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Introduction

The gene, the smallest unit of DNA, is a two-fold 
helix particle composed of direct sets of nucleotides 
[1]. The building blocks of each nucleotide are the gene 
bases. Each gene is made up of a sequence of nucleotide 
bases that convey information about how cells develop 
and function. In essence, this occurs when the genetic 
information is translated into proteins by the cells. Every 
protein in the human body serves a specific function. 
Common cellular genes called proto-oncogenes regulate 
human cell division and development [2]. The lack of 
control over the cell cycle has long been linked to cancer. A 
sequence of genetic alterations leading to the inactivation 
of tumour-suppressing genes and the activation of 
proto-oncogenes into oncogenes causes the loss of control.

The process of activation, which includes insertion 
mutations, point mutations, protein-protein interactions, 
retroviral transduction, gene amplification, chromosomal 
translocation, and transposon integration, can turn 
proto-oncogenes into oncogenes. Proto-oncogenes 
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are frequently classed according to how closely their 
sequences resemble those of known proteins or according 
to how they typically behave inside cells [3]. The study of 
the genes associated with the onset of cancer is known as 
oncogenomics. In transformed cells, proto oncogenes are 
often activated by point mutations or gene amplification 
[4]. The discovery of these genes may provide new 
insights into the aetiology and management of cancer [5]. 
These genes may also play a part in the genesis of cancer.

Given the relationship between the impacts of 
mutations on gene activity, oncogenes are believed to 
be identifiable from other genes based on their specific 
mutation profile [6]. Finding new oncogenes other than 
those that are often mutated are difficult because of the 
considerable variability of mutations across persons and 
different kinds of cancer [7]. For this reason, developing 
computational methods for the discovery is imperative.

Protein sequence analysis has been the subject of a 
great deal of research in recent years due to its many 
applications in protein bioinformatics and medical 
proteomics, as work by [8] shows. Studying protein 

1SRMIST, Department of Computer Application,Faculty of Science and Humanities, Kattankulathur - 603 203, 
Chengalpattu District, Tamil NaduIndia. 2A. Bernice Rufus,  MPhil Scholar, Scott Christian College, Nagercoil, India. *For 
Correspondence: sheejarufus.r.d@gmail.com

Seeja R.D1*, Bernice Rufus A2

Editorial Process: Submission:11/24/2024  Acceptance:11/15/2025  Published:11/22/2025      



Seeja R. D and Bernice Rufus A

Asian Pacific Journal of Cancer Prevention, Vol 263960

sequences with the primary objective of predicting the 
structures and functions of proteins is known as in silico 
protein sequence characterization. It has been shown in 
recent research that protein sequence comparisons are 
more accurate than direct DNA comparisons. In order to 
identify members of the same protein superfamily that 
are related to one another physically, functionally, and 
historically, protein sequence classification is essential 
to protein sequence analysis. The benefit of accurately 
classifying a member protein sequence as belonging to a 
superfamily is that, instead of studying the sequences of 
each individual member protein, it just necessitates doing 
some molecular studies within that superfamily. 

To further detect oncogene from an amino acid 
sequence, many techniques have been developed [9]. 
Generally, the study of proto-oncogene protein sequence 
identification covers a wide range of activities, not just 
those connected to cancer. In order to overcome the 
shortcomings of the most recent innovative work, this 
study attempts to make major advances in the field of 
proto-oncogene prediction. In order to treat and cure the 
oncogene, this may help identify it early on. 

Machine learning is making great strides in the rapid 
identification of cancer every day. Numerous scholarly 
articles and papers have been disseminated across 
several platforms using diverse approaches. Numerous 
computational techniques have been developed to find 
tumour suppressor genes in silico.

Khan et al. [10] used a provided original protein 
sequence to extract location-related characteristics for the 
detection of S-nitrosocysteine sites, the most prevalent 
posttranslational modification of proteins. Statistical 
moments were employed for position-relative feature 
extraction, and a multilayer neural network trained using 
techniques for adaptive learning and gradient descent was 
employed. Modular radial basis function and conventional 
radial basis function neural networks were introduced by 
Zainuddin et al. [11] in order to classify protein sequences 
into many categories. The n-gram method is used to 
translate the properties of proteins into numerical numbers. 
One kind of offered learning strategy is the self-organized 
selection of centers. In this case, a subtractive clustering-
based training methodology is used to train the network.

The work by Malebary et al. [12] computes position-
based characteristics and statistical moments that are 
integrated into pseudo amino-acid composition (PseAAC) 
using Chou’s five-step criteria. Random forest classifier 
is then employed to accurately predict proto-oncogenes. 
To extract features from the protein sequence, Yang et al. 
[13] used the word segmentation technique. The SVM was 
then used to classify the attributes. Mahmood et al. [14] 
published a technique for finding hydroxylysine sites that 
is based on a strong statistical and mathematical approach 
that considers the shape of each element inside protein 
sequences as well as the influence of sequence order.

Wang et al. [15] created a novel approach that 
considers both domain sequence similarity and total 
sequence similarity in order to determine the evolutionary 
divergence between a given protein and a protein family. 
A 60-dimensional space was constructed using the natural 
vector technique, in which a vector uniquely represents 

each protein. They also combine all the natural vectors 
pertaining to a family of proteins to form a convex hull. 
The “Sorting Tolerant from Intolerant” (SIFT) approach 
was used by [16, 17] to determine if an amino acid 
substitution (AAS) impacts protein function. Lyu et al. 
[18] developed the method Discovery of Oncogenes and 
Tumour SupressoR genes using Genetic and Epigenetic 
features (DORGE) to identify TSGs and OGs by 
combining large-scale genetic and epigenetic data.

Moreover, deep learning techniques have been used 
to increase accuracy. A unique approach was presented 
by Tavanaei et al. [19] to predict proto-oncogenes (OGs) 
and tumour suppression genes (TSGs) based on the three-
dimensional structures of the Protein Data Bank (PDB). 
Convolutional neural networks (CNNs) are created by 
them to categorize feature map sets that are taken from the 
protein structures. In order to classify the cancer genes, 
proto-oncogenes, tumour suppressor genes, and fusion 
genes, Anandanadarajah et al. [20] provided an effective 
preprocessing for the 3D convolutional deep learning 
stage and several fundamental structure classification 
approaches.

Alotaibi et al. [21] proposed deep learning methods to 
help identify stomach cancer growth at the best possible 
time, such as bi-LSTM, gated recurrent units, and 
long- and short-term memory. This study identified 61 
carcinogenic driver genes, wherein mutations may cause 
stomach cancer. A deep learning model with minimal 
supervision was developed by Tomita et al. [22] to 
identify somatic mutations in LUAD patients. Extracted 
CNN-based features are merged and analyzed to predict 
the genetic mutation for a patient. They used CNN-based 
ResNet18 and ImageNet pre-trained CNN to study two 
categories of picture characteristics: LUAD sub type 
specific features and general image features.

Some of the constraints that have been faced by the 
most recent novel efforts in the field of proto-oncogene 
cancer mutations require consideration. The attention 
mechanism should be integrated with deep learning 
models in order to solve this.  For future research projects 
to assess and improve accuracy, it is essential to create 
more thorough and reliable evaluation procedures based 
on this study.

Materials and Methods

Overview of BiGRU
An expansion of the GRU (Gated Recurrent Unit) 

neural network is the Bidirectional Gated Recurrent 
Unit (BiGRU). The forward and backward GRU units 
make up the BiGRU network used in this study. Here,   
represents the hidden layer of the forward GRU 
unit, while                     represents the hidden layer of the backward 
GRU unit. Formulas 1 and 2 display the unidirectional 
GRU’s hidden layer outputs at time t. As indicated by 
formula 3, the hidden layer output of the forward GRU 
unit and the backward GRU unit are spliced through the 
hidden layer output of the BiGRU at time t. Capturing 
the sentence sequence’s contextual properties is the aim 
of BiGRU. Figure 1 shows the architecture of BiGRU.
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ABiGRU based Proto-oncogene prediction
The architecture of the attention with BiGRU approach 

for predicting proto-oncogene is illustrated in Figure 3. 
This ABiGRU architecture consists of two BiGRU 

with size 128 and 64, two maxpool layers, two ReLU 
layer, flattern layer, dense layer. attention layer, dropout 
layer and finally a softmax layer for classification. The 
input protein sequences Iseq is sent to the BiGRU with 
128 size filter.  The result of BiGRU is directed to the 
size 2 maxpooling layer MPL1. The features obtained 
from maxpool layer1 is given to the ReLu layer. The 
attention layer received the results from the ReLU layer 
and the most relevant data is fed into the dropout layer. 
The output from the attention layer is again sent to the 
BiGRU of 64 size filter followed by maxpooling layer2 
(MPL2) with size 2. The result will then be applied to the 
ReLu layer and then dense layer of size 128. Finally the 
softmax layer classifies the protein sequence by oncogene 
or normal. The following Equation (12) – (21) illustrates 
the BiGRU with attention model.

Results

Dataset Description
An extensive collection of protein data is available 

Attention 
In deep learning, attention is a method that allows 

neural networks to concentrate on particular portions 
of the input data while processing information or 
forming predictions. It draws inspiration from how 
humans digest information and assign varying degrees 
of attention to different parts of our environment. 
Rather than considering every input element identically, 
attention gives each element a variable relevance score, 
which enables the model to compute the weights of the 
components differently. By ignoring unimportant features 
and focusing on pertinent information, the model is better 
able to produce insightful outputs or make accurate 
forecasts.

Proposed Methodology
This study proposed two approaches for proto-

oncogene prediction from the given sequence. This two 
approaches are used to identify whether the given protein 
sequence is normal or it will be changed into oncogene.  
In the first method, an attention with Convolutional 
Neural Network (ACNN) is employed to identify proto-
oncogene. In the second method, an Attention with Bi 
directional Gated Recurrent Units (ABiGRU) is used for 
predicting the given proto-oncogene protein sequence. 

ACNN based Proto-oncogene prediction 
The architecture of the attention with CNN approach 

for predicting proto-oncogene is illustrated in Figure 2. 
This ACNN architecture consists of two convolutional 

layers, two maxpool layers, one normalization layer, 
flattern layer, attention layer, dropout layer and finally 
a softmax layer for identification. The input protein 
sequences Iseq are fed into the convolution layer, which 
then applies a 64-bit filter with a 1-bit kernel size. The 
feature maps received from Convolutional layer is fed into 
maxpooling layer1 (MPL1) with size 1x2. The normalized 
output from the normalized layer is applied to the second 
convolutional layer with 128 filter size. The concatenation 
layer with 1/3 kernel size receives the features from the 
convolutional layer2 and the maxpool layer 1. Again the 
output of the concatenated layer is fed into the maxpool 
layer2 (MPL2) of size 1x2.  

After that, the output will go to a layer for flattening 
and then to an attention layer. Attention layers results will 
be received by dropout layer. Finally the softmax layer 
classifies the protein sequence by oncogene or normal.

The feature extraction procedure using ACNN is 
described in the following equations (4) – (11).

ℎ𝑖𝑡 = GRU(𝑥𝑡 , ℎ𝑖𝑡−1) (1)

ℎ𝑖𝑡  = GRU(𝑥𝑡 , ℎ𝑖𝑡−1) (2)

ℎ𝑖𝑡 = ℎ𝑖𝑡,  ℎ𝑖𝑡  (3)

𝐶𝑜𝑛𝐿1 = 2𝐷𝑐𝑜𝑛64×1×5(𝐼𝑠𝑒𝑞) (4)

𝑀𝑃𝐿1 = 𝑚𝑎𝑥𝑝𝑜𝑜𝑙1×2(𝐶𝑜𝑛𝐿1) (5)

𝐶𝐶 = 𝐶𝑜𝑛𝑐𝑎𝑡(𝑀𝑃𝐿1 + 𝐶𝑜𝑛𝐿2) (6)

𝑀𝑃𝐿2 =  𝑚𝑎𝑥𝑝𝑜𝑜𝑙1×2(𝐶𝐶) (7)

𝐹𝐿 = 𝐹𝑙𝑎𝑡𝑡(𝑀𝑃𝐿2) (8)

𝐴𝐿 = 𝐴𝑡𝑡𝑒𝑛𝑡(𝐹𝐿) (9)

𝐷𝐿 = 𝐷𝑟𝑜𝑝(𝐴𝐿) (10)

𝑅𝑒𝑠𝑢𝑙𝑡 = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝐷𝐿) (11)

𝐵𝑖𝐺𝑅𝑈1 = 𝐵𝑖𝐺𝑅𝑈128(𝐼𝑠𝑒𝑞) (12)
𝑀𝑃𝐿1 = 𝑀𝑎𝑥𝑃𝑜𝑜𝑙1×2(𝐵𝑖𝐺𝑅𝑈1) (13)
𝑅𝑒𝐿𝑈1 =  𝑟𝑒𝑙𝑢(𝑀𝑃𝐿1) (14)
𝐴𝐿 =  𝐴𝑡𝑡𝑒𝑛𝑡(𝑅𝑒𝐿𝑈1) (15)
𝐷𝐿1 = 𝑑𝑟𝑜𝑝𝑜𝑢𝑡(𝐴𝐿) (16)
𝐵𝑖𝐺𝑅𝑈2 = 𝐵𝑖𝐺𝑅𝑈64(𝐷𝐿1) (17)
𝑀𝑃𝐿2 =  𝑀𝑎𝑥𝑃𝑜𝑜𝑙1×2(𝐵𝑖𝐺𝑅𝑈1) (18)
𝑅𝑒𝐿𝑈2 =  𝑟𝑒𝑙𝑢(𝑀𝑃𝐿2) (19)
𝐷𝐸𝐿 = 𝐷𝑒𝑛𝑠𝑒𝐿128(𝑅𝑒𝐿𝑈2) (20)
𝑅𝑒𝑠𝑢𝑙𝑡 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝐷𝐸𝐿) (21)

Figure 1. Architecture of BiGRU
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in the well-known protein database Uniprot, the 
availability of which has been empirically verified. 
Moreover, a significant amount of its protein sequences 
are unclassified. Every protein has a distinct promotion 
number, and watchwords and other features are used to 
represent it based on its known capabilities. The protein 
sequences in the Uniprot database that contained the 
term “proto-oncogene” were selected for data collection. 
We used the pre-handled dataset acquired from [23] for 
the evaluation of our model. We used both independent 
and k-fold techniques to testing, even though the 
benchmark records are divided into two groups for 
various independent test combinations. On the other hand, 
the evidence is used in independent tests and tenfold 
subsampling test with prediction models.

The benchmark dataset is expressed as Y=Y+UY-(3) 
because Y+ and Y- are made up of 630 negative samples 
and 252 positive samples, respectively. 252+630=882 
samples are included in the Supplementary Information 
S1 file for the convenience of the readers. The training 
and test datasets for statistical prediction make up the 
benchmark dataset. Once the preparation record has 
been used to prepare the proposed model, it is tested 
using that record. We used both independent and k-fold 
techniques to testing, even though the benchmark records 
are divided into two groups for various independent test 
combinations. On the other hand, the evidence is used 
in independent tests and tenfold subsampling tests with 

prediction models.

Performance Metrics
The effectiveness of the suggested proto-oncogene 

protein sequence detection method is assessed using 
the following statistical metrics: recall, accuracy, 
precision, F1 score and MCC. The terms True-Positive, 
True-Negative, False-Positive and False-Negative 
are represents  TruPos,TruNeg,FalPos and  FalNeg 
respectively. The Matthews Correlation Coefficient 
(MCC) is a performance metric that evaluates the overall 
efficacy of a binary classification model, accounting for 
negatives as well as true and false positives, and is utilised 
in proto-oncogene prediction. A model with a higher 
MCC value has a better capacity for prediction.  The 
mathematical representation of the metrics is displayed 
in the following equations (22) – (26).

Experimental Results 
This work has utilised 70% of data for training purpose 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = (𝑇𝑟𝑢𝑃𝑜𝑠+𝑇𝑟𝑢𝑁𝑒𝑔)
(𝑇𝑟𝑢𝑃𝑜𝑠+𝐹𝑎𝑙𝑃𝑜𝑠+𝑇𝑟𝑢𝑁𝑒𝑔+𝐹𝑎𝑙𝑁𝑒𝑔) (22)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑟𝑢𝑃𝑜𝑠
(𝑇𝑟𝑢𝑃𝑜𝑠+𝐹𝑎𝑙𝑃𝑜𝑠) (23)

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑟𝑢𝑃𝑜𝑠
(𝑇𝑟𝑢𝑃𝑜𝑠+𝐹𝑎𝑙𝑁𝑒𝑔) (24)

𝐹1𝑆𝑐𝑜𝑟𝑒 = 2 × (𝑅𝑒𝑐𝑎𝑙𝑙×𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛)
(𝑅𝑒𝑐𝑎𝑙𝑙+𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 (25)

𝑀𝐶𝐶 = 𝑇𝑟𝑢𝑃𝑜𝑠×𝐹𝑎𝑙𝑃𝑜𝑠−𝑇𝑟𝑢𝑃𝑜𝑠×𝐹𝑎𝑙𝑁𝑒𝑔
(� 𝑇𝑟𝑢𝑃𝑜𝑠+𝐹𝑎𝑙𝑃𝑜𝑠)(𝑇𝑟𝑢𝑃𝑜𝑠+𝐹𝑎𝑙𝑁𝑒𝑔)(𝑇𝑟𝑢𝑁𝑒𝑔+𝐹𝑎𝑙𝑃𝑜𝑠)(𝑇𝑟𝑢𝑁𝑒𝑔+𝐹𝑎𝑙𝑁𝑒𝑔)

(26)

Figure 2. Architecture of Proto-Oncogene Prediction based on Attention CNN 

Figure 3. Architecture of Proto-Oncogene Prediction based on Attention BiGRU
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and the remaining 30% of data for testing purpose. The 
proposed deep learning with Attention model is validated 
using Independent test and K-fold cross-validation test.

Independent Test
The independent test results in terms of accuracy, 

precision, recall, Fscore and MCC are displayed in Table 1. 
The proposed ACNN model achieves 96.85 % of 

accuracy 95.06% of precision 96.38% of recall 95.72% of 
Fscore and 91.34% of MCC. The ABiGRU model achieves 
97.53% of accuracy 96.54% of precision 97.9% of recall 
97.32% of Fscore and 93.57% of MCC.  Moreover the 
MCC value of our ABiGRU model achieves 93.57%, 
which is better performance compared to the other 
approaches. 

The following figures demonstrate the performance 

of the proposed technique and the existing approaches. 
Figure 4 shows the accuracy of five different methods. 
Compared to the other methods, our proposed ABiGRU 
method outperforms other approaches. ABiGRU enhances 
the accuracy of +0.65%, +0.57%, +13.01%, and +16.78% 
than the ACNN, Protopred_RF, PseAAC and PSSM 
approaches respectively. The proposed ACNN model 
gives almost same accuracy of Protopred-RF model. 

Figure 5 shows the precision of five different methods. 
Compared to the other methods, our proposed ABiGRU 
method outperforms other approaches. ABiGRU enhances 
the precision of +1.48%, +2.6%, +15.7%, and +19.92% 
than the ACNN, Protopred_RF, PseAAC and PSSM 
approaches respectively.

Supplementary Figure 1 shows the recall of five 
different methods. Compared to the other methods, 
protopred_RF method outperforms other approaches. 
The ABiGRU model achieves 97.9% of recall, which is 
just 0.15% less value than the protopred_RF model. But 
ABiGRU enhances the recall of other methods except 
protopred_RF.

Supplementary Figure 2 shows the Fscore of five 
different methods. Compared to the other methods, our 
proposed ABiGRU method outperforms other approaches. 
ABiGRU enhances the precision of +1.6%, +1.54%, 
+15.49%, and +19.77% than the ACNN, Protopred_RF, 
PseAAC and PSSM approaches respectively.

Supplementary Figure 3 shows the MCC of five 
different methods. Compared to the other methods, our 
proposed ABiGRU method outperforms other approaches. 
ABiGRU enhances the precision of +2.23%, +1.66%, 
+29.53%, and +37.96% than the ACNN, Protopred_RF, 
PseAAC and PSSM approaches respectively.

Methods Accuracy Prcision Recall FScore MCC
PSSM [24] 80.75 76.62 79.03 77.55 55.61
PseAAC [25] 84.52 80.84 83.25 81.83 64.04
ProtoPred_RF [12] 96.96 93.94 98.05 95.78 91.91
ACNN 96.85 95.06 96.38 95.72 91.34
ABiGRU 97.53 96.54 97.9 97.32 93.57

Table 1. Results of the Independent test of ACNN and ABiGRU Method

Figure 4. Comparison of Accuracy of ABiGRU and ACNN with the Existing Methods

Fold # Accuracy Precision Recall F1-Score 
1 96 93 94 95
2 98 96 97 97
3 96 95 96 95
4 96 95 96 95
5 96 94 95 97
6 97 97 98 97
7 97 95 97 96
8 98 97 98 98
9 99 98 99 98
10 100 100 100 100
Average 97 96 97 97

Table 2. Results of K-Fold test of ACNN and ABiGRU 
Model
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Model Architecture Accuracy Precision Recall F1-Score MCC
CNN only 92.34 90.15 91.87 91 82.76
BiGRU only 95.21 93.45 94.76 94.1 88.5
ACNN (CNN + Attention) 96.85 95.06 96.38 95.72 91.34
ABiGRU (Full model) 97.53 96.54 97.9 97.32 93.57

Model Pair Mean Accuracy 
Difference

p-value

ABiGRU vs ACNN +0.68% 0.004
ABiGRU vs ProtoPred_RF +0.57% 0.007

Table 3. Study of Individual Components

Table 4. Analysis of Statistical Significance Testing

Figure 5. Comparison of Precision of ABiGRU and ACNN with the Existing Methods

K-fold Cross Validation Test
The benchmark data set is split into k(10) disjoint 

fold partitions for cross-validation. For validation, each 
fold serves as a mutually exclusive data partition. The 
remaining data were used to train the model. Therefore, 
during testing and training, a significant portion of the 
whole data set is used. The result is the average of the 
results obtained from every fold. The method handles 
data samples, both positive and negative, in the same way. 
Using k=10, arbitrary parcels were generated. Due to the 
comprehensive evaluation of all the facts, cross-approval 
outperforms alternative confirmation techniques. Table 2 
displays the findings of the K- fold cross validations of 
the proposed ABiGRU model.

Ablation Study
We performed ablation studies to assess the contribution 

of each component in the proposed ABiGRU model. The 
results of the ablation studies are presented in Table 
3. The combined application of ABiGRU shows more 
effective results than using each component separately. 
This indicates that these elements work together and 
increase the predictive performance of the ABiGRU model 
in a synergistic manner. The ablation study confirms the 
importance of including these components in the overall 
framework and further bolsters the claim that the ABiGRU 
model is superior in Proto-Oncogene prediction tasks.

These results confirm that both the BiGRU units 
and the attention layer contribute significantly to the 
performance of the model. The attention layer enables 
the model to focus on relevant amino acid patterns, while 
BiGRU captures long-range dependencies in the sequence. 
Supplementary Figure 4 shows the accuracy of ablation 
study in the proposed model.

The objective of this ablation study is to conduct 
comparative analysis of each component in the proposed 
ABiGRU model. The results, as depicted in Supplementary 
Figure 4, demonstrate that the BiGRU method integrated 
within Attention (ABiGRU) exhibits superior performance 
compared all the other methods. 

Statistical Significance Testing
To statistically validate the superiority of the ABiGRU 

model, we performed a two-tailed paired t-test on the 
accuracy scores obtained over 10 different runs of k-fold 
cross-validation. We compared ABiGRU with ACNN 
and Protopred_RF. Table 4 illustrates the performance 
of the proposed work by statistical significance testing 
with p-value 

The improvements observed are statistically significant 
(p < 0.01), confirming that the ABiGRU model outperforms 
the existing techniques with high confidence. All p-values 
are less than 0.01, indicating statistically significant 
improvements by ABiGRU over existing methods.

Model Interpretability via Attention Weights
To enhance interpretability analyzed the attention 

scores assigned to individual amino acids in sample 
sequences from the UniProt database. Attention weights 
allow us to identify which regions of a sequence the 
model considers most relevant for classifying a protein 
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as a proto-oncogene.
We selected representative sequences that were 

correctly classified with high confidence. For these 
sequences, attention heatmaps were overlaid with domain 
annotations from UniProt. This correspondence between 
high-attention regions and biologically annotated domains 
confirms that the model is not only accurate but also 
biologically grounded in its decision-making.

Supplementary Figure 5 illustrates a heatmap where 
the high-attention regions clearly align with a kinase 
domain in a known proto-oncogene sequence.

Discussion

One of the main ways that exposure to a mutagen 
promotes cancer is through mutations in proto-oncogenes. 
Translated proto-oncogenes become proto-oncogene 
proteins. These proteins function as a biomarker for 
this kind of cancer susceptibility. The suggested study 
offers a reliable method for locating these proteins. The 
attention mechanism in deep learning has emerged as a 
innovative method for protein sequence classification. 
This study proposed two approaches like Attention with 
Convolutional Neural Network (ACNN) and Attention 
with Bi directional Gated Recurrent Units (ABiGRU) 
to predict Proto-oncogene protein sequence. The 
performance was evaluated on the benchmark Uniprot 
dataset.  The proposed deep learning with Attention model 
is validated using Independent test and K-fold cross-
validation test. Also we performed ablation studies to 
assess the contribution of each component in the proposed 
ABiGRU model. The results demonstrate that the BiGRU 
method integrated within Attention (ABiGRU) exhibits 
superior performance compared all the other methods. 
Moreover statistically validate the superiority of the 
ABiGRU model, we performed a two-tailed paired t-test 
on the accuracy scores obtained over 10 different runs of 
k-fold cross-validation.  The ABiGRU achieves 97.53% 
of accuracy and the ACNN model achieves 96.85% of 
accuracy. The results were analysed with three existing 
techniques, our ABiGRU model outperforms all the other 
methods.
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