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Abstract

Objective: One of the key responsibilities of bioinformatics is now protein sequence prediction, thanks to the
advancements in genome sequencing technology. The primary means of uncontrolled cancer growth is the absence
of tumour suppression gene (TSG) regulatory ability and proto-oncogene (OG) mutations. Even though a cancer is a
complicated mixture of several disorders, computational research may be able to identify genes linked to OG or TSG
activity, which may help with the creation of drugs that target the condition directly. Methods: Recently, the attention
mechanism in deep learning has emerged as a cutting-edge method for protein sequence classification. The attention-
based strategy can provide a reliable and comprehensible way to help overcome current challenges in characterising
deep neural networks for protein sequence classification. This study proposes two approaches like Attention with
Convolutional Neural Network (ACNN) and Attention with Bi directional Gated Recurrent Units (ABiGRU) to predict
Proto-oncogene protein sequence. The proposed deep learning with Attention model is validated using Independent test
and K-fold cross-validation test. Moreover this study has performed Ablation study and Statistical significant Testing
to access the superiority of the proposed model. Results: The results are analyzed by the benchmark Uniprot dataset.
Independent testing of ACNN model gives 96.85% of accurate results and ABiGRU model gives 97.53%of accurate
results. Conclusions: According to these findings, the suggested model may be crucial in determining a cancer patient’s
early prognosis and in helping researchers identify cancer-fighting systems.
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Introduction

The gene, the smallest unit of DNA, is a two-fold
helix particle composed of direct sets of nucleotides
[1]. The building blocks of each nucleotide are the gene
bases. Each gene is made up of a sequence of nucleotide
bases that convey information about how cells develop
and function. In essence, this occurs when the genetic
information is translated into proteins by the cells. Every
protein in the human body serves a specific function.
Common cellular genes called proto-oncogenes regulate
human cell division and development [2]. The lack of
control over the cell cycle has long been linked to cancer. A
sequence of genetic alterations leading to the inactivation
of tumour-suppressing genes and the activation of
proto-oncogenes into oncogenes causes the loss of control.

The process of activation, which includes insertion
mutations, point mutations, protein-protein interactions,
retroviral transduction, gene amplification, chromosomal
translocation, and transposon integration, can turn
proto-oncogenes into oncogenes. Proto-oncogenes
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are frequently classed according to how closely their
sequences resemble those of known proteins or according
to how they typically behave inside cells [3]. The study of
the genes associated with the onset of cancer is known as
oncogenomics. In transformed cells, proto oncogenes are
often activated by point mutations or gene amplification
[4]. The discovery of these genes may provide new
insights into the aetiology and management of cancer [5].
These genes may also play a part in the genesis of cancer.
Given the relationship between the impacts of
mutations on gene activity, oncogenes are believed to
be identifiable from other genes based on their specific
mutation profile [6]. Finding new oncogenes other than
those that are often mutated are difficult because of the
considerable variability of mutations across persons and
different kinds of cancer [7]. For this reason, developing
computational methods for the discovery is imperative.
Protein sequence analysis has been the subject of a
great deal of research in recent years due to its many
applications in protein bioinformatics and medical
proteomics, as work by [8] shows. Studying protein
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sequences with the primary objective of predicting the
structures and functions of proteins is known as in silico
protein sequence characterization. It has been shown in
recent research that protein sequence comparisons are
more accurate than direct DNA comparisons. In order to
identify members of the same protein superfamily that
are related to one another physically, functionally, and
historically, protein sequence classification is essential
to protein sequence analysis. The benefit of accurately
classifying a member protein sequence as belonging to a
superfamily is that, instead of studying the sequences of
each individual member protein, it just necessitates doing
some molecular studies within that superfamily.

To further detect oncogene from an amino acid
sequence, many techniques have been developed [9].
Generally, the study of proto-oncogene protein sequence
identification covers a wide range of activities, not just
those connected to cancer. In order to overcome the
shortcomings of the most recent innovative work, this
study attempts to make major advances in the field of
proto-oncogene prediction. In order to treat and cure the
oncogene, this may help identify it early on.

Machine learning is making great strides in the rapid
identification of cancer every day. Numerous scholarly
articles and papers have been disseminated across
several platforms using diverse approaches. Numerous
computational techniques have been developed to find
tumour suppressor genes in silico.

Khan et al. [10] used a provided original protein
sequence to extract location-related characteristics for the
detection of S-nitrosocysteine sites, the most prevalent
posttranslational modification of proteins. Statistical
moments were employed for position-relative feature
extraction, and a multilayer neural network trained using
techniques for adaptive learning and gradient descent was
employed. Modular radial basis function and conventional
radial basis function neural networks were introduced by
Zainuddin et al. [11] in order to classify protein sequences
into many categories. The n-gram method is used to
translate the properties of proteins into numerical numbers.
One kind of offered learning strategy is the self-organized
selection of centers. In this case, a subtractive clustering-
based training methodology is used to train the network.

The work by Malebary et al. [12] computes position-
based characteristics and statistical moments that are
integrated into pseudo amino-acid composition (PseAAC)
using Chou’s five-step criteria. Random forest classifier
is then employed to accurately predict proto-oncogenes.
To extract features from the protein sequence, Yang et al.
[13]used the word segmentation technique. The SVM was
then used to classify the attributes. Mahmood et al. [14]
published a technique for finding hydroxylysine sites that
is based on a strong statistical and mathematical approach
that considers the shape of each element inside protein
sequences as well as the influence of sequence order.

Wang et al. [15] created a novel approach that
considers both domain sequence similarity and total
sequence similarity in order to determine the evolutionary
divergence between a given protein and a protein family.
A 60-dimensional space was constructed using the natural
vector technique, in which a vector uniquely represents
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each protein. They also combine all the natural vectors
pertaining to a family of proteins to form a convex hull.
The “Sorting Tolerant from Intolerant” (SIFT) approach
was used by [16, 17] to determine if an amino acid
substitution (AAS) impacts protein function. Lyu et al.
[18] developed the method Discovery of Oncogenes and
Tumour SupressoR genes using Genetic and Epigenetic
features (DORGE) to identify TSGs and OGs by
combining large-scale genetic and epigenetic data.

Moreover, deep learning techniques have been used
to increase accuracy. A unique approach was presented
by Tavanaei et al. [19] to predict proto-oncogenes (OGs)
and tumour suppression genes (TSGs) based on the three-
dimensional structures of the Protein Data Bank (PDB).
Convolutional neural networks (CNNs) are created by
them to categorize feature map sets that are taken from the
protein structures. In order to classify the cancer genes,
proto-oncogenes, tumour suppressor genes, and fusion
genes, Anandanadarajah et al. [20] provided an effective
preprocessing for the 3D convolutional deep learning
stage and several fundamental structure classification
approaches.

Alotaibi et al. [21] proposed deep learning methods to
help identify stomach cancer growth at the best possible
time, such as bi-LSTM, gated recurrent units, and
long- and short-term memory. This study identified 61
carcinogenic driver genes, wherein mutations may cause
stomach cancer. A deep learning model with minimal
supervision was developed by Tomita et al. [22] to
identify somatic mutations in LUAD patients. Extracted
CNN-based features are merged and analyzed to predict
the genetic mutation for a patient. They used CNN-based
ResNet18 and ImageNet pre-trained CNN to study two
categories of picture characteristics: LUAD sub type
specific features and general image features.

Some of the constraints that have been faced by the
most recent novel efforts in the field of proto-oncogene
cancer mutations require consideration. The attention
mechanism should be integrated with deep learning
models in order to solve this. For future research projects
to assess and improve accuracy, it is essential to create
more thorough and reliable evaluation procedures based
on this study.

Materials and Methods

Overview of BiGRU

An expansion of the GRU (Gated Recurrent Unit)
neural network is the Bidirectional Gated Recurrent
Unit (BiGRU). The forward and backward GRU units
make up the BiGRU network used in this study. Here, hi;
represents the hidden layer of the forward GRU
unit, while ki, represents the hidden layer of the backward
GRU unit.  Formulas 1 and 2 display the unidirectional
GRU’s hidden layer outputs at time t. As indicated by
formula 3, the hidden layer output of the forward GRU
unit and the backward GRU unit are spliced through the
hidden layer output of the BiGRU at time t. Capturing
the sentence sequence’s contextual properties is the aim
of BiGRU. Figure 1 shows the architecture of BIGRU.



hi¢ = GRU(x¢ , hi;—1) (1)

hic = GRU(x¢, hig_) @

hie = |hi¢, hig | 3
Attention

In deep learning, attention is a method that allows
neural networks to concentrate on particular portions
of the input data while processing information or
forming predictions. It draws inspiration from how
humans digest information and assign varying degrees
of attention to different parts of our environment.
Rather than considering every input element identically,
attention gives each element a variable relevance score,
which enables the model to compute the weights of the
components differently. By ignoring unimportant features
and focusing on pertinent information, the model is better
able to produce insightful outputs or make accurate
forecasts.

Proposed Methodology

This study proposed two approaches for proto-
oncogene prediction from the given sequence. This two
approaches are used to identify whether the given protein
sequence is normal or it will be changed into oncogene.
In the first method, an attention with Convolutional
Neural Network (ACNN) is employed to identify proto-
oncogene. In the second method, an Attention with Bi
directional Gated Recurrent Units (ABiGRU) is used for
predicting the given proto-oncogene protein sequence.

ACNN based Proto-oncogene prediction

The architecture of the attention with CNN approach
for predicting proto-oncogene is illustrated in Figure 2.

This ACNN architecture consists of two convolutional
layers, two maxpool layers, one normalization layer,
flattern layer, attention layer, dropout layer and finally
a softmax layer for identification. The input protein
sequences I are fed into the convolution layer, which
then apphes a 64-bit filter with a 1-bit kernel size. The
feature maps received from Convolutional layer is fed into
maxpooling layerl (MPL1) with size 1x2. The normalized
output from the normalized layer is applied to the second
convolutional layer with 128 filter size. The concatenation
layer with 1/3 kernel size receives the features from the
convolutional layer2 and the maxpool layer 1. Again the
output of the concatenated layer is fed into the maxpool
layer2 (MPL2) of size 1x2.

After that, the output will go to a layer for flattening
and then to an attention layer. Attention layers results will
be received by dropout layer. Finally the softmax layer
classifies the protein sequence by oncogene or normal.

The feature extraction procedure using ACNN is
described in the following equations (4) — (11).

Conlq = 2Dcongax 1><5(Iseq) )

MPL{ = maxpoolyx,(Conlq) %)
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CC = Concat(MPL4 + ConL;) (6)
MPL, = maxpool;x,(CC) 7
FL = Flatt(MPL2) )
AL = Attent (FL) O]
DL = Drop(AL) (10)
Result = Softmax(DL) (11

ABiGRU based Proto-oncogene prediction

The architecture of the attention with BiGRU approach
for predicting proto-oncogene is illustrated in Figure 3.

This ABiGRU architecture consists of two BiGRU
with size 128 and 64, two maxpool layers, two ReLU
layer, flattern layer, dense layer. attention layer, dropout
layer and finally a softmax layer for classification. The
input protein sequences I is sent to the BIGRU with
128 size filter. The result of BiGRU is directed to the
size 2 maxpooling layer MPL,. The features obtained
from maxpool layerl is given to the ReLu layer. The
attention layer received the results from the ReLU layer
and the most relevant data is fed into the dropout layer.
The output from the attention layer is again sent to the
BiGRU of 64 size filter followed by maxpooling layer2
(MPL,) with size 2. The result will then be applied to the
ReLu layer and then dense layer of size 128. Finally the
softmax layer classifies the protein sequence by oncogene
or normal. The following Equation (12) — (21) illustrates
the BiGRU with attention model.

BiGRU; = BiGRU,2g(I5eq) (12)
MPL, = MaxPool,x,(BiGRU,) (13)
ReLU; = relu(MPL,) (14)
AL = Attent(ReLU,) (5)
DL, = dropout(AL) (16)
BiGRU, = BiGRUg4(DL,) (17)
MPL, = MaxPool,x,(BiGRUy) (18)
RelLU, = relu(MPL,) (19)
DEL = DenseL,5(ReLU,) (20)
Result = softmax(DEL) (21)

Results

Dataset Description

An extensive collection of protein data is available
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Figure 1. Architecture of BIGRU
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Figure 2. Architecture of Proto-Oncogene Prediction based on Attention CNN

in the well-known protein database Uniprot, the
availability of which has been empirically verified.
Moreover, a significant amount of its protein sequences
are unclassified. Every protein has a distinct promotion
number, and watchwords and other features are used to
represent it based on its known capabilities. The protein
sequences in the Uniprot database that contained the
term “proto-oncogene” were selected for data collection.
We used the pre-handled dataset acquired from [23] for
the evaluation of our model. We used both independent
and k-fold techniques to testing, even though the
benchmark records are divided into two groups for
various independent test combinations. On the other hand,
the evidence is used in independent tests and tenfold
subsampling test with prediction models.

The benchmark dataset is expressed as Y=Y+UY-(3)
because Y+ and Y- are made up of 630 negative samples
and 252 positive samples, respectively. 252+630=882
samples are included in the Supplementary Information
S1 file for the convenience of the readers. The training
and test datasets for statistical prediction make up the
benchmark dataset. Once the preparation record has
been used to prepare the proposed model, it is tested
using that record. We used both independent and k-fold
techniques to testing, even though the benchmark records
are divided into two groups for various independent test
combinations. On the other hand, the evidence is used
in independent tests and tenfold subsampling tests with
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prediction models.

Performance Metrics

The effectiveness of the suggested proto-oncogene
protein sequence detection method is assessed using
the following statistical metrics: recall, accuracy,
precision, F1 score and MCC. The terms True-Positive,
True-Negative, False-Positive and False-Negative
are represents TruPos,TruNeg,FalPos and FalNeg
respectively. The Matthews Correlation Coefficient
(MCC) is a performance metric that evaluates the overall
efficacy of a binary classification model, accounting for
negatives as well as true and false positives, and is utilised
in proto-oncogene prediction. A model with a higher
MCC value has a better capacity for prediction. The
mathematical representation of the metrics is displayed
in the following equations (22) — (26).

(TruPos+TruNeg)
Accuracy = 22
Y (TruPos+FalPos+TruNeg+FalNeg) ( )
.. TruPos
Precision = (TruPos+FalPos) (23)
TruPos
Recall = —— =% ___ (24)

(TruPos+FalNeg)
(RecallxPrecision)
Fl1Score=2X——F——
(Recall+Precision
_ TruPosxFalPos—TruPosxFalNeg
\/ZTruPus+FalPos)(TruPos+FulNeg)(TruNeg+FalPus)(TruNeg+FalNeg)

25)

Mcc (26)

Experimental Results
This work has utilised 70% of data for training purpose

Figure 3. Architecture of Proto-Oncogene Prediction based on Attention BIGRU
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Table 1. Results of the Independent test of ACNN and ABiGRU Method

Methods Accuracy Prcision Recall FScore MCC
PSSM [24] 80.75 76.62 79.03 77.55 55.61
PseAAC [25] 84.52 80.84 83.25 81.83 64.04
ProtoPred RF [12] 96.96 93.94 98.05 95.78 91.91
ACNN 96.85 95.06 96.38 95.72 91.34
ABiGRU 97.53 96.54 97.9 97.32 93.57

and the remaining 30% of data for testing purpose. The
proposed deep learning with Attention model is validated
using Independent test and K-fold cross-validation test.

Independent Test

The independent test results in terms of accuracy,
precision, recall, Fscore and MCC are displayed in Table 1.

The proposed ACNN model achieves 96.85 % of
accuracy 95.06% of precision 96.38% of recall 95.72% of
Fscore and 91.34% of MCC. The ABiGRU model achieves
97.53% of accuracy 96.54% of precision 97.9% of recall
97.32% of Fscore and 93.57% of MCC. Moreover the
MCC value of our ABiGRU model achieves 93.57%,
which is better performance compared to the other
approaches.

The following figures demonstrate the performance

Table 2. Results of K-Fold test of ACNN and ABiGRU
Model

of the proposed technique and the existing approaches.
Figure 4 shows the accuracy of five different methods.
Compared to the other methods, our proposed ABiGRU
method outperforms other approaches. ABiGRU enhances
the accuracy of +0.65%, +0.57%, +13.01%, and +16.78%
than the ACNN, Protopred RF, PseAAC and PSSM
approaches respectively. The proposed ACNN model
gives almost same accuracy of Protopred-RF model.

Figure 5 shows the precision of five different methods.
Compared to the other methods, our proposed ABiGRU
method outperforms other approaches. ABiGRU enhances
the precision of +1.48%, +2.6%, +15.7%, and +19.92%
than the ACNN, Protopred RF, PseAAC and PSSM
approaches respectively.

Supplementary Figure 1 shows the recall of five
different methods. Compared to the other methods,
protopred RF method outperforms other approaches.
The ABiGRU model achieves 97.9% of recall, which is
just 0.15% less value than the protopred RF model. But
ABiGRU enhances the recall of other methods except
protopred RF.

Supplementary Figure 2 shows the Fscore of five
different methods. Compared to the other methods, our
proposed ABiGRU method outperforms other approaches.
ABiGRU enhances the precision of +1.6%, +1.54%,
+15.49%, and +19.77% than the ACNN, Protopred RF,
PseAAC and PSSM approaches respectively.

Supplementary Figure 3 shows the MCC of five
different methods. Compared to the other methods, our
proposed ABiGRU method outperforms other approaches.
ABiGRU enhances the precision of +2.23%, +1.66%,
+29.53%, and +37.96% than the ACNN, Protopred RF,
PseAAC and PSSM approaches respectively.

Fold # Accuracy  Precision Recall ~ F1-Score
1 96 93 94 95
2 98 96 97 97
3 96 95 96 95
4 96 95 96 95
5 96 94 95 97
6 97 97 98 97
7 97 95 97 96
8 98 97 98 98
9 99 98 99 98
10 100 100 100 100
Average 97 96 97 97
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Figure 4. Comparison of Accuracy of ABIGRU and ACNN with the Existing Methods
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Figure 5. Comparison of Precision of ABiIGRU and ACNN with the Existing Methods

Table 3. Study of Individual Components

Model Architecture Accuracy Precision Recall F1-Score MCC
CNN only 92.34 90.15 91.87 91 82.76
BiGRU only 95.21 93.45 94.76 94.1 88.5

ACNN (CNN + Attention) 96.85 95.06 96.38 95.72 91.34
ABiGRU (Full model) 97.53 96.54 97.9 97.32 93.57

Table 4. Analysis of Statistical Significance Testing

Model Pair Mean Accuracy  p-value
Difference

ABiGRU vs ACNN +0.68% 0.004

ABIGRU vs ProtoPred_RF +0.57% 0.007

K-fold Cross Validation Test

The benchmark data set is split into k(10) disjoint
fold partitions for cross-validation. For validation, each
fold serves as a mutually exclusive data partition. The
remaining data were used to train the model. Therefore,
during testing and training, a significant portion of the
whole data set is used. The result is the average of the
results obtained from every fold. The method handles
data samples, both positive and negative, in the same way.
Using k=10, arbitrary parcels were generated. Due to the
comprehensive evaluation of all the facts, cross-approval
outperforms alternative confirmation techniques. Table 2
displays the findings of the K- fold cross validations of
the proposed ABiGRU model.

Ablation Study

We performed ablation studies to assess the contribution
of each component in the proposed ABiGRU model. The
results of the ablation studies are presented in Table
3. The combined application of ABiGRU shows more
effective results than using each component separately.
This indicates that these elements work together and
increase the predictive performance of the ABiGRU model
in a synergistic manner. The ablation study confirms the
importance of including these components in the overall
framework and further bolsters the claim that the ABIGRU
model is superior in Proto-Oncogene prediction tasks.
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These results confirm that both the BiGRU units
and the attention layer contribute significantly to the
performance of the model. The attention layer enables
the model to focus on relevant amino acid patterns, while
BiGRU captures long-range dependencies in the sequence.
Supplementary Figure 4 shows the accuracy of ablation
study in the proposed model.

The objective of this ablation study is to conduct
comparative analysis of each component in the proposed
ABiIGRU model. The results, as depicted in Supplementary
Figure 4, demonstrate that the BIGRU method integrated
within Attention (ABiGRU) exhibits superior performance
compared all the other methods.

Statistical Significance Testing

To statistically validate the superiority of the ABIGRU
model, we performed a two-tailed paired t-test on the
accuracy scores obtained over 10 different runs of k-fold
cross-validation. We compared ABiGRU with ACNN
and Protopred RF. Table 4 illustrates the performance
of the proposed work by statistical significance testing
with p-value

The improvements observed are statistically significant
(p<0.01), confirming that the ABiGRU model outperforms
the existing techniques with high confidence. All p-values
are less than 0.01, indicating statistically significant
improvements by ABiGRU over existing methods.

Model Interpretability via Attention Weights

To enhance interpretability analyzed the attention
scores assigned to individual amino acids in sample
sequences from the UniProt database. Attention weights
allow us to identify which regions of a sequence the
model considers most relevant for classifying a protein



as a proto-oncogene.

We selected representative sequences that were
correctly classified with high confidence. For these
sequences, attention heatmaps were overlaid with domain
annotations from UniProt. This correspondence between
high-attention regions and biologically annotated domains
confirms that the model is not only accurate but also
biologically grounded in its decision-making.

Supplementary Figure 5 illustrates a heatmap where
the high-attention regions clearly align with a kinase
domain in a known proto-oncogene sequence.

Discussion

One of the main ways that exposure to a mutagen
promotes cancer is through mutations in proto-oncogenes.
Translated proto-oncogenes become proto-oncogene
proteins. These proteins function as a biomarker for
this kind of cancer susceptibility. The suggested study
offers a reliable method for locating these proteins. The
attention mechanism in deep learning has emerged as a
innovative method for protein sequence classification.
This study proposed two approaches like Attention with
Convolutional Neural Network (ACNN) and Attention
with Bi directional Gated Recurrent Units (ABiGRU)
to predict Proto-oncogene protein sequence. The
performance was evaluated on the benchmark Uniprot
dataset. The proposed deep learning with Attention model
is validated using Independent test and K-fold cross-
validation test. Also we performed ablation studies to
assess the contribution of each component in the proposed
ABiIGRU model. The results demonstrate that the BIGRU
method integrated within Attention (ABiGRU) exhibits
superior performance compared all the other methods.
Moreover statistically validate the superiority of the
ABiGRU model, we performed a two-tailed paired t-test
on the accuracy scores obtained over 10 different runs of
k-fold cross-validation. The ABiGRU achieves 97.53%
of accuracy and the ACNN model achieves 96.85% of
accuracy. The results were analysed with three existing
techniques, our ABiIGRU model outperforms all the other
methods.
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