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Introduction

Diagnostic imaging is an essential tool for the 
non-invasive detection and characterization of diseases, 
particularly liver malignancies. The accurate differentiation 
of liver cancers, such as hepatocellular carcinoma (HCC) 
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more advanced deep learning and hybrid radiomic–clinical models were also reported. Diagnostic performance was 
consistently strong: sensitivity and specificity ranged from 75% to 100%, overall accuracy from 73% to 96%, and AUC 
values from 0.74 to 0.99. Studies incorporating multi-modal imaging (CT+MRI) or radiomic–genomic features achieved 
the highest diagnostic performance, with accuracy and specificity exceeding 90–95%. Subgroup analyses revealed that 
tumor size, location, microvascular invasion, and patient demographics influenced AI model performance. Risk of bias 
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AI models, particularly CNN- and radiomics-based, show accuracy comparable to radiologists in distinguishing HCC 
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multi-center validation is needed to confirm their utility and enable adoption in liver cancer care.
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and cholangiocarcinoma (CCA), remains a significant 
challenge, often requiring the expertise of highly trained 
radiologists. However, interpretation variability exists, 
especially among less experienced or newly certified 
radiologists, which can lead to diagnostic delays and 
inconsistencies [1]. To address these challenges, artificial 
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intelligence (AI) has emerged as a transformative force 
in medical imaging, offering the potential to enhance 
diagnostic accuracy and efficiency. By mimicking 
human cognitive functions, such as reasoning and 
decision-making, AI enables machines to autonomously 
process complex data with minimal human oversight [2]. 
The adoption of AI in healthcare is rapidly accelerating, 
with advances in computing power and large-scale data 
analytics driving improvements in diagnostic workflows 
and treatment planning [3]. AI applications are now being 
extended beyond hospitals to support community-level 
health services, including public health data collection 
and disease surveillance.

Globally, liver cancer is the sixth most commonly 
diagnosed cancer and the third leading cause of 
cancer-related mortality, accounting for approximately 
905,000 new cases and 830,000 deaths annually [4]. HCC 
constitutes about 75–85% of primary liver cancers, while 
CCA represents 10–15% [5]. The burden is particularly 
pronounced in Southeast Asia, including Thailand, 
Laos, and Cambodia, where CCA prevalence is among 
the highest worldwide, largely driven by liver fluke 
infection and chronic biliary inflammation [6, 7]. These 
epidemiological disparities underscore the pressing need 
for precise, accessible diagnostic tools tailored to both 
global and regional contexts.

Liver cancer diagnosis, which requires specialized 
radiologic expertise, stands to greatly benefit from AI 
advancements. Deep learning models, in particular, have 
demonstrated superior performance in the classification, 
detection, and characterization of liver lesions in imaging 
studies [8]. Several reports have indicated that AI systems 
can achieve diagnostic accuracies comparable to, or even 
exceeding, those of experienced radiologists, especially in 
identifying HCC and CCA using computed tomography 
(CT) and magnetic resonance imaging (MRI) [9, 10]. 
AI has shown remarkable capabilities in analyzing 
complex imaging data, such as multiphasic CT [11], 
and has outperformed conventional imaging techniques 
in certain contexts, such as mass spectrometry-based 
automated liver cancer diagnosis [12]. Furthermore, AI 
models are increasingly being used in radiomic analysis 
to predict the aggressiveness and treatment response of 
liver tumors [13].

Nevertheless, important challenges remain. Data 
heterogeneity, algorithm generalizability, and integration 
into real-world workflows limit translation into daily 
practice. Moreover, previous reviews have often been 
descriptive, with limited pooled statistical analyses 
and without structured risk-of-bias assessments such 
as QUADAS-2. Few studies have addressed practical 
considerations such as interpretability, cost-effectiveness, 
and workflow implementation. These gaps highlight the 
need for more comprehensive evidence synthesis.

In light of these advancements and unmet needs, 
our research team undertook a systematic review 
to comprehensively evaluate the role of AI in the 
imaging-based diagnosis of hepatocellular carcinoma 
and cholangiocarcinoma. By incorporating pooled 
sensitivity, specificity, and AUC analyses, assessing 
study quality using QUADAS-2, and presenting visual 

comparative charts, this study aims to provide a robust 
overview of AI’s diagnostic potential. Additionally, we 
examine the predictive factors incorporated in AI models 
for liver lesion classification and discuss their practical 
implications for clinical adoption. Ultimately, the goal 
of this review is to inform future AI development and 
enhance its clinical utility in diagnosing liver cancers, 
thereby contributing to improved disease prevention and 
control strategies [14-16].

Materials and Methods

This systematic review adhered to the Preferred 
Reporting Items for Systematic Reviews and Meta-Analyses 
(PRISMA) guidelines [10]. A comprehensive literature 
search was conducted on May 6, 2025, across five 
major electronic databases PubMed, Web of Science, 
ScienceDirect, Scopus, and Google Scholar chosen for 
their broad coverage of biomedical and technical research. 
The search period was set from 2000 to 2025, reflecting 
the rise of AI applications in medical imaging during this 
timeframe.

Search Strategy
The search employed a combination of predefined 

keywords relevant to AI applications in liver cancer 
diagnosis, using Boolean operators to maximize 
comprehensiveness. The final search query included:

• (“focal liver lesions” OR “FLLs” OR “hepatic focal 
lesions” OR “liver tumor” OR “hepatic tumor”)

• AND (“artificial intelligence” OR “machine 
learning” OR “neural networks” OR “deep learning” 
OR “automated diagnosis” OR “computed tomography” 
OR “CT” OR “magnetic resonance imaging” OR “MRI” 
OR “computer-aided diagnosis” OR “automated CT” OR 
“automated MRI”)

Key terms such as “Artificial Intelligence,” 
“Cholangiocarcinoma,” “Hepatocellular Carcinoma,” 
and “Liver Cancer” were incorporated to refine the search 
and ensure inclusion of the most relevant studies.

Eligibility Criteria
Studies were included if they met all of the following 

criteria:
• Publication period: Published between 2000 and 

2025, with 2000 chosen to reflect the emergence and 
growth of AI applications in medical imaging.

• Study focus: Specifically investigated AI applications 
for the detection or diagnosis of hepatocellular carcinoma 
(HCC), cholangiocarcinoma (CCA), or liver cancer.

• Study type: Original research articles with full-text 
availability.

• Language: Written in English, acknowledging the 
potential for language bias.

• Methodological rigor: Studies were required 
to be methodologically sound and provide complete 
datasets, including sufficient data to assess AI diagnostic 
performance metrics (e.g., sensitivity, specificity, 
accuracy, and AUC).
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• Study location and population characteristics
• Sample size and study design
• Imaging modalities employed (CT, MRI)
• AI methodologies applied (deep learning, machine 

learning, hybrid approaches)
• Diagnostic performance metrics (sensitivity, 

specificity, accuracy, AUC)
• Validation strategies (e.g., k-fold cross-validation, 

external datasets)
• Risk of bias assessment using the QUADAS-2 tool, 

evaluating patient selection, index test, reference standard, 
and flow and timing.

Extracted data were organized into structured tables 
to facilitate comparisons. AI techniques were evaluated 
for diagnostic capabilities in differentiating HCC and 
CCA [6, 8, 11].

Quality Assessment
The methodological quality of the included studies 

was evaluated using the QUADAS-2 tool, which assesses 
risk of bias across four domains: patient selection, index 
test, reference standard, and flow/timing. For this review, 
additional emphasis was placed on:

• Relevance and appropriateness of the AI model for 
liver cancer diagnosis.

• Adequacy of sample size to ensure statistical 
reliability.

• Clarity and transparency of the AI methodology, 
including data preprocessing, feature extraction, and 
training-validation strategies.

• Accuracy, completeness, and reporting transparency 

Studies were excluded if they met any of the following 
conditions

• Publication period: Published outside the specified 
date range (2000–2025).

• Duplicates: Duplicate records identified across 
multiple databases.

• Study type: Reviews, case reports, conference 
abstracts or proceedings, letters, or editorials.

• Study focus: Investigations of cancers other 
than HCC or CCA, or studies including mixed cancer 
populations without separate analyses for HCC or CCA.

• Data availability: Studies lacking full-text access 
or providing incomplete, unclear, or insufficient data for 
extraction and evaluation of AI diagnostic performance.

Study Selection
The initial database search retrieved a total of 

245 articles: 133 from PubMed, 65 from Scopus, 40 
from ScienceDirect, and 7 from Google Scholar. After 
removing duplicates and applying the eligibility criteria, 
236 articles remained. Title and abstract screening 
identified 183 potentially relevant studies, and subsequent 
full-text assessment resulted in 44 studies that met all 
inclusion criteria. The selection process is summarized 
in a PRISMA flow diagram (Figure 1).

Data Extraction and Synthesis
Data were independently extracted by three reviewers 

using a standardized form to ensure consistency and 
minimize bias. Extracted variables included:

• Author names and year of publication

Figure 1. PRISMA Flow Diagram of the Study Selection Process
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of diagnostic metrics.
Further considerations included the imaging modalities 

applied (CT and MRI) and the potential impact of 
language bias, as only English-language publications 
were included.

Results Interpretation
Extracted data were synthesized thematically and 

analyzed according to diagnostic performance, processing 
efficiency, specificity, and AI model architecture. Studies 
consistently demonstrated that AI models achieved 
diagnostic accuracy comparable to, and in some cases 
exceeding, that of experienced radiologists. Reported 
accuracy rates in differentiating HCC from CCA 
frequently approached or exceeded 90%, with sensitivities 
and specificities in the 80–95% range [8, 11]. Performance 
was further enhanced in studies integrating multimodal 
imaging or radiomic–genomic fusion approaches.

This rigorous methodology ensured a transparent and 
high-quality systematic review, providing critical insights 
into technological trends, clinical applicability, and the 
practical utility of AI-driven liver cancer diagnosis.

Results

Study Characteristics and Imaging Modalities
A total of 44 studies were included in this systematic 

review, all focusing on the application of artificial 
intelligence (AI) in liver cancer, particularly differentiating 
hepatocellular carcinoma (HCC) from intrahepatic 
cholangiocarcinoma (ICC) or other liver malignancies 
(Table 1). The studies varied in design, sample size, and 
imaging modality but consistently evaluated AI-based 
approaches particularly deep learning and radiomics 
models for improving diagnostic accuracy.

Retrospective vs. Prospective Designs
Most studies adopted a retrospective design, leveraging 

pre-existing datasets to train and test AI models. 
Prospective studies were less common but provided 
opportunities for real-time patient data collection and 
external validation, enhancing clinical applicability.

Imaging Modalities
Contrast-enhanced CT and MRI were the most 

frequently utilized imaging modalities. CT provided 
detailed assessment of tumor vascularity, essential for 
differentiating HCC from ICC. MRI offered superior 
soft-tissue contrast, particularly when employing dynamic 
contrast-enhanced (DCE) and diffusion-weighted imaging 
(DWI) sequences. A limited number of studies explored 
hybrid modalities such as PET/CT, whereas ultrasound 
was rarely applied and demonstrated comparatively lower 
diagnostic yield.

AI Models and Approaches
• Model Architectures: Convolutional Neural Networks 

(CNNs) were predominant, capitalizing on automated 
feature extraction from raw imaging data. More advanced 
architectures, including Residual Networks (ResNets) 
and Fully Convolutional Networks (FCNs), were applied 

for improved segmentation and classification. In select 
studies, Recurrent Neural Networks (RNNs) and Long 
Short-Term Memory (LSTM) models were incorporated 
for analyzing temporal imaging sequences.

• Input Modalities and Data Types: Most models were 
trained on CT or MRI datasets, with some integrating 
advanced MRI sequences. Studies combining radiomic 
features (e.g., texture, shape, and intensity metrics) with 
deep learning demonstrated superior performance. Multi-
modal approaches integrating CT and MRI achieved 
the highest accuracy by leveraging complementary 
anatomical and functional information.

Diagnostic Accuracy and Performance Metrics
AI models reported sensitivity and specificity between 

75–100%, with overall accuracy ranging from 73% to 
96%. The area under the curve (AUC) consistently fell 
between 0.74 and 0.99, indicating strong diagnostic 
capability. Models integrating multi-modal imaging 
or radiomic–clinical features often outperformed 
single-modality approaches.

Figure 2 illustrates the reported AUC ranges across 
studies. The majority clustered between 0.75 and 0.90, 
with a subset achieving near-perfect performance (AUC 
>0.95).

Figure 3 summarizes the diagnostic performance 
across imaging modalities. MRI and CT demonstrated the 
highest mean AUC values, particularly when integrated 
with radiomic or clinical features. Hybrid approaches 
(multi-modal fusion) consistently outperformed single-
modality models, whereas clinical-only datasets yielded 
lower performance (AUC ~0.70).

Subgroup and Stratified Analyses
Tumor characteristics (size, location, microvascular 

invasion) and patient demographics influenced diagnostic 
performance. MRI-based models showed higher sensitivity 
for small lesions, whereas CT-based models were more 
effective for large tumors or vascular involvement. Multi-
modal integration consistently enhanced performance.

Risk of Bias
Most studies were rated as having low-to-moderate 

risk of bias using QUADAS-2, with limitations primarily 
due to retrospective designs and limited external 
validation. Independent validation cohorts were relatively 
few, affecting generalizability.

Key Takeaways
1. AI models, particularly CNN-based and radiomics–

integrated approaches, achieved high diagnostic 
accuracy, frequently matching or exceeding experienced 
radiologists.

2. MRI-based models were more sensitive for small 
lesions, highlighting the importance of imaging modality 
selection.

3. Multi-modal integration of CT, MRI, and radiomic 
features enhanced overall diagnostic performance.

4. Widespread clinical adoption requires large-scale, 
multi-center validation with standardized imaging 
protocols.
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Figure 2. Distribution of Reported AUC Values Across Included Studies

Figure 3. Heatmap Comparing Diagnostic Performance Across AI Model Architectures and Imaging Modalities 

Discussion

This systematic review provides a comprehensive 
synthesis of artificial intelligence (AI) applications in 
liver cancer, particularly in differentiating hepatocellular 
carcinoma (HCC) from intrahepatic cholangiocarcinoma 
(ICC) and other liver malignancies. Across 44 included 
studies, AI models demonstrated strong diagnostic 
performance, with sensitivity and specificity generally 
ranging from 75–100%, overall accuracy between 

73–96%, and area under the curve (AUC) values spanning 
0.74 to 0.99. These findings highlight the rapid evolution 
of AI tools, which increasingly match or even surpass the 
performance of expert radiologists in complex diagnostic 
tasks [2, 5, 6, 12, 17].

Imaging modalities and diagnostic implications
CT and MRI emerged as the dominant imaging 

modalities applied in AI studies. CT provided robust 
assessment of tumor vascularity, which is essential 
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std external)

G
d-EO

B
-D

TPA
 M

R
I

R
adiom

ics nom
ogram

 + 
radiological predictors

External validation
Preoperative M

V
I prediction; 

patient stratification for PA
-TA

C
E

N
om

ogram
 A

U
C

 = 0.982 train, 
0.969/0.981 external; identified 
patients benefiting from

 PA
-TA

C
E

Liu R
 et al., 

2023 [43]
C

hina
R

etrospective
H

C
C

 post-
hepatectom

y 
(n=315)

C
linical + lab data

M
achine learning (6 

algorithm
s, M

LP best)
10-fold cross-
validation

R
ecurrence risk prediction

M
LP A

U
C

 = 0.680; SH
A

P identified 
top 5 predictive factors; w

eb 
calculator constructed

K
han R

A
 et 

al., 2023 [44]
C

hina
R

etrospective
M

ulti-class liver 
cancer

C
T + pathology

M
ulti-m

odal deep neural 
netw

ork
B

enchm
ark dataset

Sm
all/im

balanced dataset; 3-class 
liver cancer classification

A
ccuracy = 96.06%

; A
U

C
 = 0.832; 

integrated pathology + im
age data 

im
proved classification

K
inoshita M

 
et al., 2023 
[45]

Japan
R

etrospective
Solitary H

C
C

 
post-hepatectom

y 
(n=543)

A
rterial C

EC
T

D
eep learning (C

N
N

 + 
M

LP)
Train/validation/
test split 8:1:1

Early recurrence prediction (≤2 
years)

A
U

C
 test = 0.71, validation = 0.73; 

high-risk group recurrence 73%
 vs 

low
-risk 30%

Iseke S et al., 
2023 [46]

U
SA

R
etrospective

Early-stage H
C

C
 

eligible for liver 
transplant (n=120)

Pretreatm
ent M

R
I + 

clinical/lab
M

L m
odels (clinical, 

im
aging, com

bined)
Six tim

e-fram
e 

recurrence 
prediction; 
K

aplan-M
eier

R
ecurrence prediction pre-treatm

ent
A

U
C

s: clinical 0.60–0.78, 
im

aging 0.71–0.85, com
bined 

0.62–0.86; M
R

I im
proved predictive 

perform
ance

Jiang T et al., 
2023 [47]

C
hina

R
etrospective

H
C

C
 post-

resection (n=102)
M

ultiparam
etric M

R
I

R
adiom

ics + LA
SSO

 + 
nom

ogram
Internal validation

Preoperative peritum
oral M

V
I 

prediction
N

om
ogram

 achieved highest A
U

C
; 

A
FP identified as top clinical 

predictor

Fam
ularo S et 

al., 2023 [48]
Italy

R
etrospective 

registry + 
external 
validation

R
ecurrent H

C
C

 
post-surgery 
(n=701)

C
linical registry

M
achine learning 

predictive m
odel

External 
validation: Italian 
+ Japanese cohorts

Treatm
ent allocation to m

axim
ize 

survival
A

U
C

 78.5%
 at 5 years; patient-

tailored algorithm
 identified optim

al 
treatm

ent (reoperative hepatectom
y/

therm
oablation, sorafenib, 

chem
oem

bolization)

Table 1. C
ontinued
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A
uthors

C
ountry

Study design
Population

Training data
Techniques

Validation m
ethods

C
hallenges

R
eported outcom

e

Zeng et al., 
2022 [49]

C
hina

R
etrospective 

m
ulticenter

H
C

C
 (n=4,758) 

after curative 
resection

15 clinical/pathological 
features (age, gender, labs, 
tum

or characteristics, 
invasion, cirrhosis)

R
andom

 Survival Forests 
(R

SF) vs C
ox Proportional 

H
azard (C

PH
)

Internal validation 
+ external 
validation cohort

N
eed to handle high-dim

ensional 
survival data, non-linearity not w

ell 
captured by C

PH

R
SF C

-index = 0.725–0.762; 
Tim

e-dependent A
U

C
 (2y) = 

0.785–0.823; O
utperform

ed 
ER

A
SL, K

orean, A
JC

C
, B

C
LC

, 
C

hinese staging system
s; Stratified 

risk groups (p<0.0001)

W
ang L et al., 

2022 [50]
C

hina
R

etrospective
H

C
C

 (n=138)
C

T-based radiom
ics

D
eep learning: M

V
I-M

ind 
(C

N
N

 + transform
er)

Test set
End-to-end prediction of M

V
I

Segm
entation m

IoU
 0.9006; 

prediction A
U

C
 0.9223; prediction 

tim
e ~1 m

in per patient

Liu Y
 et al., 

2022 [51]
C

hina
R

etrospective
M

ass-form
ing 

IC
C

 and H
C

C
M

R
I, sm

all datasets
D

eep learning: SFFN
et + 

Sem
i-SP preprocessing

Internal
Sm

all dataset; feature extraction 
and fusion

A
ccuracy 92.26%

, A
U

C
 0.9680; 

sensitivity 86.21%
, specificity 

94.70%
 for M

F-IC
C

/H
C

C
 

classification

H
u R

 et al., 
2022 [52]

Taiw
an

R
etrospective

H
C

C
 vs IC

C
M

ultiphasic M
R

I
A

utom
ated M

L: Tree-
B

ased O
ptim

ization Tool 
+ genetic program

m
ing

M
anual vs 

autom
ated 

optim
ization

LR
-M

 subset classification; 
w

orkflow
 autom

ation
A

ccuracy 73–75%
; sensitivity 

65–75%
, specificity 71–79%

; 
perform

ance sim
ilar to radiologists

Liu Z et al., 
2022 [53]

C
hina

R
etrospective 

m
ulticohort

H
C

C
 post-

resection or 
liver transplant 
(n=1118)

H
istological slides, nuclear 

architecture
D

eep learning: U
-net + 

M
obileN

etV
2_H

C
C

_class
Independent 
validation on LT 
set and TC

G
A

 set

Prognostic prediction for 
recurrence-free survival

H
R

 3.44 LT set, H
R

 2.55 TC
G

A
 set; 

m
aintained higher discrim

inatory 
pow

er than know
n prognostic 

factors

Zhang L et al., 
2022 [54]

C
hina

R
etrospective

Interm
ediate-stage 

H
C

C
 post-TA

C
E 

(n=605)

D
SA

 videos
D

eep learning: D
SA

-N
et 

(U
-net + R

esN
et)

Internal + external 
validation

R
eal-tim

e TA
C

E response 
prediction

D
ice 0.73–0.75; accuracy 75.1–

78.2%
; significant difference in PFS 

betw
een responders/non-responders 

(p=0.002)

G
ao R

 et al., 
2021 [55]

C
hina

R
etrospective

723 patients 
w

ith H
C

C
, IC

C
, 

m
etastatic liver 

cancer

M
ulti-phase C

EC
T + 

clinical data
D

eep learning STIC
 

m
odel (C

N
N

 + gated 
R

N
N

)

Internal &
 external

M
ultim

odal data integration; 
lim

ited external validation
A

ccuracy H
C

C
 vs IC

C
: 86.2%

; 
A

U
C

 0.893; O
verall m

alignant 
tum

or classification accuracy: 
72.6%

; External test accuracy: 
82.9%

; A
ssisted doctors im

proved 
accuracy +8.3%

, sensitivity +26.9%
 

for IC
C

W
ang M

 et al., 
2021 [56]

C
hina

R
etrospective

7512 patients w
ith 

H
C

C
C

T im
ages

D
eep learning A

I system
Internal (385) &

 
external (556)

H
eterogeneity of C

T data; 
explainability

Internal A
U

R
O

C
 0.887; External 

A
U

R
O

C
 0.883; A

ccuracy ~81%
; 

Sensitivity 78–89%
; C

om
parable 

to radiologists; Saliency heatm
ap 

accuracy 92.1%

M
eng X

P et 
al., 2021 [57]

C
hina

R
etrospective

402 patients w
ith 

solitary H
C

C
C

T and M
R

I
R

adiom
ics R

S, R
, R

R
 

m
odels

Internal validation
M

odality com
parison; tum

or size 
influence

M
R

I-based m
odels slightly higher 

A
U

C
 than C

T; M
R

I R
S added 

value for 2–5 cm
 tum

ors; O
verall 

perform
ance com

parable

Table 1. C
ontinued
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A
uthors

C
ountry

Study design
Population

Training data
Techniques

Validation m
ethods

C
hallenges

R
eported outcom

e

O
estm

ann PM
 

et al., 2021 
[58]

Sw
itzerland

R
etrospective

118 patients, 150 
lesions (H

C
C

 and 
non-H

C
C

)

M
ultiphasic M

R
I

3D
 C

N
N

C
ross-validation 

(150 runs)
A

typical im
aging features; 

sm
all sam

ple
C

N
N

 can classify typical and 
atypical H

C
C

 lesions; proof-of-
concept

C
hong H

 et 
al., 2021 [59]

C
hina

R
etrospective

323 H
C

C
 

patients w
ithout 

m
acrovascular 

invasion

G
d-EO

B
-D

TPA
 M

R
I

Peritum
oral dilation 

radiom
ics + nom

ogram
5-fold cross-
validation

Integration of radiom
ics and 

clinical features
Training A

U
C

 0.939; Validation 
A

U
C

 0.842; N
R

I im
provem

ent 
35.9–66.1%

H
uang et al., 

2021 [60]
C

hina
R

etrospective 
m

ulticenter
H

C
C

 (n=7,919) 
after surgical 
resection

C
linical + pathological 

features from
 EH

SH
 &

 
M

H
H

X
G

B
oost (best m

odel vs 
others)

Internal validation + 
external validation 
(K

aplan-M
eier 

stratification)

Tim
e-dependent variation in 

recurrence risk; heterogeneity 
across centers

X
G

B
oost c-index = 0.713 (internal); 

Stratified external cohort into 
distinct risk groups (p<0.05); Tum

or 
factors drive 0–1y relapse, H

B
V

/
sm

oking drive 3–5y relapse; R
isk 

heat m
ap enabled personalized 

follow
-up

N
aeem

 S et 
al., 2020 [61]

Pakistan
R

etrospective
B

enign &
 

m
alignant liver 

lesions

Fused M
R

 + C
T im

ages 
(1200)

H
ybrid-feature extraction; 

M
LP, SV

M
, R

F, J48
10-fold cross-
validation

M
ultim

odal fusion; feature 
selection

M
LP accuracy 99%

 on fused dataset

Ji G
W

 et al., 
2020 [62]

C
hina

R
etrospective

295 early-stage 
H

C
C

 patients
C

ontrast-enhanced C
T

R
adiom

ics + C
ox 

regression m
odels

External validation 
(118 patients)

Prediction of recurrence; 
m

ulti-institutional data
C

-index ≥0.77; Low
er prediction 

error; B
etter net benefit than non-

radiom
ics m

odels

Peng J et al., 
2020 [63]

C
hina

R
etrospective

789 patients (3 
centers) w

ith 
interm

ediate-stage 
H

C
C

C
T im

ages
R

esN
et50 residual C

N
N

Internal + 2 
independent 
validation cohorts

Prediction of TA
C

E response; 
heterogeneous cohorts

Training accuracy 84.3%
; Validation 

85.1%
 &

 82.8%
; H

igh A
U

C
 for C

R
, 

PR
, SD

, PD

M
orshid A

 et 
al., 2019 [64]

U
SA

R
etrospective

105 H
C

C
 patients

C
T quantitative features + 

clinical data
R

andom
 Forest

Internal
Sm

all sam
ple; feature 

selection
A

ccuracy 74.2%
 (features + B

C
LC

) 
vs 62.9%

 (B
C

LC
 alone)

Zhang R
 et al., 

2019 [65]
C

hina
R

etrospective
267 H

C
C

 patients
M

ultim
odal M

R
I

B
i-regional radiom

ics + 
nom

ogram
Internal validation

M
V

I prediction; tum
or 

heterogeneity
Fusion radiom

ics A
U

C
 0.784–

0.820; N
om

ogram
 A

U
C

 0.858; 
O

utperform
ed clinical m

odel

H
am

m
 C

A
 et 

al., 2019 [66]
U

SA
R

etrospective
494 hepatic 
lesions

M
ultiphasic M

R
I

C
N

N
-based deep learning

Internal test (60 
lesions)

Lim
ited lesion types; sm

all 
test set

A
ccuracy 92%

; Sn 92%
; Sp 98%

; 
H

C
C

 Sn 90%
 vs radiologists 

60–70%

W
ang C

J et 
al., 2019 [67]

U
SA

R
etrospective

Sam
e 494 lesions 

as above
M

ultiphasic M
R

I
Interpretable C

N
N

; 
feature m

aps &
 relevance 

scoring

Internal test (60 
lesions)

Explainability; 
m

isclassification
PPV

 76.5%
; Sn 82.9%

; 
M

isclassified lesions 12%
; Feature 

m
aps consistent w

ith predictions

Table 1. C
ontinued
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in differentiating HCC from ICC [2, 5]. By contrast, 
MRI—especially dynamic contrast-enhanced (DCE) 
and diffusion-weighted imaging (DWI) sequences-
proved more sensitive for small lesions and intratumoral 
heterogeneity [8, 9, 18]. These modality-specific strengths 
translated into differential diagnostic advantages: MRI-
based models were superior in early tumor detection, 
whereas CT-based models were more effective for 
evaluating vascular invasion and larger lesions. Hybrid 
modalities, including PET/CT, and ultrasound-based AI 
approaches were less common but demonstrated potential 
when combined with radiomics or machine learning 
techniques [2, 12]. This suggests that multimodal fusion 
strategies may represent the most effective approach for 
maximizing diagnostic accuracy. Importantly, imaging 
access differs by region. In Southeast Asia, where ICC 
prevalence is disproportionately high due to liver fluke 
infection, CT is more widely available than MRI [14–16, 
19]. Thus, tailoring AI models to available imaging 
infrastructure may improve diagnostic equity in resource-
limited regions.

AI model architectures and feature integration
Methodologically, convolutional neural networks 

(CNNs) were predominant, with newer studies employing 
residual networks (ResNets), fully convolutional networks 
(FCNs), and deep transfer learning architectures [7, 
13]. These advances improved tumor segmentation and 
classification, even in atypical imaging presentations [5, 
12]. Radiomics capturing quantitative features such as 
texture, shape, and intensity was widely integrated with 
clinical data to form fused models [12, 20]. Evidence 
consistently showed that combined radiomics-clinical 
models outperformed single-domain approaches. For 
example, multi-center studies employing clinical, 
radiomic, and genomic signatures reported significantly 
enhanced performance in predicting recurrence and 
microvascular invasion (MVI). Multi-omics frameworks 
further expanded predictive capability: transcriptomic 
signatures [21] and hepatitis B virus (HBV)-specific risk 
biomarkers [22] have been successfully integrated into 
AI pipelines, demonstrating how computational models 
can inform both diagnosis and therapeutic stratification. 
These findings underscore that AI’s clinical utility extends 
beyond image interpretation toward precision hepatology 
and personalized treatment decision-making [12, 17].

Diagnostic accuracy and subgroup performance
The pooled diagnostic performance across studies was 

encouraging, with most models achieving AUCs between 
0.75 and 0.90, and several exceeding 0.95. MRI-based 
models offered superior sensitivity for small lesions [9,18], 
whereas CT-based approaches proved advantageous for 
evaluating macrovascular invasion and resectability 
[2, 5]. Multi-modal fusion consistently outperformed 
single-modality approaches [12, 18]. Subgroup analyses 
revealed that tumor characteristics (size, location, vascular 
involvement) and patient demographics influenced AI 
model performance. For instance, younger patient cohorts 
and smaller tumor subsets were more accurately assessed 
with MRI-based approaches, while CT was more reliable 

for large and vascularly complex lesions. Such stratified 
analyses indicate that modality selection should be tailored 
not only to tumor biology but also to patient demographics.

Sources of bias and methodological limitations
Despite promising findings, several methodological 

limitations warrant attention. The majority of studies 
were retrospective, relying on pre-existing datasets 
[1, 5]. Prospective and multicenter validation studies 
remain scarce, which limits generalizability. Imaging 
heterogeneity arising from differences in acquisition 
protocols, scanner hardware, and contrast administration 
posed additional barriers to reproducibility. These 
concerns highlight the need for harmonization of radiomic 
features and standardized imaging protocols [20]. 
High-dimensional data and relatively small sample sizes 
also raise risks of overfitting, while class imbalance in 
datasets may distort model performance [4, 13]. Another 
critical challenge is explainability: many deep learning 
models function as “black boxes,” making clinical 
adoption more difficult in high-stakes decision-making 
contexts [4, 13].

Clinical implications and public health perspectives
AI tools have the potential to substantially impact 

hepatology practice. Integration into clinical workflows 
could reduce inter-observer variability, enhance diagnostic 
efficiency, and provide decision support [10, 12, 18]. 
Comparative analyses suggest that AI systems often 
complement rather than replace radiologists, improving 
detection and classification when used in tandem 
[2, 5, 10]. Beyond diagnosis, AI has shown value in 
predicting recurrence, treatment response, and MVI, 
with implications for surgical planning, transplant 
eligibility, and allocation of therapies such as TACE and 
immunotherapy [9, 23]. These prognostic utilities are 
particularly important in high-burden regions, where 
liver cancer outcomes remain poor and resources are 
constrained [14–16, 19]. Cost-effectiveness analyses and 
implementation studies will be critical in bridging the gap 
between technical performance and real-world utility [4].

Future directions
To advance clinical adoption, future research should 

prioritize large-scale, prospective, multicenter studies with 
external validation [1, 20]. Standardization of imaging 
acquisition and radiomic feature extraction is urgently 
needed to ensure reproducibility across institutions 
[20]. Multi-omics integration linking imaging, clinical, 
and genomic features represents a frontier for precision 
hepatology [21, 22]. Development of explainable AI 
systems will be essential to enhance clinician trust and 
regulatory approval [4],130. Moreover, AI should be 
designed for seamless integration into existing radiology 
and oncology workflows, with attention to user interface, 
interpretability, and clinical decision support. Finally, 
consideration of public health perspectives particularly 
in high-burden regions such as Asia—will be vital to 
ensuring that AI technologies address global disparities 
in liver cancer care [14–16, 19].

In conclusion, AI has demonstrated substantial promise 
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in differentiating HCC from ICC, with performance metrics 
frequently rivaling expert radiologists. While challenges 
remain in terms of reproducibility, standardization, and 
clinical translation, ongoing advancements in multi-modal 
integration, multi-omics approaches, and explainable 
AI systems point toward a future where AI can play 
a central role in precision hepatology and global liver 
cancer control.
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