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Introduction

Breast cancer (BC) encompasses a range of diseases 
characterized by the uncontrolled division and alteration 
of cells within breast tissue, leading to tumour formation 
[1]. Breast cancer continues to be a primary contributor 
to cancer-related deaths among women, highlighting 
significant disease diversity, metastasis, and treatment 
resistance [2]. Consequently, early recognition correlates 
with decreased mortality rates [3]. In Iraq, BC is 
recognized as the most common malignancy, accounting 
for 21% of cases [4]. Environmental, genetic, and lifestyle 
factors may contribute to the emergence of BC. About 30% 
of BC cases may be affected by modifiable factors [5].

Radiotherapy (RT) is a localized treatment that employs 
high-energy photons or particles to eliminate cancerous 
cells [6]. Adjuvant RT is frequently administered post-
mastectomy or lumpectomy to reduce the risk of cancer 
recurrence [7]. The reactions of cancer patients to RT 
can differ significantly, reflecting the fundamental 
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systems governing the response to radiation damage [8]. 
Radioresistance constitutes a major obstacle to enhancing 
treatment outcomes, resulting in RT failing, persistent 
tumors, and poor prognosis [9]. It can arise from various 
mechanisms such as tumor heterogeneity, the surrounding 
microenvironment, and multiple genetic modifications. 
The presence of the DNA-dependent recombinase RAD51 
represents a notable alteration [10].

The RAD51 gene, situated on the long arm of 
chromosome 15, comprises 14 exons that encode the 
DNA repair protein RAD51 in humans [11]. It is involved 
in the cellular response to DNA damage. It is essential 
for the repair of double-strand breaks (DSBs) through 
homologous recombination repair (HRR), specifically 
by facilitating strand invasion/exchange [12]. In normal 
cells, RAD51 expression is precisely controlled, enhancing 
the accuracy of genome repair and preserving structural 
integrity. However, RAD51 dysregulation is linked to 
tumor growth, metastasis, and resistance to therapy and 
has been shown in various human cancers, including 
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BC [13]. Thus, RAD51 exhibits predictive potential in 
malignancies and is expected to serve in the prognosis 
of therapeutic response and overall survival [14]. 
RAD51 single-nucleotide polymorphisms (SNPs) are 
associated with increased susceptibility to BC, resistance 
to RT, and the emergence of new primary tumors [15]. 
Accordingly, this study aimed to investigate the levels 
and polymorphisms of RAD51 in Iraqi women with BC 
before and after RT, along with its potential as a predictive 
biomarker for cancer risk and treatment response.

Materials and Methods

Subjects
Thirty newly diagnosed Iraqi BC females, aged 34–56 

years, who attended Al-Amal National Hospital for Cancer 
Management between July 2024 and January 2025, were 
enrolled in this follow-up case-control study. Patients were 
selected and diagnosed by the consultant medical staff 
and a committee comprising a pathologist and oncologist, 
based on clinical examination, mammography, computed 
tomography (CT) scan, and histological findings. None of 
the patients received chemotherapy or RT at the first blood 
collection. Subsequently, the same thirty patients received 
RT and were followed up to complete their fractions for 
the second blood collection. The RT protocol administered 
was 3D-Conformal Radiation Therapy (CRT), including 
40-50 Gy for 15-30 fractions (5 sessions/week). The 
exclusion criteria in this study include BC patients who 
received chemotherapy or RT, those with missed blood 
collection after RT, those suffering from other chronic 
diseases, those providing incomplete information, and 
pregnant or lactating women. As a control group, this study 
enrolled thirty age- and sex-matched healthy women with 
no history of medical illnesses.

Sample collection
Regarding BC patients, blood samples were collected 

before the start of RT fractions. Thereafter, the patients 
were followed up, and additional blood samples were 
collected after the last fraction of RT. A total of 90 blood 
samples were collected from all participants and divided 
into two aliquots: whole blood for molecular and SNPs 
investigation, and serum for estimation of serum RAD51 
levels.

Serum estimation of RAD51
A manufactured-on-request Sandwich ELISA kit 

(FineTest®, China) was used to quantitatively determine 
the serum levels of human RAD51 protein in both patients 
and control groups [16].

DNA extraction
Following the manufacturer’s instructions, the G-spin 

Total DNA Extraction Kit (INtRON Biotechnology, Korea) 
was used to extract DNA from EDTA blood samples. 
The recovered DNA was kept at −20 °C for subsequent 
polymerase chain reaction (PCR) amplification.

DNA amplification
The template DNAs were amplified by PCR 

using specific primers for RAD51: forward primer 
5’-TGGGAACTGCAACTCATCTGG-3’ and reverse 
primer 5’-GCGCTCCTCTCTCCAGCAG-3’ (IDT, USA). 
A total of 30 µl was used for the PCR amplification. To 
this, 1 µl of each primer (10 pmol) and 1.5 µl of DNA 
template were added to a tube containing 5 µl of PCR 
PreMix, followed by 21.5 µl of distilled water. The thermal 
cycling conditions of 37 cycles were performed using a 
Thermal Cycler (Labnet; USA) as following: 1 cycle of 
initial denaturation at 95ᵒC for 5 minutes; 35 cycles of 
denaturation (95ᵒC for 45 seconds), annealing (64ᵒC for 
30 seconds), and extension (72ᵒC for 45 seconds); then 
one cycle of final extension for 5 minutes at 72ᵒC. After 
that, PCR products were visualized using 1.5% agarose 
gel electrophoresis and RedSafe stain.

DNA sequencing and polymorphism analysis
The PCR products of RAD51 were sequenced using the 

Sanger method performed by Macrogen Company, Korea, 
on an ABI-310 automated DNA sequencer (Applied 
Biosystems, USA). A homology search was conducted 
using the Basic Local Alignment Search Tool (BLAST) 
program, available online at the National Center for 
Biotechnology Information (NCBI) website (http://www.
ncbi.nlm.nih.gov), and the BioEdit program. For SNP 
analysis, a multiple sequence alignment was performed 
using the Bio-ID program on the NCBI.

Statistical analysis
Data were analyzed using SPSS software (version 27.0, 

USA) and presented as mean ± standard deviation (SD), 
with numbers and percentages provided when appropriate. 
A One-way ANOVA was conducted to compare the 
studied groups. Genotype and allele frequencies were 
computed based on the Hardy-Weinberg equilibrium 
(HWE) calculation, using Chi-square and Odds ratio for 
comparison and probability analysis. Differences were 
found to be significant at P<0.05.

Results

Serum RAD51 levels 
Figure 1 illustrates that serum RAD51 levels in BC 

patients after the final RT fraction were significantly 
higher than both pre-treatment levels and those of healthy 
controls (2.51 ± 0.70 vs. 1.22 ± 0.19 vs. 1.27 ± 0.21 ng/
ml, P<0.001). Before initiating RT fractions, BC patients 
demonstrated reduced RAD51 levels compared to healthy 
controls, with no significant difference (1.22 ± 0.19 vs. 
1.27 ± 0.21 ng/ml, P > 0.05).

RAD51 gene amplification
We applied PCR amplification to identify the RAD51 

gene in exon 1, followed by sequencing and SNP analysis. 
Figure 2 displays that the RAD51 gene’s exon 1 produced 
a PCR product of approximately 157 bp, which was 
electrophoresed on an agarose gel and visualized under 
UV light.

Polymorphisms of the RAD51 gene
Two SNPs, rs1801320 (G>C) and rs1801321 (G>T), 
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Figure 1. The Mean Levels of Serum RAD51 Protein among the Studied Groups. BC, breast cancer; RT, radiotherapy.

Figure 2. Gel Electrophoresis of PCR Products of the RAD51 Gene of Exon 1 on 1.5% Agarose at 5 volts/cm² for 90 
Minutes. 

were identified through sequencing alignment of exon 
1 in the RAD51 gene, as demonstrated in Figure 3. The 
prevalence of these SNPs among BC patients was 20% 
and 70%, respectively, compared to 10% and 20% in 
healthy controls.

Genotype and allele frequency of RAD51 SNPs
In Table 1, 26.7% of BC patients had the mutant 

(GT) genotype before RT, compared to 20.0% after RT. 
Workers and healthy controls had a 3.3% frequency for 
this genotype. Results suggest a substantial risk factor (P 
< 0.001; OR = 11.07, 95% CI = 3.20–37.87). BC patients 

Figure 3. Sequence Alignment of Exon 1 in the RAD51 Gene among the Studied Groups 
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Genotype and allele 
frequency

BC patients Healthy 
Controls (n=30)

Total OR (95%CI) P-value
Before RT (n=30) After RT (n=30)

SNP rs1801320 
(G>C)

GG 24 24 27 75 1.00 Ref.
26.7% 26.7% 30.0% 83.3%

GC 6 6 3 15 2.25 (0.50-9.93) 0.286
6.7% 6.7% 3.3% 16.7%

CC 0 0 0 0 NA NA
0.0% 0.0% 0.0% 0.0%

G 54 54 57 165 1.00 Ref.
30.0% 30.0% 31.7% 91.7%

C 6 6 3 15 2.11 (0.50-8.87) 0.307
3.3% 3.3% 1.7% 8.3%

SNP, single nucleotide polymorphism; BC, breast cancer; RT, radiotherapy; OR, Odds ratio; CI, Confidence Interval; NA, not applicable. 

Table 2. Genotype and Allele Frequency of RAD51 Polymorphisms (rs1801320) among the Studied Groups

before RT (13.3%), post-RT (10.0%), and controls (3.3%) 
have the mutant allele (T). Pattern suggests a substantial 
risk factor (P < 0.00; OR = 4.92, 95% CI = 1.82-13.35). 
Although BC patients showed a higher risk for the mutant 
(GC) genotype compared to controls (P > 0.05; OR = 
2.25, 95% CI = 0.50-9.93) and for the mutant (C) allele 
(P > 0.05; OR = 2.11, 95% CI = 0.50-8.87), there were 
no statistically significant differences between the groups 
studied, as shown in Table 2. 

Discussion

Considering the rising prevalence of BC globally and 
the potential for RT resistance to develop in patients, it is 
imperative to assess the efficacy of RT before completing 
all its sessions. Locally, to our knowledge, this study is 
the first to estimate serum levels of RAD51 protein in BC 
patients both before and after RT. The results showed 
significantly increased levels in patients following RT 
compared to pre-treatment levels and those of healthy 
controls. These findings are consistent with studies 
indicating that RAD51 expression increased after RT in BC 
patients [17, 18]. This expression demonstrated a positive 
correlation with cancer progression and metastasis, 
suggesting its potential as a significant clinical marker 
for cancer prognosis and a therapeutic target. Other 

studies indicated a reduced RAD51 expression compared 
to pre-treatment, along with downregulation of HRR and 
improved BC outcomes, suggesting that elevated RAD51 
is associated with tumor formation and poor prognosis [19, 
20]. The role of RAD51 as a DNA repair protein, essential 
for the repair of DSBs, correlates with its increased levels. 
Hence, its elevated expression represents a typical cellular 
response to RT-induced DNA damage [12]. 

Regarding the PCR amplification of exon 1 of the 
RAD51 gene, it was utilized, revealing a product size of 
157 bp, which is responsible for gene regulation. This 
finding is consistent with studies that reported the same 
product size of the RAD51 gene [21, 22]. DNA sequencing 
analysis revealed two SNPs in the 5’ untranslated region 
(5’UTR) of exon 1 of the RAD51 gene: rs1801320 (G>C) 
and rs1801321 (G>T). These polymorphisms are located 
in the regulatory region of the RAD51 promoter and have 
been proposed to be associated with mRNA stability and 
expression, thereby hindering apoptosis and promoting 
cell survival [22]. This study found that BC patients with 
the rs1801321 SNP had a higher rate of the GT genotype 
and T allele, which were significant risk factors compared 
to healthy individuals. This variation was significantly 
reduced in BC patients after RT, compared to patients 
before treatment, indicating that RT may restore the gene 
to its wild-type state through RT-induced DNA repair 

Genotype and allele 
frequency

BC patients Healthy 
Controls (n=30)

Total OR (95%CI) P-value
Before RT (n=30) After RT (n=30)

SNP rs1801321 
(G>T)

GG 6 12 24 42 1.00 Ref.
6.7% 13.3% 26.7% 46.7%

GT 24 18 6 48 11.07 (3.20-37.87) <0.001
26.7% 20.0% 6.7% 53.3%

TT 0 0 0 0 NA NA
0.0% 0.0% 0.0% 0.0%

G 36 42 54 132 1.00 Ref.
20.0% 23.3% 30.0% 73.3%

T 24 18 6 48 4.92 (1.82-13.35) <0.001
13.3% 10.0% 3.3% 26.7%

Table 1. Genotype and Allele Frequency of RAD51 Polymorphisms (rs1801321) among the Studied Groups.

SNP, single nucleotide polymorphism; BC, breast cancer; RT, radiotherapy; OR, Odds ratio; CI, Confidence Interval; NA, not applicable. 
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Consequently, larger and more rigorously designed studies 
are required to validate these findings.

In conclusion, this study related the RAD51 (G>T) 
polymorphism to a higher risk of BC in the Iraqi 
population. Additionally, patients with the GT genotype 
/ T allele benefited significantly from RT, suggesting that 
RAD51 might be exploited as a predictive biomarker for 
cancer risk and RT outcomes. Since no relation was found 
between BC risk and the RAD51 (G>C) polymorphism, the 
GG genotype may have a protective effect on BC in Iraqi 
women. Future larger studies are necessary to investigate 
DNA repair genetic variations in BC susceptibility.
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