvt Ltd. (Mumbai) is
responsible for glutaraldehyde. The MCF7 cell line was
obtained from the National Centre for Cell Sciences,
Pune, India. These epithelial cells were isolated from the
breast tissue of a 69-year-old white woman with metastatic
adenocarcinoma, making them suitable for breast cancer
research. The cell line characteristics include human
epithelial morphology, mammary gland tissue origin, and
adenocarcinoma disease classification, with applications
in 3D cell culture, immuno-oncology, anticancer activity,
and cytotoxicity studies.

The following equipment were utilised: autoclave
(Equitron), balance (Denver Instruments Apx 203),
centrifuge (Remi R 24), CO2 incubator (NAPCO series
5400), deep freezer (-85°C, Krisp cold), ELISA microplate
reader (Bio-Rad 550), filtration unit (Millipore), borosil
glassware, hot air oven (American Universal), inverted
microscope (Olympus IX 70), laminar airflow (Klenzaids),
liquid nitrogen container (Cryocan BA 20), microtitre
plates (Tarsons), Milli-Q water purification system
(Millipore), pH meter (U Tech), water bath (NSW India),
and gel electrophoresis system (Genie electrophoretic).
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Methodology and Preparation
Preparation of Lead Compounds and Virtual Chemical
Library

The 10 structurally diverse compounds of C1-C18
were selected to construct a virtual library of the lead
compound. The chemical structure of all the compounds
was prepared by ChemBioDraw Ultra Version 12.0.
The conformational energies of the inhibitors have been
reduced [16].

Drug Targets Prediction and Validation of Drug Targets

PharmMapper is a web server that uses pharmacophore
mapping to identify potential drug targets. Capsaicin’s
molecular file was downloaded from the PubChem
database (CID: 1548943) and uploaded to PharmMapper.
The server generated conformations and mapped them
to pharmacophore models in PharmTargetDB. Then,
the N best-fitted hits with appropriate target annotations
and aligned poses were listed. In addition, capsaicin’s
molecular file was submitted to DRAR-CPI and DDI-CPI
servers for computational drug repositioning via chemical-
protein interaction (CPI) analysis. All parameters were
then set to default values [17-21].

Virtual Screening and Molecular Docking

Virtual screening techniques were deployed to identify
the potential lead compounds from large databases. The
pharmacophore features of the selected compounds were
submitted to ZINCPharmer, a virtual screening software
that searches over 176 million conformations [22]. This
identified potential lead compounds. Molecular docking
was then performed using PyRx 0.9 to understand ligand-
receptor interactions. Bioinformatics tools and databases
(PDB, PubChem, Marvin Sketch) were utilised in the
research.

Preparation of Protein and Identification of Active Sites

By utilising the offline program protein data bank
(PDB), the human VHL (PDB id.4W9H) with a resolution
of 2.10 A was obtained. The crystal water was removed
from the protein (4W9H), followed by the addition of
missing hydrogens, protonation, ionisation, and energy
minimisation. The SPDBV (Swiss protein data bank
viewer) force field was applied to minimise energy.
The prepared protein was validated by utilising the
Ramachandran plot. The amino acid residues present in
the protein’s active site were detected using Protein-ligand
interaction profile (PLIP) https://plip-tool.biotec.tu-
dresden.de/plip web/plip/index, an offline tool in Google.

Preparation of Ligands and Docking Analysis

A library of compounds was selected using
ZINCPharmer and designed using Marvin Sketch.
Docking analysis was conducted using PyRx 0.9 to
identify top-scoring molecules, including a pyrazole
analogue. Derivatives were designed and ranked based on
binding affinity and energy values. The top 5 derivatives
were selected based on binding energy values for further
studies.



ADME, Toxicity, and Carcinogenicity Activity Predictions

Furthermore, the pharmacological and toxicological
profiles of the compounds were evaluated via ADME
(Absorption, Distribution, Metabolism, and Excretion),
toxicity, and carcinogenicity properties of the designed
pyrazole derivatives using:

1. SwissADME tool for ADME properties.

2. PreADMET online tool for toxicity and
pharmacological properties.

3. CarcinoPred-EL for carcinogenicity prediction.

The study assessed various parameters, including
Lipophilicity (logP value), blood-brain barrier
(BBB) penetration, GI absorption, mutagenicity, and
carcinogenicity.

In Vitro Cytotoxicity Assay
Determination of Cell Viability by MTT Assay

To provide a quantitative measure of cellular metabolic
activity, the MTT (3-(4,5-dimethylthiazole-2-yl)-2,5-
diphenyl tetrazolium bromide) assay was used to assess
cell viability and cytotoxicity by the reduction of MTT
by mitochondrial enzyme succinate dehydrogenase in
living cells, resulting in the formation of a blue-coloured
formazan product.

Briefly, exponentially growing cells (1x10°cells/mL)
were seeded in 96-well plates and treated with different
concentrations in a 10—1000 pg/mL series for 24, 48, and
72 h with FCS-free complete medium. 100 ug of MTT (5
mg/mL) was added to 24, 48, and 72 h treated wells. After
the plates were incubated at 37°C for 4 h, the supernatant
was aspirated, and 200 pl of DMSO was added to each
well to dissolve the Formozan crystals. Absorbance was
measured at 540 nm using a 96-well microplate reader
[23, 24].

HOECHST 33342 Staining for Nuclear Apoptosis

The MCF7 was seeded in 6-well plates and maintained
at 37°C with 5% CO, in a humidified CO2 incubator
for 48 h Subsequently, the cells were treated with C12
and C18 at their IC concentrations obtained in various
incubation durations, such as 24 h, 48 h and 72 h, which
were selected for this staining. At the indicated times, the
medium was removed gently, and the cells were washed
twice with phosphate-buffered saline (PBS), fixed in 4%
paraformaldehyde for 20 min, re-washed, and stained
with HOECHST 33342 (10ug/mL) at 37°C for 20 min in
the dark. Stains were washed with methanol, followed by
PBS, and the plate was immediately observed in the blue
channel fluorescence with fluorescent microscopy [25].

Direct Fluorescence Microscopic Analysis for Apoptosis
Induction by AO/EtBr

1l of EtBr dye mixture (100 mg/ml acridine orange
(AO) and 100 mg/ml ethidium bromide (EtBr), in distilled
water) was directly stained with C12-treated cells grown
on clean microscope cover slips. After staining, the cancer
cells were washed with PBS (pH 7.2) and incubated for 1
min. The cells were then visualised under a fluorescence
microscope at 400X magnification with an excitation filter
at 480 nm [25].
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Analysis of Mitochondrial Membrane Potential (A'V'm) by
Rhodamine 123 Staining

MCE-7 cells were seeded in 6-well plates (1x10°cells/
well) and allowed to grow for a day before exposure to
IC,, concentrations of C12 and C18. After the specific time
intervals (24, 48, and 72 h), the cells were fixed in 4%
paraformaldehyde, washed twice with PBS, and exposed
to the AYm-specific stain Rhodamine 123 (Rh-123) (10
pg/ml) for 30 min at 37°C. The cells were washed twice
with methanol to remove the excess stain, rewashed
with PBS, and analysed for changes in AYm using a
fluorescence microscope with an excitation and emission
wavelengths of 505 nm and 534 nm, respectively [25].

Measurement of DNA Damage by DNA Fragmentation

DNA damage by apoptosis was evaluated by genomic
DNA fragmentation. The cells (1x10° cells) were
separately suspended in 10 mL of buffer containing 10
mm Tris HCI and 10 mm EDTA (pH 8.0). The cells were
treated with C12 fractions in 10 ml solution containing
10 mm Tris HCI, 10 mm EDTA (pH 8.0), and 20 mg/ml
proteinase K. The mixture was incubated at 37°C for 3
h, followed by DNA extraction with phenol:chloroform:
isoamyl alcohol solution (25:24:1). The extracted DNA
was treated with DNase free RNase at a concentration of
20 mg/ml at 4°C for 45 min and precipitated with 100
ml of 2.5 M sodium acetate and 3 volumes of ethanol.
The DNA fragmentation analysis was then carried out by
electrophoresis using 10 pg of the extracted DNA from
the selected cancer cells for a period of 45 min at 100 V
on a 2% agarose gel containing ethidium bromide and
visualised under the Gel Doc System [25].

Analysis of the Potential Pathway/Interaction Effects of
Chemical Mixture

The ChemDIS-Mixture tool was used to identify
the potential effects and mechanisms of coexposure to
multiple chemicals. The tool integrates multiple databases
(STITCH, Gene Ontology, KEGG, Reactome, SMPDB,
Disease Ontology). Then, chemical-protein interactions,
GO terms, pathways, and disease associations are analysed.
The joint p-value for prioritisation were visualised using
Venn diagrams. With the ChemDIS-Mixture, insights into
the complex interactions between multiple chemicals and
biological systems are predicted [26].

Results

Identification of the Potential Drug Target Using
Pharmacophore Mapping Approach

The tool identified the target proteins for 20
compounds C1-C20. It compared the pharmacophores
of the most active compounds with the built database of
pharmacophore models. It provided the target information
of 300 proteins, including their fitness score, number of
pharmacophoric features, indication, and importance of
each protein. The 300 proteins retrieved were ranked
according to their fitness score. The top 10 proteins with
fitness scores over 5.0 were studied to identify the possible
target protein of all the compounds, and target selection
was done based on the importance of the protein in cancer
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Table 1. C12 - Prediction of Drug Target using Pharmacophore Mapping Approach

Ranks PDB ID Target Name Features Fit Score  Normalized z'-score
Fit Score

1 4075 Serine-threonine protein kinase 3 3.761 0.8245 0.301238

2 2PE2 3-phosphoinositide-dependent protein 5 2.474 0.7523 3.34059
kinase 1

3 2WI1 Orally Active 2-Amino Thienopyrimidine 4 2.815 0.7037 1.24798
Inhibitors of the Hsp90 Chaperone

4 1CA7 Macrophage migration inhibitory factor 4 2.806 0.7016 1.22039

5 2CLX Cell division protein kinase 2 4 2777 0.6941 1.15494

6 IRTK Complement factor B 4 2.765 0.6912 1.02773

7 2RKU Serine/threonine-protein kinase PLK1 4 2.71 0.6776 0.915384

8 2BKZ Cyclin-A2 4 2.565 0.6412 0.291971

9 27ZKC Estrogen-related receptor gamma 4 2421 0.6053 -0.163952

10 1XDC Superoxide dismutase [Mn], mitochondrial 5 2.951 0.5902 1.65023

Table 2. C12 - Pharmacophore Modelling
Hydrophobic Positive Negative Donor Acceptor Aromatic
1 0 0 0 2 0

disease (Tables 1, 2). Several proteins from Table 2 scored
high fitness scores for C12 but weren’t directly linked to
diseases. However, Serine-threonine protein kinase AKT1,
with a fitness score 0f 3.761, plays a crucial role in cancer.
Growth factors activate AKT1 and promote cell survival
by inhibiting apoptosis. It’s also involved in growth-
promoting signals and tumour growth. Notably, AKT1
deficiency can lead to cancer resistance and growth delays.
A specific genetic variation in AKT1 can cause Proteus
syndrome. The graphical pharmacophore models of C-12
and C-18 are represented in Figures 2- 5, respectively.
The protein MAP3KS5 (ASK1) scored a high fitness
score 0f 3.991 for C-18 and plays a crucial role in inducing
apoptosis, as recorded in Table 3, with its pharmacophoric
corresponding values in Table 4. ASK1 is a key regulator
of cellular stress response, activating JNK and p38
pathways. It’s implicated in various diseases, including
cancer, diabetes, and neurodegenerative disorders. ASK1’s
activity is tightly regulated by proteins like thioredoxin
and CIB1, which inhibit its function under normal
conditions. Upon stress, ASK1 is activated through a
complex mechanism involving TRAF2 and TRAF6,
leading to its full activation and induction of apoptosis
[2]. ASK1 expression is regulated at multiple levels:

Figure 2. Molecule and Pharmacophore Model for C12
4232 4sian Pacific Journal of Cancer Prevention, Vol 26

inflammatory cytokines like IL-1 and TNF-a can induce
its transcription, while TNF-o also stabilises the ASK1
protein by preventing its degradation. This unique dual
regulation sets ASK 1 apart from other MAP kinase family
members [13].

Virtual Screening and Docking

In PyRx, binding affinity parameters were considered
for selecting the best “HITS” and compared with the co-
crystal. PyRx binding energy is the interaction energy
between the protein and the ligand. This RMSD value
strongly indicates the extent of the interaction of proteins
and ligands. The compounds whose binding energy was
above standard (co-crystal) are shown in Figures 4-7 and
Table 5, indicating that the compounds were effectively
bound to the active site of proteins (6HHG and 4075).
The interactions of these proteins and these compounds
were analysed.

ADMET Analysis and Drug-Likeness Analysis

The ADMET properties and drug-likeness properties
of all selected compounds were predicted. The pre-
ADMET analysis predicts that two compounds have
medium to high blood-brain barrier (BBB) penetration

Figure 3. C18 - Molecule and Pharmacophore Model
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Table 3. C18 - Prediction of Drug Target using Pharmacophore Mapping Approach

Ranks PDBID Target Name Features Fit Score Normalized z'-score
Fit Score
1 6HHG MAP3KS5 3 3.991 0.997 1.27722
2 111 Transthyretin 3 2.97 0.9901 1.28169
3 2PIO Androgen receptor 3 2.965 0.9883 1.21432
4 IBM6  Stromelysin-1 3 2.963 0.9877 1.16901
5 IPMV  Mitogen-activated protein kinase 10 3 2.929 0.9762 1.04632
6 1UKI Mitogen-activated protein kinase 8 3 2.903 0.9676 0.959501
7 1YXX  Proto-oncogene serine/threonine-protein 3 2.893 0.9644 1.014
kinase Pim-1
8 IPME  Mitogen-activated protein kinase 1 3 2.885 0.9615 0.929245
9 IRSO Complement factor B 3 2.878 0.9595 0.914489
10 3EQM  Cytochrome P450 19A1 3 2.844 0.9481 0.824923
Table 4. C18 - Pharmacophore Colour Scheme
Hydrophobic Positive Negative Donor Acceptor Aromatic
2 0 0 0 1 0

based on the Cbrain/Cblood ratio. Then, 18 of the 20
compounds were screened, and compounds C-12 and C-18
progressed for further testing. Hence, they were evaluated
for drug-likeness, which assesses pharmacological
and toxicity properties. The analysis revealed that all
compounds met Lipinski’s rule, with <5 hydrogen bond
donors, <10 hydrogen bond acceptors, molecular weight
<500, and ClogP <5. Compounds CH15, CH17, CH29,
and CH47 showed strong binding affinity (<<0.1um).
Most compounds satisfied the CMC rule (no violations),
the MDDR rule (value of 1), and the WDI rule (no
violations). These results indicate favourable drug-like
properties for the compounds. Also, CarcinoPred-EL was
used to assess the carcinogenicity of two compounds. The
results indicate no mutagenic activity in the Ames test (no

point or frameshift mutations). No negative mutagenicity
in a carcinoma mouse model and medium risk of hERG
inhibition, potentially prolonging the QTc interval
and increasing the risk of cardiac arrhythmias. These
findings suggest the compounds may have a relatively
safe carcinogenicity profile, but the hERG inhibition risk
warrants further evaluation.

The corresponding outstanding ADMET, toxicity, and
drug-likeness properties of C12 and C18 were statistically
reported in Supplementary Tables 1-3. The compounds
are firmly bound to plasma proteins and exhibit good GI
absorption, making them suitable for oral dosage forms.

Carcinogenicity Activity of Compounds
Carcinogenicity is one of the cell-killing properties
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Table 5. Docking Results of the Selected Compounds
S. No. Ligand Protein Binding Affinity
1 4-(4-Hydroxyphenyl)2- butanone AKTI -5.9
2 4-Hydroxyvalerophenone MAP3K5 -6.6
3 Paclitaxel AKT1 -7.9
MAP3KS5 -7.1

of the chemical compound. CarcinoPred-EL was used
to determine the carcinogenic nature of the compound.
The results showed that neither compound is mutagenic
in the Ames test, either by point frameshift mutation
(Supplementary Table 4), and none of the compounds
showed negative mutagenicity on a carcinoma mouse
model. Inhibition of these prolongs QTC intensity and the
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risk of cardiac arrhythmias. Both compounds showed a
medium risk of hERG inhibition (Supplementary Table 4).

In vitro Cytotoxicity by MTT Assay

In vitro cytotoxicity using MTT was performed for
the two compounds (C12 and C18). The authenticated
cell morphology of MCF7 by MTCC is graphically
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Figure 8. Cytotoxic Effects of Compound C12 on MCF7 Breast Cancer Cells as Determined by MTT assay. Cells
were treated with varying concentrations of C12 for 72 hours, and cell viability was measured based on mitochondrial
metabolic activity. ICso value was calculated to assess cytotoxic potency.
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Figure 9. Cytotoxic Effects of Compound C18 on MCF7 Breast Cancer Cells as Determined by MTT assay. Cells
were treated with varying concentrations of C18 for 72 hours, and cell viability was measured based on mitochondrial
metabolic activity. ICso value was calculated to assess cytotoxic potency.
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represented in Figure S1. The IC, | value was calculated
using the standard method. The percentage of Viability was
calculated, and the percentage inhibition was calculated.
The MCF7 cell line was used for the cytotoxicity study.
4-(4-Hydroxyphenyl)-2-Butanone showed IC,; value
of 22.49+1.01 pg/ml and 4-Hydroxyvalerophenone
showed IC, value of 14.61+0.01 pg/ml respectively. This
cytotoxic concentration will be used for further study in
the MCF7 cell line (Figures 8 and 9).

Discussion

HOECHST 33342 Staining for Nuclear Apoptosis

The treatment with compounds C12 and C18 at CTC50
induced apoptosis in cancer cells. HOECHST 33342
staining revealed characteristic apoptotic features Figure
S2a-b. These included reduced nuclear size, condensed
chromatin, and nuclear fragmentation. The results suggest
that growth inhibition (apoptotic nuclei of treated cells)
was associated with apoptosis induction. C12 and C18’s
anti-proliferative effects are linked to their ability to induce
apoptosis. Many authors observed the apoptosis of drug-
treated cancer cells using morphological characteristics
such as chromatin condensation, nuclear pyknosis,
formation of apoptotic bodies, and atomic fragmentation
using HOECHST. Therefore, the anti-proliferation effect
of compounds C12 and C18 would be associated with their
potential to induce apoptosis in the selected cancer cells.

Direct Fluorescence Analysis for Apoptosis Induction by
AO/ EtBr

Cell morphological changes were observed using
AO/EtBr fluorescence staining after treating them with
compounds C12 and C18 at their CTC50 concentration.
The result revealed that the apoptotic cells containing
the condensed form of nuclei and apoptotic bodies were
stained orange. Whereas the necrotic cells were stained
red, the untreated MCF7 cells were stained uniformly
green. Significant differences in apoptosis induction
were observed between the control and MCF7 cells after
treatment with C12 and C18 (Figure S3a and b). Clear
apoptosis was detected in MCF7cells treated with C12
and C18.

Analysis of Mitochondrial Membrane Potential by
Rhodamine 123 Staining

The mitochondrial membrane potential loss of MCF7
cells was analysed using the dye Rh-123, and a decrease
in mean fluorescence intensity was observed following
the treatment of cells with C12 and C18. The fluorescence
images demonstrated the loss of mitochondrial membrane
potential (Figure S4a and b) due to mitochondrial
membrane depolarisation, an initial and irreversible step
of apoptosis. The data indicated that the induction of
apoptosis in cells by C12 was higher than that of C18,
accompanied by alterations in the mitochondrial membrane
potential. Besides, it was reported that mitochondria
played an essential role in an intrinsic apoptotic pathway
by releasing cytochrome c, leading to the activation of the
caspase cascade. The results demonstrated that both C12
and C18 could disrupt the functions of mitochondria at
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the early stages of apoptosis, subsequently coordinating
caspase three activation through the cleavage of caspases
by the release of cytochrome c.

Determination of Apoptosis by DNA Fragmentation Assay

A DNA fragmentation assay was carried out to
confirm the apoptosis induced by C12 and C18. We
examined the nuclear DNA fragmentation by agarose
gel electrophoresis, and the results are shown below. A
DNA ladder pattern was observed after treating MCF7
cells with both compounds. This suggested that these C12
caused DNA fragmentation characteristic of the apoptotic
process, with the generation of multiple DNA fragments,
and induced apoptosis in these MCF7 cells at different
incubation durations. A biochemical hallmark of apoptosis
was the cleavage of chromatin into small pieces, including
oligonucleosomes, which were described as DNA ladders
in the electrophoresed gel Figure S5. DNA laddering was
compared for apoptosis, and both compounds showed
multiple bands. This confirms the apoptotic-inducing
nature of C12 and C18.

In conclusion, this study employed a virtual screening
approach to identify potential lead compounds and validate
the compounds’ in vitro activities against cancer targets,
including serine-threonine protein kinase and MAP3KS5,
which play crucial roles in cancer and apoptosis.
Molecular docking: PyPx docking showed strong binding
affinities of compounds C12 and C18 to protein targets.
ADMET analysis: Both compounds exhibited favourable
pharmacokinetic properties, including high plasma
protein binding and GI absorption. These potential lead
compounds demonstrated cytotoxic effects against MCF7
breast cancer cells, with IC, values of 22.49+1.01 pg/ml
and 14.61+0.01 pg/ml, respectively. Apoptosis induction:
Fluorescence microscopy and DNA fragmentation assays
revealed characteristic apoptotic features, including
nuclear condensation, fragmentation, and DNA laddering.
These findings suggest that compounds C12 and C18
exhibit promising anticancer activity and merit further
investigation for therapeutic development.
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