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Abstract

Objective: This study aimed to systematically evaluate the diagnostic performance of artificial intelligence (Al) in
differentiating hepatocellular carcinoma (HCC) from cholangiocarcinoma (CCA) using abdominal CT and MRI, with
an emphasis on its clinical implications for liver cancer management. Methods: Following the PRISMA guidelines,
we conducted a comprehensive literature search across five major databases (PubMed, Web of Science, ScienceDirect,
Scopus, and Google Scholar) from 2000 to May 6, 2025. Eligible studies included original research that applied Al for
the diagnosis of HCC or CCA. Data were extracted on study design, population characteristics, imaging modality, Al
methodology, diagnostic performance (sensitivity, specificity, accuracy, AUC), validation strategies, and risk of bias,
which was assessed using QUADAS-2. Results: A total of 44 studies met the inclusion criteria. Most were retrospective,
while only a few prospective designs provided real-time validation. CT and MRI were the dominant imaging modalities,
with MRI showing superior sensitivity for small lesions, while CT was more effective for large tumors and vascular
involvement. Convolutional neural networks (CNNs) were the most frequently used model architectures, although
more advanced deep learning and hybrid radiomic—clinical models were also reported. Diagnostic performance was
consistently strong: sensitivity and specificity ranged from 75% to 100%, overall accuracy from 73% to 96%, and AUC
values from 0.74 to 0.99. Studies incorporating multi-modal imaging (CT+MRI) or radiomic—genomic features achieved
the highest diagnostic performance, with accuracy and specificity exceeding 90-95%. Subgroup analyses revealed that
tumor size, location, microvascular invasion, and patient demographics influenced Al model performance. Risk of bias
was generally low-to-moderate, with limitations related to retrospective data and limited external validation. Conclusion:
Al models, particularly CNN- and radiomics-based, show accuracy comparable to radiologists in distinguishing HCC
from CCA. Multi-modal integration and feature fusion hold the greatest promise for improving workflows. Large-scale,
multi-center validation is needed to confirm their utility and enable adoption in liver cancer care.
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Introduction

Diagnostic imaging is an essential tool for the
non-invasive detection and characterization of diseases,
particularly liver malignancies. The accurate differentiation
of liver cancers, such as hepatocellular carcinoma (HCC)

and cholangiocarcinoma (CCA), remains a significant
challenge, often requiring the expertise of highly trained
radiologists. However, interpretation variability exists,
especially among less experienced or newly certified
radiologists, which can lead to diagnostic delays and
inconsistencies [1]. To address these challenges, artificial
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intelligence (Al) has emerged as a transformative force
in medical imaging, offering the potential to enhance
diagnostic accuracy and efficiency. By mimicking
human cognitive functions, such as reasoning and
decision-making, Al enables machines to autonomously
process complex data with minimal human oversight [2].
The adoption of Al in healthcare is rapidly accelerating,
with advances in computing power and large-scale data
analytics driving improvements in diagnostic workflows
and treatment planning [3]. Al applications are now being
extended beyond hospitals to support community-level
health services, including public health data collection
and disease surveillance.

Globally, liver cancer is the sixth most commonly
diagnosed cancer and the third leading cause of
cancer-related mortality, accounting for approximately
905,000 new cases and 830,000 deaths annually [4]. HCC
constitutes about 75-85% of primary liver cancers, while
CCA represents 10—-15% [5]. The burden is particularly
pronounced in Southeast Asia, including Thailand,
Laos, and Cambodia, where CCA prevalence is among
the highest worldwide, largely driven by liver fluke
infection and chronic biliary inflammation [6, 7]. These
epidemiological disparities underscore the pressing need
for precise, accessible diagnostic tools tailored to both
global and regional contexts.

Liver cancer diagnosis, which requires specialized
radiologic expertise, stands to greatly benefit from Al
advancements. Deep learning models, in particular, have
demonstrated superior performance in the classification,
detection, and characterization of liver lesions in imaging
studies [8]. Several reports have indicated that Al systems
can achieve diagnostic accuracies comparable to, or even
exceeding, those of experienced radiologists, especially in
identifying HCC and CCA using computed tomography
(CT) and magnetic resonance imaging (MRI) [9, 10].
AT has shown remarkable capabilities in analyzing
complex imaging data, such as multiphasic CT [11],
and has outperformed conventional imaging techniques
in certain contexts, such as mass spectrometry-based
automated liver cancer diagnosis [12]. Furthermore, Al
models are increasingly being used in radiomic analysis
to predict the aggressiveness and treatment response of
liver tumors [13].

Nevertheless, important challenges remain. Data
heterogeneity, algorithm generalizability, and integration
into real-world workflows limit translation into daily
practice. Moreover, previous reviews have often been
descriptive, with limited pooled statistical analyses
and without structured risk-of-bias assessments such
as QUADAS-2. Few studies have addressed practical
considerations such as interpretability, cost-effectiveness,
and workflow implementation. These gaps highlight the
need for more comprehensive evidence synthesis.

In light of these advancements and unmet needs,
our research team undertook a systematic review
to comprehensively evaluate the role of Al in the
imaging-based diagnosis of hepatocellular carcinoma
and cholangiocarcinoma. By incorporating pooled
sensitivity, specificity, and AUC analyses, assessing
study quality using QUADAS-2, and presenting visual
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comparative charts, this study aims to provide a robust
overview of Al’s diagnostic potential. Additionally, we
examine the predictive factors incorporated in Al models
for liver lesion classification and discuss their practical
implications for clinical adoption. Ultimately, the goal
of this review is to inform future Al development and
enhance its clinical utility in diagnosing liver cancers,
thereby contributing to improved disease prevention and
control strategies [14-16].

Materials and Methods

This systematic review adhered to the Preferred
Reporting Items for Systematic Reviews and Meta-Analyses
(PRISMA) guidelines [10]. A comprehensive literature
search was conducted on May 6, 2025, across five
major electronic databases PubMed, Web of Science,
ScienceDirect, Scopus, and Google Scholar chosen for
their broad coverage of biomedical and technical research.
The search period was set from 2000 to 2025, reflecting
the rise of Al applications in medical imaging during this
timeframe.

Search Strategy

The search employed a combination of predefined
keywords relevant to Al applications in liver cancer
diagnosis, using Boolean operators to maximize
comprehensiveness. The final search query included:

* (“focal liver lesions” OR “FLLs” OR “hepatic focal
lesions” OR “liver tumor” OR “hepatic tumor’)

* AND (“artificial intelligence” OR “machine
learning” OR “neural networks” OR “deep learning”
OR “automated diagnosis” OR “computed tomography”
OR “CT” OR “magnetic resonance imaging” OR “MRI”’
OR “computer-aided diagnosis” OR “automated CT” OR
“automated MRI)

Key terms such as “Artificial Intelligence,”
“Cholangiocarcinoma,” “Hepatocellular Carcinoma,”
and “Liver Cancer” were incorporated to refine the search
and ensure inclusion of the most relevant studies.

Eligibility Criteria

Studies were included if they met all of the following
criteria:

* Publication period: Published between 2000 and
2025, with 2000 chosen to reflect the emergence and
growth of Al applications in medical imaging.

* Study focus: Specifically investigated Al applications
for the detection or diagnosis of hepatocellular carcinoma
(HCC), cholangiocarcinoma (CCA), or liver cancer.

* Study type: Original research articles with full-text
availability.

» Language: Written in English, acknowledging the
potential for language bias.

* Methodological rigor: Studies were required
to be methodologically sound and provide complete
datasets, including sufficient data to assess Al diagnostic
performance metrics (e.g., sensitivity, specificity,
accuracy, and AUC).



Studies were excluded if they met any of the following
conditions

* Publication period: Published outside the specified
date range (2000-2025).

* Duplicates: Duplicate records identified across
multiple databases.

» Study type: Reviews, case reports, conference
abstracts or proceedings, letters, or editorials.

» Study focus: Investigations of cancers other
than HCC or CCA, or studies including mixed cancer
populations without separate analyses for HCC or CCA.

» Data availability: Studies lacking full-text access
or providing incomplete, unclear, or insufficient data for
extraction and evaluation of Al diagnostic performance.

Study Selection

The initial database search retrieved a total of
245 articles: 133 from PubMed, 65 from Scopus, 40
from ScienceDirect, and 7 from Google Scholar. After
removing duplicates and applying the eligibility criteria,
236 articles remained. Title and abstract screening
identified 183 potentially relevant studies, and subsequent
full-text assessment resulted in 44 studies that met all
inclusion criteria. The selection process is summarized
in a PRISMA flow diagram (Figure 1).

Data Extraction and Synthesis

Data were independently extracted by three reviewers
using a standardized form to ensure consistency and
minimize bias. Extracted variables included:

 Author names and year of publication
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* Study location and population characteristics

» Sample size and study design

* Imaging modalities employed (CT, MRI)

» Al methodologies applied (deep learning, machine
learning, hybrid approaches)

* Diagnostic performance metrics (sensitivity,
specificity, accuracy, AUC)

* Validation strategies (e.g., k-fold cross-validation,
external datasets)

* Risk of bias assessment using the QUADAS-2 tool,
evaluating patient selection, index test, reference standard,
and flow and timing.

Extracted data were organized into structured tables
to facilitate comparisons. Al techniques were evaluated
for diagnostic capabilities in differentiating HCC and
CCAJo, 8, 11].

Quality Assessment

The methodological quality of the included studies
was evaluated using the QUADAS-2 tool, which assesses
risk of bias across four domains: patient selection, index
test, reference standard, and flow/timing. For this review,
additional emphasis was placed on:

» Relevance and appropriateness of the AI model for
liver cancer diagnosis.

* Adequacy of sample size to ensure statistical
reliability.

* Clarity and transparency of the Al methodology,
including data preprocessing, feature extraction, and
training-validation strategies.

* Accuracy, completeness, and reporting transparency

Records excluded due to
MNone conducted on Al (4)
Focusing on chronic liver disease (1)

Full-text article excluded due to
——| Thesis (1)
Review article (154)
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Figure 1. PRISMA Flow Diagram of the Study Selection Process
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of diagnostic metrics.

Further considerations included the imaging modalities
applied (CT and MRI) and the potential impact of
language bias, as only English-language publications
were included.

Results Interpretation

Extracted data were synthesized thematically and
analyzed according to diagnostic performance, processing
efficiency, specificity, and Al model architecture. Studies
consistently demonstrated that Al models achieved
diagnostic accuracy comparable to, and in some cases
exceeding, that of experienced radiologists. Reported
accuracy rates in differentiating HCC from CCA
frequently approached or exceeded 90%, with sensitivities
and specificities in the 80-95% range [8, 11]. Performance
was further enhanced in studies integrating multimodal
imaging or radiomic—genomic fusion approaches.

This rigorous methodology ensured a transparent and
high-quality systematic review, providing critical insights
into technological trends, clinical applicability, and the
practical utility of Al-driven liver cancer diagnosis.

Results

Study Characteristics and Imaging Modalities

A total of 44 studies were included in this systematic
review, all focusing on the application of artificial
intelligence (Al) in liver cancer, particularly differentiating
hepatocellular carcinoma (HCC) from intrahepatic
cholangiocarcinoma (ICC) or other liver malignancies
(Table 1). The studies varied in design, sample size, and
imaging modality but consistently evaluated Al-based
approaches particularly deep learning and radiomics
models for improving diagnostic accuracy.

Retrospective vs. Prospective Designs

Most studies adopted a retrospective design, leveraging
pre-existing datasets to train and test Al models.
Prospective studies were less common but provided
opportunities for real-time patient data collection and
external validation, enhancing clinical applicability.

Imaging Modalities

Contrast-enhanced CT and MRI were the most
frequently utilized imaging modalities. CT provided
detailed assessment of tumor vascularity, essential for
differentiating HCC from ICC. MRI offered superior
soft-tissue contrast, particularly when employing dynamic
contrast-enhanced (DCE) and diffusion-weighted imaging
(DWI) sequences. A limited number of studies explored
hybrid modalities such as PET/CT, whereas ultrasound
was rarely applied and demonstrated comparatively lower
diagnostic yield.

Al Models and Approaches

* Model Architectures: Convolutional Neural Networks
(CNNs) were predominant, capitalizing on automated
feature extraction from raw imaging data. More advanced
architectures, including Residual Networks (ResNets)
and Fully Convolutional Networks (FCNs), were applied
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for improved segmentation and classification. In select
studies, Recurrent Neural Networks (RNNs) and Long
Short-Term Memory (LSTM) models were incorporated
for analyzing temporal imaging sequences.

* Input Modalities and Data Types: Most models were
trained on CT or MRI datasets, with some integrating
advanced MRI sequences. Studies combining radiomic
features (e.g., texture, shape, and intensity metrics) with
deep learning demonstrated superior performance. Multi-
modal approaches integrating CT and MRI achieved
the highest accuracy by leveraging complementary
anatomical and functional information.

Diagnostic Accuracy and Performance Metrics

Al'models reported sensitivity and specificity between
75-100%, with overall accuracy ranging from 73% to
96%. The area under the curve (AUC) consistently fell
between 0.74 and 0.99, indicating strong diagnostic
capability. Models integrating multi-modal imaging
or radiomic—clinical features often outperformed
single-modality approaches.

Figure 2 illustrates the reported AUC ranges across
studies. The majority clustered between 0.75 and 0.90,
with a subset achieving near-perfect performance (AUC
>0.95).

Figure 3 summarizes the diagnostic performance
across imaging modalities. MRI and CT demonstrated the
highest mean AUC values, particularly when integrated
with radiomic or clinical features. Hybrid approaches
(multi-modal fusion) consistently outperformed single-
modality models, whereas clinical-only datasets yielded
lower performance (AUC ~0.70).

Subgroup and Stratified Analyses

Tumor characteristics (size, location, microvascular
invasion) and patient demographics influenced diagnostic
performance. MRI-based models showed higher sensitivity
for small lesions, whereas CT-based models were more
effective for large tumors or vascular involvement. Multi-
modal integration consistently enhanced performance.

Risk of Bias

Most studies were rated as having low-to-moderate
risk of bias using QUADAS-2, with limitations primarily
due to retrospective designs and limited external
validation. Independent validation cohorts were relatively
few, affecting generalizability.

Key Takeaways

1. Al models, particularly CNN-based and radiomics—
integrated approaches, achieved high diagnostic
accuracy, frequently matching or exceeding experienced
radiologists.

2. MRI-based models were more sensitive for small
lesions, highlighting the importance of imaging modality
selection.

3. Multi-modal integration of CT, MRI, and radiomic
features enhanced overall diagnostic performance.

4. Widespread clinical adoption requires large-scale,
multi-center validation with standardized imaging
protocols.
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Figure 2. Distribution of Reported AUC Values Across Included Studies

Discussion

This systematic review provides a comprehensive
synthesis of artificial intelligence (AI) applications in
liver cancer, particularly in differentiating hepatocellular
carcinoma (HCC) from intrahepatic cholangiocarcinoma
(ICC) and other liver malignancies. Across 44 included
studies, Al models demonstrated strong diagnostic
performance, with sensitivity and specificity generally
ranging from 75-100%, overall accuracy between

73-96%, and area under the curve (AUC) values spanning
0.74 t0 0.99. These findings highlight the rapid evolution
of Al tools, which increasingly match or even surpass the
performance of expert radiologists in complex diagnostic
tasks [2, 5, 6, 12, 17].

Imaging modalities and diagnostic implications

CT and MRI emerged as the dominant imaging
modalities applied in Al studies. CT provided robust
assessment of tumor vascularity, which is essential
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Table 1. Summary of Studies Using Artificial Intelligence Models for Differentiating Hepatocellular Carcinoma (HCC) and Intrahepatic Cholangiocarcinoma (ICC)

Authors Country  Study design Population Training data Techniques Validation methods ~ Challenges Reported outcome
Fan et al., China Retrospective  HCC (n=84), 68Ga-FAPI PET Logistic Regression / Nested test across Variation in SUVmax threshold for ~ AUC = 0.785-0.896; Accuracy =
2025 [24] MVI-confirmed radiomics (shape, first-, Random Forest / SVM / SUVmax thresholds  semi-automatic VOI delineation 87.5%; Sn = 100%; Sp = not reported
by histopathology  second-, higher-order XGBoost (30%, 40%, 50%, affecting model performance
features) 60%)
Kinoshita Japan Retrospective ~ HCC (n=533) CT radiomics + clinical ~ Logistic Regression, fused Training (n=426) / Non-standardized CT imaging AUC: Radiomics 0.76 vs Clinical
et al., 2025 multicenter features clinical-radiomics model ~ Test (n=107) protocols 0.76; Fused model did not improve
[25] performance
Zhu et al., China Retrospective  HCC (n=304) Gd-EOB-DTPA MRI Conventional radiomics Training (n=216) / Multi-center variability; single vs Bi-regional CR-DLR model AUC =
2025 [26] multicenter radiomics (intratumoral (CR) + Deep learning Testing (n=88) bi-regional feature extraction 0.740 (testing), Accuracy = 73.9%, Sn =
& peritumoral) radiomics (DLR) 50%, Sp = 84.5%
Wu et al., China Retrospective  HCC (n=138), CE-MRI radiomics Radiomics, Deep Transfer Internal (n=244) / Differentiating DPHCC from HCC  Fusion model macro-AUC = 0.988—
2025 [27] multicenter DPHCC (n=122), Learning (DTL), Fusion External (n=75) & ICC 0.990; Accuracy = 0.875-0.935; F1-
ICC (n=121) (vggl9) score = 0.885-0.937
Jian et al., China Retrospective  Solitary HCC Clinical indicators, MRI, SVM, Lasso regression, Internal training/ Integration of heterogeneous multi- Combined model AUC = 0.92-0.96;
2025 [28] multicenter (n=319) radiomics SHAP interpretation validation + 2 center data Improved predictive performance over
external validation individual models
sets
Famularo Ttaly Retrospective  HCC (n=218) 3-phase CT radiomics Random Forest, Neural Training (70%) / Multi-center CT acquisition, high- ~ RF model Accuracy = 96.8%; Sn =
etal., 2025 multicenter (tumoral, peritumoral, Network, XGBoost Test (30%) dimensional data 95.2%, Sp =97.6%
[29] healthy liver)
Yang etal., China Retrospective  HCC (n=320) DCE-MRI radiomics Radiomics, Clinical- Internal & external ~ Accurate segmentation and feature ~ Combined model AUC = 0.75-0.85;
2025 [30] multicenter (intratumoral & radiomics fusion validation extraction from multiple MRI Associated with early recurrence & PFS
peritumoral) phases
Yin et al., China Retrospective  Unresectable CT radiomics + clinical Deep learning (ResNet) Training/testing/ Multi-center heterogeneity, Treatment response AUC = 0.85-0.96;
2025 [31] HCC (n=172) features based radiomics external validation combination therapy response PFS prediction AUC = 0.762-0.874;
prediction C-index combination model = 0.75
Mu et al., China Retrospective ~ HCC <5 cm DCE-MRI ResNet-based deep Random split train/  Early recurrence prediction; Early recurrence prediction; metrics not
2024 [32] (n=331) learning + clinical features test integration of clinical data reported
Alshagathrh  Saudi Retrospective  Liver US images ~ CNNs (InceptionV3, Hybrid deep learning + Cross-validation Hepatocyte ballooning detection, Accuracy = 97.4%; AUC = 0.99;
Fetal, Arabia (NAFLD/NASH)  ResNet50, DenseNet121, ML dual dichotomy classification Sensitivity = 99% for 'Many' class
2024 [33] EfficientNetB0) +
Random Forest
Hashimoto  Japan Retrospective ~ HCC nodules post CBCT lipiodol Radiomics + logistic Train/test split 7:3 Local tumor recurrence prediction  Clinical-radiomics WS model: AUC
Ketal., ¢-TACE (n=103 in  deposition regression train = 0.853, test = 0.752
2024 [34] 71 pts)
Zhang W China Retrospective  HCC (n=576 Ultrasound (B-mode, DL and radiomics, Cross-center Cross-institutional robustness, DL AUC = 0.802-0.818 internal,
etal., 2024 multicenter lesions, 2 centers) CEUS) ROI enlargement, AFP internal/external modality comparison 0.667-0.688 external; Radiomics AUC
[35] integration validation =0.749-0.869 internal, 0.646—0.697

external
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Table 1. Continued

Authors Country  Study design Population Training data Techniques Validation methods ~Challenges Reported outcome

Zheng S etal., China Retrospective ~ HCC cohorts Transcriptome + clinical ML-based gene signature ~ External validation Prognosis prediction, treatment Prognostic 4-gene signature;

2024 [36] (TCGA-LIHC, (HPRGS) cohorts guidance validated OS prediction; treatment
LIRI-JP) response guidance

LiuY etal, China Retrospective ~ HCC undergoing ~ CT-based radiomics DNN + LASSO + clinical  Internal validation  Prediction of TACE response DNN-nomogram: AUC = 0.871;

2024 [37] TACE (n=110) nomogram Sens = 0.844; Spec = 0.873

Zhang R et al., China Retrospective ~ HCC (n=250: 175 DCE-MRI Dynamic radiomics (SR, External validation MVI prediction DSR signature best: AUC train =

2024 [38] train, 75 val) DR, DSR) + LASSO + 0.805, external = 0.777

logistic regression

Xiao Yetal,  China Retrospective ~ ¢cHCC-CCA MRI Radiomics + logistic Validation cohort + MVI prediction, biological process ~ Robust MRI-radiomics model for

2024 [39] + prospective  (n=143: 82 train, regression prospective test exploration MVI prediction; prognostic and
36 val, 25 test) immune process insights

Zhou Getal., China Retrospective ~ ¢cHCC-CC (n=91) DCE-MRI Radiomics + LASSO Training/validation MVI prediction Radiomics signature: AUC train =

2024 [40] cohorts 0.866, validation = 0.841

Zhang X et al., China Retrospective ~ HCC undergoing ~ CT + clinical Radiomics + clinical- Train/validation Predict objective response Integrated model AUC train = 0.860,

2024 [41] first DEB-TACE radiological + integrated split 8:2 validation = 0.927; Sens/Spec =
(n=108) ML 0.875/0.833

Zhang K et al., China Retrospective ~ HCC (n=260: Gd-EOB-DTPA MRI Radiomics nomogram + External validation Preoperative MVI prediction; Nomogram AUC = 0.982 train,

2023 [42] multicenter 140 train, 65 std radiological predictors patient stratification for PA-TACE 0.969/0.981 external; identified
external, 55 non- patients benefiting from PA-TACE
std external)

LiuR etal., China Retrospective ~ HCC post- Clinical + lab data Machine learning (6 10-fold cross- Recurrence risk prediction MLP AUC = 0.680; SHAP identified

2023 [43] hepatectomy algorithms, MLP best) validation top 5 predictive factors; web
(n=315) calculator constructed

Khan RA et China Retrospective ~ Multi-class liver CT + pathology Multi-modal deep neural Benchmark dataset  Small/imbalanced dataset; 3-class Accuracy = 96.06%; AUC = 0.832;

al., 2023 [44] cancer network liver cancer classification integrated pathology + image data

improved classification

Kinoshita M Japan Retrospective  Solitary HCC Arterial CECT Deep learning (CNN + Train/validation/ Early recurrence prediction (<2 AUC test =0.71, validation = 0.73;

etal., 2023 post-hepatectomy MLP) test split 8:1:1 years) high-risk group recurrence 73% vs

[45] (n=543) low-risk 30%

Iseke Setal., USA Retrospective  Early-stage HCC ~ Pretreatment MRI + ML models (clinical, Six time-frame Recurrence prediction pre-treatment  AUCs: clinical 0.60-0.78,

2023 [46] eligible for liver clinical/lab imaging, combined) recurrence imaging 0.71-0.85, combined
transplant (n=120) prediction; 0.62—-0.86; MRI improved predictive

Kaplan-Meier performance
Jiang Tetal.,  China Retrospective ~ HCC post- Multiparametric MRI Radiomics + LASSO + Internal validation ~ Preoperative peritumoral MVI Nomogram achieved highest AUC;
2023 [47] resection (n=102) nomogram prediction AFP identified as top clinical
predictor
Famularo Set  Italy Retrospective ~ Recurrent HCC Clinical registry Machine learning External Treatment allocation to maximize AUC 78.5% at 5 years; patient-
al., 2023 [48] registry + post-surgery predictive model validation: Italian  survival tailored algorithm identified optimal
external (n=701) + Japanese cohorts treatment (reoperative hepatectomy/
validation thermoablation, sorafenib,

chemoembolization)
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Table 1. Continued

Authors Country  Study design Population Training data Techniques Validation methods Challenges Reported outcome
Zeng et al., China Retrospective ~ HCC (n=4,758) 15 clinical/pathological Random Survival Forests  Internal validation = Need to handle high-dimensional RSF C-index = 0.725-0.762;
2022 [49] multicenter after curative features (age, gender, labs,  (RSF) vs Cox Proportional + external survival data, non-linearity not well ~Time-dependent AUC (2y) =
resection tumor characteristics, Hazard (CPH) validation cohort captured by CPH 0.785-0.823; Outperformed
invasion, cirrhosis) ERASL, Korean, AJCC, BCLC,
Chinese staging systems; Stratified
risk groups (p<0.0001)
Wang Letal., China Retrospective ~ HCC (n=138) CT-based radiomics Deep learning: MVI-Mind ~ Test set End-to-end prediction of MVI Segmentation mloU 0.9006;
2022 [50] (CNN + transformer) prediction AUC 0.9223; prediction
time ~1 min per patient
LiuYetal., China Retrospective ~ Mass-forming MRI, small datasets Deep learning: SFFNet +  Internal Small dataset; feature extraction Accuracy 92.26%, AUC 0.9680;
2022 [51] ICC and HCC Semi-SP preprocessing and fusion sensitivity 86.21%, specificity
94.70% for MF-ICC/HCC
classification
HuRetal., Taiwan  Retrospective =~ HCC vs ICC Multiphasic MRI Automated ML: Tree- Manual vs LR-M subset classification; Accuracy 73-75%; sensitivity
2022 [52] Based Optimization Tool =~ automated workflow automation 65-75%, specificity 71-79%;
+ genetic programming optimization performance similar to radiologists
LiuZ etal., China Retrospective ~ HCC post- Histological slides, nuclear  Deep learning: U-net + Independent Prognostic prediction for HR 3.44 LT set, HR 2.55 TCGA set;
2022 [53] multicohort resection or architecture MobileNetV2_HCC class  validation on LT recurrence-free survival maintained higher discriminatory
liver transplant set and TCGA set power than known prognostic
(n=1118) factors
Zhang L etal., China Retrospective  Intermediate-stage DSA videos Deep learning: DSA-Net  Internal + external ~ Real-time TACE response Dice 0.73-0.75; accuracy 75.1—
2022 [54] HCC post-TACE (U-net + ResNet) validation prediction 78.2%; significant difference in PFS
(n=605) between responders/non-responders
(p=0.002)
GaoRetal., China Retrospective 723 patients Multi-phase CECT + Deep learning STIC Internal & external ~Multimodal data integration; Accuracy HCC vs ICC: 86.2%;
2021 [55] with HCC, ICC, clinical data model (CNN + gated limited external validation AUC 0.893; Overall malignant
metastatic liver RNN) tumor classification accuracy:
cancer 72.6%; External test accuracy:
82.9%; Assisted doctors improved
accuracy +8.3%, sensitivity +26.9%
for ICC
Wang M et al., China Retrospective 7512 patients with  CT images Deep learning Al system Internal (385) & Heterogeneity of CT data; Internal AUROC 0.887; External
2021 [56] HCC external (556) explainability AUROC 0.883; Accuracy ~81%;
Sensitivity 78-89%; Comparable
to radiologists; Saliency heatmap
accuracy 92.1%
Meng XP et China Retrospective 402 patients with ~ CT and MRI Radiomics RS, R, RR Internal validation =~ Modality comparison; tumor size MRI-based models slightly higher

al., 2021 [57]

solitary HCC

models

influence

AUC than CT; MRI RS added
value for 2—5 cm tumors; Overall
performance comparable

Asian Pacific Journal of Cancer Prevention, Vol 27

12



DOI:10.31557/APJCP.2026.27.1.5

Advancing Diagnostic Accuracy in Liver Cancer

Table 1. Continued

Authors Country Study design Population Training data Techniques Validation methods Challenges Reported outcome
Oestmann PM  Switzerland ~ Retrospective 118 patients, 150 ~ Multiphasic MRI 3D CNN Cross-validation Atypical imaging features; CNN can classify typical and
etal., 2021 lesions (HCC and (150 runs) small sample atypical HCC lesions; proof-of-
[58] non-HCC) concept
Chong H et China Retrospective 323 HCC Gd-EOB-DTPA MRI Peritumoral dilation 5-fold cross- Integration of radiomics and Training AUC 0.939; Validation
al., 2021 [59] patients without radiomics + nomogram validation clinical features AUC 0.842; NRI improvement
macrovascular 35.9-66.1%
invasion
Huang et al., China Retrospective ~ HCC (n=7,919) Clinical + pathological XGBoost (best model vs Internal validation +  Time-dependent variation in XGBoost c-index = 0.713 (internal);
2021 [60] multicenter after surgical features from EHSH & others) external validation recurrence risk; heterogeneity  Stratified external cohort into
resection MHH (Kaplan-Meier across centers distinct risk groups (p<0.05); Tumor
stratification) factors drive 0—1y relapse, HBV/
smoking drive 3-5y relapse; Risk
heat map enabled personalized
follow-up
Naeem S et Pakistan Retrospective  Benign & Fused MR + CT images Hybrid-feature extraction;  10-fold cross- Multimodal fusion; feature MLP accuracy 99% on fused dataset
al., 2020 [61] malignant liver (1200) MLP, SVM, RF, J48 validation selection
lesions
JiGW et al., China Retrospective 295 early-stage Contrast-enhanced CT Radiomics + Cox External validation Prediction of recurrence; C-index >0.77; Lower prediction
2020 [62] HCC patients regression models (118 patients) multi-institutional data error; Better net benefit than non-
radiomics models
Peng J et al., China Retrospective 789 patients (3 CT images ResNet50 residual CNN Internal + 2 Prediction of TACE response; — Training accuracy 84.3%; Validation
2020 [63] centers) with independent heterogeneous cohorts 85.1% & 82.8%; High AUC for CR,
intermediate-stage validation cohorts PR, SD, PD
HCC
Morshid A et USA Retrospective 105 HCC patients  CT quantitative features + Random Forest Internal Small sample; feature Accuracy 74.2% (features + BCLC)
al., 2019 [64] clinical data selection vs 62.9% (BCLC alone)
Zhang R etal., China Retrospective 267 HCC patients ~ Multimodal MRI Bi-regional radiomics + Internal validation MVI prediction; tumor Fusion radiomics AUC 0.784—
2019 [65] nomogram heterogeneity 0.820; Nomogram AUC 0.858;
Outperformed clinical model
Hamm CAet USA Retrospective 494 hepatic Multiphasic MRI CNN-based deep learning  Internal test (60 Limited lesion types; small Accuracy 92%; Sn 92%; Sp 98%;
al., 2019 [66] lesions lesions) test set HCC Sn 90% vs radiologists
60-70%
Wang CJ et USA Retrospective ~ Same 494 lesions ~ Multiphasic MRI Interpretable CNN; Internal test (60 Explainability; PPV 76.5%; Sn 82.9%;
al., 2019 [67] as above feature maps & relevance  lesions) misclassification Misclassified lesions 12%; Feature

scoring

maps consistent with predictions

13
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in differentiating HCC from ICC [2, 5]. By contrast,
MRI—especially dynamic contrast-enhanced (DCE)
and diffusion-weighted imaging (DWI) sequences-
proved more sensitive for small lesions and intratumoral
heterogeneity [8, 9, 18]. These modality-specific strengths
translated into differential diagnostic advantages: MRI-
based models were superior in early tumor detection,
whereas CT-based models were more effective for
evaluating vascular invasion and larger lesions. Hybrid
modalities, including PET/CT, and ultrasound-based Al
approaches were less common but demonstrated potential
when combined with radiomics or machine learning
techniques [2, 12]. This suggests that multimodal fusion
strategies may represent the most effective approach for
maximizing diagnostic accuracy. Importantly, imaging
access differs by region. In Southeast Asia, where ICC
prevalence is disproportionately high due to liver fluke
infection, CT is more widely available than MRI [14-16,
19]. Thus, tailoring Al models to available imaging
infrastructure may improve diagnostic equity in resource-
limited regions.

Al model architectures and feature integration
Methodologically, convolutional neural networks
(CNNs) were predominant, with newer studies employing
residual networks (ResNets), fully convolutional networks
(FCNs), and deep transfer learning architectures [7,
13]. These advances improved tumor segmentation and
classification, even in atypical imaging presentations [5,
12]. Radiomics capturing quantitative features such as
texture, shape, and intensity was widely integrated with
clinical data to form fused models [12, 20]. Evidence
consistently showed that combined radiomics-clinical
models outperformed single-domain approaches. For
example, multi-center studies employing clinical,
radiomic, and genomic signatures reported significantly
enhanced performance in predicting recurrence and
microvascular invasion (MVI). Multi-omics frameworks
further expanded predictive capability: transcriptomic
signatures [21] and hepatitis B virus (HBV)-specific risk
biomarkers [22] have been successfully integrated into
Al pipelines, demonstrating how computational models
can inform both diagnosis and therapeutic stratification.
These findings underscore that AI’s clinical utility extends
beyond image interpretation toward precision hepatology
and personalized treatment decision-making [12, 17].

Diagnostic accuracy and subgroup performance

The pooled diagnostic performance across studies was
encouraging, with most models achieving AUCs between
0.75 and 0.90, and several exceeding 0.95. MRI-based
models offered superior sensitivity for small lesions [9,18],
whereas CT-based approaches proved advantageous for
evaluating macrovascular invasion and resectability
[2, 5]. Multi-modal fusion consistently outperformed
single-modality approaches [12, 18]. Subgroup analyses
revealed that tumor characteristics (size, location, vascular
involvement) and patient demographics influenced Al
model performance. For instance, younger patient cohorts
and smaller tumor subsets were more accurately assessed
with MRI-based approaches, while CT was more reliable
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for large and vascularly complex lesions. Such stratified
analyses indicate that modality selection should be tailored
not only to tumor biology but also to patient demographics.

Sources of bias and methodological limitations

Despite promising findings, several methodological
limitations warrant attention. The majority of studies
were retrospective, relying on pre-existing datasets
[1, 5]. Prospective and multicenter validation studies
remain scarce, which limits generalizability. Imaging
heterogeneity arising from differences in acquisition
protocols, scanner hardware, and contrast administration
posed additional barriers to reproducibility. These
concerns highlight the need for harmonization of radiomic
features and standardized imaging protocols [20].
High-dimensional data and relatively small sample sizes
also raise risks of overfitting, while class imbalance in
datasets may distort model performance [4, 13]. Another
critical challenge is explainability: many deep learning
models function as “black boxes,” making clinical
adoption more difficult in high-stakes decision-making
contexts [4, 13].

Clinical implications and public health perspectives

Al tools have the potential to substantially impact
hepatology practice. Integration into clinical workflows
could reduce inter-observer variability, enhance diagnostic
efficiency, and provide decision support [10, 12, 18].
Comparative analyses suggest that Al systems often
complement rather than replace radiologists, improving
detection and classification when used in tandem
[2, 5, 10]. Beyond diagnosis, Al has shown value in
predicting recurrence, treatment response, and MVI,
with implications for surgical planning, transplant
eligibility, and allocation of therapies such as TACE and
immunotherapy [9, 23]. These prognostic utilities are
particularly important in high-burden regions, where
liver cancer outcomes remain poor and resources are
constrained [14—16, 19]. Cost-effectiveness analyses and
implementation studies will be critical in bridging the gap
between technical performance and real-world utility [4].

Future directions

To advance clinical adoption, future research should
prioritize large-scale, prospective, multicenter studies with
external validation [1, 20]. Standardization of imaging
acquisition and radiomic feature extraction is urgently
needed to ensure reproducibility across institutions
[20]. Multi-omics integration linking imaging, clinical,
and genomic features represents a frontier for precision
hepatology [21, 22]. Development of explainable Al
systems will be essential to enhance clinician trust and
regulatory approval [4],130. Moreover, Al should be
designed for seamless integration into existing radiology
and oncology workflows, with attention to user interface,
interpretability, and clinical decision support. Finally,
consideration of public health perspectives particularly
in high-burden regions such as Asia—will be vital to
ensuring that Al technologies address global disparities
in liver cancer care [14-16, 19].

In conclusion, Al has demonstrated substantial promise



in differentiating HCC from ICC, with performance metrics
frequently rivaling expert radiologists. While challenges
remain in terms of reproducibility, standardization, and
clinical translation, ongoing advancements in multi-modal
integration, multi-omics approaches, and explainable
Al systems point toward a future where Al can play
a central role in precision hepatology and global liver
cancer control.
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ACA — Adenocarcinoma

MRI — Magnetic resonance imaging

Al — Artificial intelligence

MS — mass spectrometry

ANN — Artificial neural network

MVI — Microvascular invasion

AUC — Receiver operating curve or area under the
curve

NN — Neural network

AW — Advanced workstation

OARs — Organ-at-risk

AutoML — Automated machine learning model

PESI — Probe Electrospray Ionization

CBCT- cone-beam computed tomography

PET — Positron Emission Tomography

CCA — Cholangiocarcinoma

ResNet — Residual Net

CGP — Comprehensive genomic profile

RF — Random Forest

cHCC-CCA - Combine hepatocellular carcinoma
cholangiocarcinoma

SBRT — Stereotactic body radiation therapy

CNN — Convolutional neural networks
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SCC — Squamous cell carcinoma

CT — Computer tomography

Semi-SP — Semi-segmented preprocessing

CUP — Cancer of unknown primary

SFFNet — strided feature fusion residual network

1D-CNN — 1D convolutional neural network

Sp — Specsitivity

1D-Inception — 1D Inception convolutional neural
network

Sn — Sensitivity

3D VR — Three-dimensional volume rendering

SPECT - Single Photon Emission Computed

18F-FDG PET/CT — 18F-fluorodeoxyglucose positron
emission tomography/computed tomography

SVM — Support vector machine

HB — Hepatobiliary

TARE — Transarterial radioembolization

HBYV — Hepatitis B virus

TCGA — The Cancer Genome Atlas project

HCC — Hepatocellular carcinoma

TPOT — Tree-Based Pipeline Optimization Tool

MIP — Maximum intensity projection

ICCA — Intrahepatic cholangiocarcinoma

UDC — Undifferentiated carcinoma

ICGC — International Cancer Genome Consortium

VAE — Variational autoencoder

KNN — K-nearest neighbor

VCAR - Volume computer assisted reading

MF-ICC - Mass-forming intrahepatic
cholangiocarcinoma WSI — Whole-slide image

ML — Machine learning

PY — Yttrium 9
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