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Introduction

Prostate cancer is the second most frequently diagnosed 
malignancy and a major cause of cancer-related mortality 
among men worldwide [1]. Global epidemiological trends 
reveal rising incidence in low- and middle-income countries, 
contrasting with declining mortality in high-income 
regions due to enhanced screening and treatment strategies 
[2]. This disparity reflects unequal access to healthcare, 
early detection, and effective interventions, particularly 
in rapidly transitioning economies [3]. Ethnic and 
geographical differences in prostate cancer incidence and 
outcomes are further influenced by genetic predisposition 
and healthcare inequalities [4].
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Although prostate-specific antigen (PSA) testing 
remains a cornerstone of prostate cancer screening, 
its limited specificity often results in false positives, 
overdiagnosis, and unnecessary treatments [5]. Including 
benign prostatic hyperplasia (BPH) as a comparative 
group in molecular investigations may help differentiate 
inflammation-related markers and improve diagnostic 
specificity [6]. With projections estimating over 2.2 
million prostate cancer cases globally by 2040, early 
detection and risk stratification remain urgent public 
health priorities [4].

The etiology of prostate cancer is multifactorial, 
involving complex interactions among genetic 
susceptibility, androgen signaling, environmental 
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exposures, and chronic inflammation [7]. Inflammatory 
processes play a critical role in initiating and sustaining 
carcinogenesis by promoting oxidative stress, DNA 
damage, angiogenesis, and immune evasion [8].  Variations 
in genes encoding inflammatory mediators, including 
COX-2, IL1B, IL6, IL8, IL10, TNF, and TLR4, have 
been linked to increased prostate cancer risk and disease 
aggressiveness [9]. Additionally, epigenetic modifications 
contribute significantly to tumor development and 
progression [10].

Central to inflammatory regulation is the transcription 
factor complex NF-κB, comprising key subunits p65 
(RelA) and p50, which translocate to the nucleus 
upon activation by cytokines, microbial agents, or 
oxidative stress [11]. Once activated, NF-κB promotes 
the transcription of genes involved in cell survival, 
angiogenesis, immune modulation, and tumor progression 
[12]. Aberrant or constitutive activation of NF-κB has 
been implicated in treatment resistance, advanced disease 
stages, and castration-resistant prostate cancer [13].

Downstream of NF-κB signaling are cytokines such as 
interleukin-18 (IL-18) and interleukin-10 (IL-10), which 
play opposing but complementary roles in tumorigenesis. 
IL-18 amplifies Th1 responses and induces interferon-
gamma, sustaining a chronic inflammatory milieu 
conducive to tumor growth [14]. In contrast, IL-10 exerts 
immunosuppressive effects by downregulating antigen 
presentation and inhibiting T-cell activation, thereby 
promoting immune escape in prostate cancer [15]. The 
dynamic interplay between IL-18 and IL-10, both regulated 
by NF-κB, reflects a complex immunological landscape 
that supports tumor development and progression [16].

Promoter polymorphisms in IL-18 and IL-10 genes 
influence cytokine expression and are linked to survival 
outcomes in prostate cancer patients [17]. Elevated 
serum levels of IL-18 and IL-10 have been shown to 
have diagnostic and prognostic importance in advanced 
disease, highlighting their value as inflammation-related 
biomarkers [18]. Additionally, NF-κB signaling supports 
the maintenance of cancer stem cells and interacts with 
folate metabolism pathways, further contributing to tumor 
development and resistance mechanisms [19].

The clinical overlap between BPH and prostate cancer 
poses diagnostic challenges. Investigating NF-κB and 
its downstream cytokines in both conditions may reveal 
molecular signatures that help differentiate benign from 
malignant pathologies [20]. Blood-based inflammatory 
biomarkers, if validated, offer a non-invasive approach 
to early detection and disease monitoring [21].

Environmental and occupational exposures also 
contribute to prostate cancer risk. Workers in high-risk 
industries such as tanning, agriculture, and ordnance 
are exposed to carcinogens like cadmium, arsenic, and 
organochlorine compounds, which may trigger oxidative 
stress and NF-κB activation [22]. Meta-analyses confirm 
increased prostate cancer risk associated with such 
exposures, particularly to organochlorine pesticides and 
heavy metals [23]. The interaction between inflammation 
and occupational hazards may amplify cancer risk in 
susceptible individuals [24].

Vitamin D deficiency further exacerbates inflammation 

by activating NF-κB, while tobacco exposure alters 
cytokine profiles, enhancing inflammatory responses and 
immune suppression in prostate cancer [25, 26] These 
findings emphasize the need for comprehensive molecular 
profiling that incorporates environmental and lifestyle 
risk factors.

Given this context, the present study examines 
the expression of NF-κB subunits p65 and p50, along 
with IL-18 and IL-10, in patients with prostate cancer, 
BPH, and healthy controls. It further evaluates the 
influence of occupational exposures and cancer stage 
on these biomarkers, aiming to identify non-invasive, 
inflammation-driven molecular indicators for diagnosis, 
staging, and potential therapeutic targeting in prostate 
cancer.

Materials and Methods

Study Design and Population
This case-control observational study included 664 

male participants aged 50–85 years, recruited from 
a tertiary care urology clinic. The study population 
comprised three groups: histopathologically confirmed 
prostate cancer patients (n=285), benign prostatic 
hyperplasia (BPH) cases (n=94), and age-matched 
healthy male controls (n=285) with no history of prostate 
disease. Diagnoses were established through digital rectal 
examination, serum PSA levels, and prostate biopsy. 
Healthy controls were selected during routine health 
screenings and confirmed to have normal PSA levels and 
no clinical abnormalities.

All participants completed a structured questionnaire 
that captured demographic characteristics, occupational 
history, lifestyle factors (e.g., smoking, alcohol 
consumption), and comorbidities. Written informed 
consent was obtained, and the Institutional Human Ethics 
Committee approved the study protocol in accordance with 
the Declaration of Helsinki.

Assessment of Occupational Exposure
Occupational exposure was assessed using a validated 

questionnaire that detailed past and current employment 
in high-risk industries, including agriculture, tanning, 
and ordnance sectors. Exposure classification was based 
on predefined profiles involving contact with known 
carcinogens such as cadmium and organochlorine 
compounds.

Sample Collection and Molecular Analyses
Peripheral venous blood (5 mL) was collected in 

EDTA tubes for RNA analysis and in serum separator tubes 
for ELISA. Samples were processed within two hours. 
Peripheral blood mononuclear cells (PBMCs) were isolated 
using Ficoll-Paque density gradient centrifugation. Total 
RNA was extracted using TRIzol reagent (Invitrogen) and 
quantified spectrophotometrically.

Complementary DNA (cDNA) was synthesized from 
1 µg of RNA using a commercial reverse transcription 
kit (Thermo Fisher Scientific). Quantitative real-time 
PCR (qRT-PCR) was performed using SYBR Green 
chemistry on a Bio-Rad CFX96 system. Specific primers 
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was markedly elevated in prostate cancer (18.57±12.66) 
compared to BPH (2.59±2.51) and controls (1.98±1.84). 
A similar pattern was seen for p50 (11.57±8.31 in 
cancer vs. 2.02±2.09 in BPH and 1.79±1.63 in controls). 
ELISA measurements further confirmed this trend, with 
significantly higher serum protein levels of p65 and p50 in 
cancer patients (375.38±105.84 pg/mL and 150.79±35.33 
pg/mL, respectively) compared to the BPH and control 
groups. GAPDH Ct values showed no significant difference 
among groups (p=0.94), validating normalization. These 
findings suggest robust transcriptional and translational 
activation of NF-κB in prostate malignancy.

Occupation-wise Expression Patterns of NF-κB Markers
As shown in Table 2, subgroup analysis based on 

occupational exposure revealed that tannery workers 
exhibited the highest levels of NF-κB p65 and p50 
expression across all clinical groups. Among prostate 
cancer patients, ELISA-derived protein levels of p65 
reached 408.68±105.20 pg/mL in tanners, compared 
to 386.25±104.47 pg/mL in ordnance workers and 
362.42±97.71 pg/mL in sedentary individuals. 
Correspondingly, p50 levels were also elevated in 
tanners (154.80±35.97 pg/mL), followed by agricultural 
workers and ordnance-exposed individuals. Although 
the group effect was statistically significant (p<0.0001), 
the occupation effect was marginal (p=0.08), and the 
interaction term approached significance (p=0.09), 
suggesting potential synergistic effects between disease 
status and environmental exposure. These occupational 
patterns as shown in Figure 1A and Figure 1B reinforce the 
inflammatory risk posed by industrial toxins, particularly 
chromium compounds and aromatic amines.

NF-κB and Cytokine Expression by TNM Stage and 
Metastasis

Table 3 illustrates the expression trends of NF-κB 
p65/p50, IL-18, and IL-10 across different TNM stages 
among prostate cancer patients. Progressive disease 
stages were associated with a significant increase in 
mRNA expression and a reduction in Ct values of both 
NF-κB subunits. Relative expression of p65 rose from 
12.51±10.47 (T1) to 41.19±34.93 (M1), while p50 
expression increased from 5.57±5.26 to 34.44±38.10 
(p<0.0001 for both). Protein levels of p50 increased 
significantly with disease advancement (p=0.001), while 

for NF-κB subunits (p65, p50), IL-18, IL-10, and GAPDH 
(housekeeping gene) were designed using Primer-BLAST 
and validated for specificity. Amplification involved initial 
denaturation at 95°C for 10 min, followed by 40 cycles 
of 95 °C for 15 s and 60 °C for 1 min. Each sample was 
analyzed in triplicate. Relative gene expression was 
calculated using the ΔΔCt method.

Elisa For Protein Quantification
Serum protein levels of NF-κB p65 and p50 were 

measured using high-sensitivity ELISA kits (Abcam, 
UK), while IL-18 and IL-10 were quantified using kits 
from R&D Systems. All assays were performed in 
duplicate according to the manufacturers’ instructions. 
Absorbance was measured at 450 nm, and concentrations 
were calculated from standard curves.

Statistical Analysis
Data analysis was conducted using SPSS version 26.0 

and GraphPad Prism version 9.0. Normality was assessed 
with the Shapiro-Wilk test. Continuous variables are 
expressed as mean ± standard deviation (SD) or median 
(IQR), as appropriate. Group comparisons were conducted 
using one-way ANOVA with Tukey’s post hoc test or 
Kruskal-Wallis test with Dunn’s correction, depending 
on data distribution. A two-way ANOVA was used to 
assess interaction effects between the disease group and 
occupational exposure.

Pearson’s correlation was applied to assess the 
associations between NF-κB and cytokine levels, 
following the assumptions of linearity and the absence 
of outliers. All tests were two-tailed with significance 
set at p < 0.05. Power analysis confirmed greater than 
90% power to detect moderate effect sizes across groups.

Results

NF-κB and cytokine expression in Prostate cancer, BPH, 
and Control Groups

Table 1 presents a comparative analysis of NF-κB 
subunits (p65 and p50) at both mRNA and protein levels 
across prostate cancer, BPH, and healthy controls. A 
statistically significant upregulation of NF-κB p65 and p50 
was observed in prostate cancer patients compared to BPH 
and controls (p<0.0001 for both mRNA expression and 
protein levels). Relative mRNA expression of NF-κB p65 

Biomarker Parameter BPH (n=94) Prostate Cancer (n=285) Control (n=285) p-value
NF-κB p65 Ct value (mean ± SD) 24.10 ± 0.94 21.02 ± 1.1112 24.45 ± 1.04 0.01*

Relative mRNA expression 2.59 ± 2.511 18.57 ± 12.6612 1.98 ± 1.842 <0.0001*
ELISA protein (pg/mL) 60.42 ± 6.781 375.38 ± 105.8412 39.65 ± 39.642 <0.0001*

NF-κB p50 Ct value (mean ± SD) 24.47 ± 0.90 21.80 ± 1.2112 24.50 ± 0.75 0.01*
Relative mRNA expression 2.02 ± 2.09¹ 11.57 ± 8.3112 1.79 ± 1.632 <0.0001*
ELISA protein (pg/mL) 25.49 ± 4.671 150.79 ± 35.3312 23.40 ± 5.512 <0.0001*

GAPDH Ct value (mean ± SD) 24.98 ± 0.68 24.95 ± 0.66 24.95 ± 0.65 0.94
12, Significantly different from both BPH and control (Tukey’s multiple comparisons, p < 0.05); 1, Significantly different from cancer (p < 0.05); 
2, Significantly different from cancer (p < 0.05); *, Statistically significant at α = 0.05 (ANOVA or Kruskal-Wallis as appropriate) 

Table 1. Comparison of NF-κB p65 and p50 Expression at mRNA and Protein Levels in BPH, Prostate Cancer, and 
Control Groups
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Figure 1A. NF-κB p65 Protein Levels by Occupation. Mean ± SD of p65 protein (pg/mL) in controls, BPH, and cancer 
across occupations. Two-way ANOVA: group effect significant (p < 0.0001); occupation effect marginal (p ≈ 0.08); 
interaction p ≈ 0.09. 

Figure 1B. NF-κB p50 Protein Levels by Occupation. Mean ± SD of p50 protein (pg/mL) in controls, BPH, and cancer 
across occupations. Two-way ANOVA: group effect significant (p < 0.0001); occupation effect not significant. 

p65 protein plateaued beyond T2 (p=0.21), indicating 
potential post-transcriptional regulation.

Similarly, the expression of IL-18 and IL-10 showed a 
stage-wise escalation. Relative IL-18 mRNA expression 
rose from 1.06±0.97 in T1 to 14.51±10.24 in metastatic 
(M1) cases (p=0.03), while IL-10 increased from 
1.18±3.23 to 15.60±7.56 (p<0.0001). ELISA-based 
serum IL-18 levels also showed a significant increase 
across stages (p=0.008), whereas IL-10 protein levels did 
not significantly differ (p=0.26). PSA levels showed an 

upward trend with disease progression but did not reach 
statistical significance (p=0.23). These results suggest that 
IL-18 and IL-10 are transcriptionally responsive to disease 
severity and may act downstream of NF-κB activation, 
contributing to inflammation-mediated tumor progression.

Discussion

This study highlights the critical role of NF-κB 
signaling in prostate cancer progression, evidenced 
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Biomarker / Group Ordnance Agriculture Tanners Drivers Sedentary Others
Ct NF-κB p65 (BPH) 24.48±0.79 23.73±0.93 24.24±0.79 23.54±0.72 24.72±1.35 23.62±0.99
Ct NF-κB p65 (Cancer) 21.05±1.09 20.96±1.08 21.14±1.04 21.15±1.51 20.59±0.76 21.09±1.08
Ct NF-κB p65 (Control) 24.28±1.15 24.57±0.97 24.45±0.99 24.20±1.11 24.88±1.39 24.76±0.97
Ct NF-κB p50 (BPH) 24.24±0.70 24.45±0.96 25.56±1.12 24.38±0.87 24.78±0.79 24.82±0.70
Ct NF-κB p50 (Cancer) 21.80±1.24 21.63±1.23 22.34±2.56 22.01±1.20 21.10±0.83 21.19±1.16
Ct NF-κB p50 (Control) 24.49±0.76 24.55±0.74 24.81±1.08 24.49±0.91 24.71±0.86 24.81±0.66
mRNA p65 (BPH) 1.86±1.90 2.68±1.98 2.15±1.50 1.99±0.58 1.32±0.99 2.11±0.96
mRNA p65 (Cancer) 18.86±14.38 17.95±9.26 19.45±9.82 17.94±17.77 16.79±6.63 17.64±3.26
mRNA p65 (Control) 2.43±2.54 1.69±1.43 2.77±2.26 2.63±1.98 2.46±2.07 1.45±1.38
mRNA p50 (BPH) 2.30±2.34 2.95±2.81 3.83±2.47 2.52±1.63 1.06±0.46 1.36±0.81
mRNA p50 (Cancer) 11.59±8.19 12.76±9.21 11.83±8.19 10.81±7.07 9.85±3.43 10.67±2.11
mRNA p50 (Control) 1.86±1.73 1.71±1.57 2.49±2.14 1.87±1.33 2.42±1.48 0.99±0.27
ELISA p65 (BPH) 62.93±5.83 64.13±7.79 67.73±9.32 56.39±3.88 56.78±3.32 55.77±3.16
ELISA p65 (Cancer) 386.25±104.47 398.59±99.81 408.68±105.20 373.46±117.03 362.42±97.71 398.02±120.87
ELISA p65 (Control) 39.02±5.71 39.62±5.09 40.19±5.79 39.02±4.39 38.22±5.28 40.51±7.86
ELISA p50 (BPH) 26.86±3.42 27.03±3.25 28.02±4.81 26.33±6.35 25.78±5.92 23.75±6.64
ELISA p50 (Cancer) 151.10±35.73 152.69±33.96 154.80±35.97 140.12±35.46 110.51±42.83 139.08±39.90
ELISA p50 (Control) 22.83±5.77 23.38±5.08 23.94±5.79 22.95±4.35 20.22±1.72 24.44±7.62

Table 2. NF-κB and Cytokine Expression Across Occupations

Group effect was significant (p < 0.0001), occupational effect marginal (p = 0.08), and group × occupation interaction borderline (p = 0.09); cancer 
vs. control was significant (p < 0.0001), BPH vs. control was not (p = 0.09).

Parameters TNM classification p-value

T1 T2 T3 T4 N M

PSA level 19.70±7.24 23.55±8.39 29.61±21.73 34.31±27.73 34.45±15.31 34.52±25.62 0.23

Interileukin-18 (pg/ml) 248.65±28.80 260.19±21.87 262.02±21.01 266.80±22.10 266.94±30.90 273.47±20.19 0.008*

Interleukin-10 (pg/ml) 11.81±2.89 11.94±1.85 11.89±1.97 12.16±1.80 12.51±3.19 12.90±1.63 0.26

Ct value Nf-Kb 21.42±1.58 21.18±1.24 21.09±0.94 21.07±1.16 20.54±1.09 19.95±1.04 0.0001*

 p65 mRNA

Ct value Nf-kb 22.40±1.04 22.24±1.08 22.19±1.19 21.88±1.30 20.89±1.84 20.78±1.90 0.001*

 p50 mRNA

Ct value of GAPDH 24.40±0.53 24.70±0.56 24.89±0.64 24.88±0.73 24.90±0.85 24.84±0.68 0.08

Relative mRNA expression 
p65

12.51±10.47 16.04±14.86 17.64±14.02 20.02±22.07 26.74±22.95 41.19±34.93 0.0001*

Relative mRNA expression 
p50

5.57±5.26 7.40±5.66 10.34±13.05 11.73±12.21 27.57±30.79 34.44±38.10 0.0001*

ELISA-P65 346.95±119.30 363.14±113.99 366.11±100.99 383.62±101.89 404.07±90.51 409.13±87.18 0.21

ELISA P50 140.10±31.05 143.54±34.62 143.90±31.92 149.08±37.22 172.23±33.79 184.24±30.36 0.001*

mRNA (Ct) of IL-18 25.16±2.14 24.59±3.08 24.18±3.13 23.97±3.61 23.82±2.86 22.33±1.79 0.04*

mRNA (Ct) of IL-10 27.04±2.97 26.62±2.62 26.44±2.32 26.22±2.73 25.26±2.62 24.93±2.23 0.04*

Relative mRNA expression 
IL-18

1.06±0.97 6.49±13.60 9.13±15.01 13.74±24.83 13.97±6.97 14.51±10.24 0.03*

Relative mRNA expression 
IL-10

1.18±3.23 2.67±7.22 9.42±11.66 12.54±15.45 15.47±10.89 15.60±7.56 0.0001*

Table 3. Comparison of Biochemical, Immunological, and Expression by TNM Classification among Cancer Patients

by the consistent overexpression of its subunits p65 
and p50 in cancer patients relative to BPH and healthy 
controls. Notably, while both subunits were elevated at 
the mRNA and protein levels, p50 exhibited a stronger 
correlation with disease stage, suggesting differential post-
transcriptional regulation [27]. These observations align 
with NF-κB’s known function in promoting tumorigenesis 
through proliferation, survival, and immune modulation 

[28].
While p65 protein expression plateaued in advanced 

stages, p50 levels continued to rise, supporting its 
potential utility as a stage-specific prognostic marker 
[29]. Persistent NF-κB activation is implicated in tumor 
progression and treatment resistance via the upregulation 
of angiogenic and metastatic genes such as IL-8, VEGF, 
and MMPs [30] . Disrupting this pathway may sensitize 
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prostate cancer cells to radiotherapy and chemotherapy 
[31, 32]

IL-18 and IL-10, although immunologically divergent, 
were both significantly upregulated as disease progression 
advanced. IL-18, a pro-inflammatory cytokine, enhances 
NK cell and Th1 responses, but excessive levels may 
sustain chronic inflammation and tumor growth [33]. 
Conversely, IL-10 suppresses T-cell activity and antigen 
presentation, enabling immune evasion [34]. Despite 
opposing immune functions, both cytokines contribute 
to a tumor-supportive microenvironment, mirroring 
NF-κB expression patterns [35]. Their upregulation 
alongside NF-κB highlights a coordinated inflammatory 
and immunosuppressive response in prostate cancer [36].

Our findings further emphasize the influence of 
occupational exposure. Among high-risk professions, 
tannery workers showed the highest biomarker levels, 
likely due to chronic exposure to genotoxic agents such as 
chromium and aromatic amines [37]. Two-way ANOVA 
revealed a borderline significant interaction between 
occupation and disease, suggesting a synergistic effect 
on inflammation-driven oncogenesis. These results align 
with existing literature on occupational carcinogens and 
NF-κB activation [38].

Additionally, elevated cytokine levels among tobacco 
users, including those consuming smokeless forms, 
support a link between exogenous inflammatory triggers 
and prostate tumorigenesis  [39]. Interestingly, previous 
cohort studies suggest that IL-10 may have dual roles, 
protective or tumor-promoting, depending on the immune 
context [40]. Our findings support the context-dependent 
involvement of this mechanism in the progression of 
cancer.

The therapeutic relevance of these markers is 
promising. High-dose IL-10 formulations (e.g.., 
pegilodecakin) have shown promise in restoring CD8⁺ 
T-cell responses and enhancing the efficacy of checkpoint 
inhibitors. Similarly, IL-18 is being explored in vaccine 
and CAR-T cell platforms due to its immunostimulatory 
profile [41]. These developments underscore the 
translational potential of IL-10 and IL-18 as therapeutic 
targets for immunotherapy.

However, discordance between transcript and 
protein levels, particularly for p65points to possible 
post-transcriptional regulation or saturation in protein 
release, highlighting the necessity of integrating 
transcriptomic and proteomic data for biomarker 
validation [42]. Multi-omics approaches may better 
capture the complex molecular landscape of prostate 
cancer, facilitating precision oncology.

Given the robust association of NF-κB with tumor 
progression and environmental exposure, trials of NF-
κB inhibitors in inflammation-driven cancers may be 
extended to prostate cancer [43]. Modulating cytokine 
signaling could also complement standard therapies 
[44]. Nevertheless, limitations of this study include 
its cross-sectional design and reliance on blood-based 
markers, which may not fully reflect tumor-specific 
events. Future longitudinal studies integrating tissue-level 
analyses are warranted.

In summary, NF-κB p65/p50, IL-18, and IL-10 are 

significantly overexpressed in prostate cancer, correlating 
with disease stage and occupational exposure. These 
biomarkers may facilitate non-invasive diagnosis, risk 
stratification, and therapeutic targeting, especially 
in populations exposed to environmental toxins. 
Incorporating these findings into clinical practice and 
occupational health policies could improve early detection 
and outcomes. Prospective validation is essential to 
confirm their utility in precision medicine.
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