
Asian Pacific Journal of Cancer Prevention, Vol 27 265

DOI:10.31557/APJCP.2026.27.1.265
Comprehensive Molecular Docking and Molecular Dynamics Reveal Inhibitors of HER2 L755S, T798I, and T798M 

Asian Pac J Cancer Prev, 27 (1), 265-279

Introduction

Breast cancer remains one of the most prevalent 
malignancies and a leading cause of cancer-related 
mortality worldwide. A significant subset of breast 
cancer cases, approximately 25%, is characterized 
by the overexpression of Human Epidermal Growth 
Factor Receptor 2 (HER2)  proto-oncogene [1–3]. This 
overexpression is associated with a more aggressive tumor 
phenotype and correlates with poor patient prognosis 
[4–6]. While HER2-targeted therapies, such as the 
monoclonal antibody trastuzumab and tyrosine kinase 
inhibitor Lapatinib, have revolutionized treatment options 
and improved survival rates, many patients eventually 
develop resistance [7–9]. This resistance can arise from 
various intrinsic and acquired mechanisms, including 
mutations in the HER2 gene, which allow tumor cells 
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to evade inhibition and continue proliferating despite 
treatment.

Lapatinib is a reversible dual tyrosine kinase inhibitor 
that targets HER2 and Epidermal Growth Factor Receptor 
(EGFR). It functions by binding to the ATP-binding site of 
the HER2 kinase domain, thereby inhibiting downstream 
signaling pathways critical for tumor growth and survival 
[10–12]. However, mutations in HER2, such as L755S, 
T798I, and T798M, have been identified as significant 
contributors to Lapatinib resistance [13–15]. These 
mutations alter the binding dynamics of Lapatinib, leading 
to diminished therapeutic efficacy and necessitating 
alternative treatment strategies. The L755S mutation 
occurs in 1% of all breast cancer cases. These mutations 
are significantly increased in metastatic tumors [14]. 
This HER2 alteration is a missense mutation that makes 
a reversible tyrosine kinase inhibitor (TKI) like lapatinib 
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unable to interact with the hinge region in the HER2 kinase 
domain,  and loses its efficacy [15]. Though the T798I 
and T798M are less commonly detected than the L755S 
mutation, these two mutations have been identified as an 
acquired gatekeeper mutation, which no longer responds 
to irreversible TKI neratinib. 

Curcumin, a bioactive compound derived from 
turmeric, has garnered attention for its potential anti-
cancer properties, particularly against HER2-positive 
breast cancer [16–18]. Curcumin and its derivatives exert 
an inhibitory effect on the HER2 signaling pathway and 
could overcome resistance in several types of cancer 
cells [19–21]. The ability of curcumin and its derivatives 
to modulate various molecular targets makes them a 
promising candidate for enhancing the effectiveness of 
existing HER2-targeted therapies.

This study proposes an approach utilizing virtual 
screening techniques to identify curcumin derivatives that 
specifically target the HER2 mutations L755S, T798I, and 
T798M using our workflow (Figure 1). By employing 
extensive molecular docking, molecular dynamic 
simulations, and ADMET prediction, we could elucidate 
the binding interactions between these derivatives 
and HER2 mutations. This research also informed the 
chemical structure requirements for developing curcumin 
derivatives as HER2 inhibitors, both their wild-type and 
mutated versions.

Materials and Methods

Preparation of Dataset containing Curcumin Derivatives 
from ChEMBL Database

The curcumin derivatives were retrieved from the 
ChEMBL database using the advanced search module, 
inputting the SMILES query O=C(CC(C=C)=O)C=C. The 
list of compounds was then downloaded as a .csv file for 
further filtering based on the Lipinski rule of five using 
the RDKit module in the KNIME workflow and Principal 
Moment of Inertia (PMI) analysis. 

In Silico Mutation of HER2 in MOE
The default protocol for in silico mutation in MOE was 

used without further modification. As the model of HER2 

wild-type (WT), this study employed PDB ID 3RCD, 
considering the location of the ATP-binding site, which is 
relevant to the location of the mutation. After single-point 
amino acid modifications, the crystal structure models 
were subjected to energy minimization and side-chain 
optimization algorithms to ensure the mutated structure 
achieves a stable conformation. The quality of models 
was then analyzed using a Ramachandran plot based on 
the Phi-Psi geometry.

Molecular Docking Simulation
Molecular docking using MOE was performed on the 

HER2 protein, utilizing PDB ID 3RCD, with TAK-285 as 
a known inhibitor in the kinase domain [22]. The default 
protocol was conducted based on the previous report by 
Lestari et al. [23]. The HER2 structure was prepared by 
removing unnecessary water molecules while retaining the 
co-crystallized inhibitor, adding hydrogen, and optimizing 
the structure using the Amber10 force field. The binding 
site for simulation was defined based on the active pocket 
of TAK-285 as the native ligand in the kinase domain 
consisting of several amino acids such as Leu726, Gly727, 
Ser728, Gly729, Val734, Ala751, Ile752, Lys753, Ser783, 
Arg784, Leu785, Leu796, Thr798, Gln799, Leu800, 
Met801, Gly804, Cys805, Leu852, Thr862, Asp863, 
Leu852, Phe864, and Phe1004. Docking simulations were 
performed using the Triangle Matcher algorithm for pose 
generation, both for flexible ligands and rigid proteins. 
Initial scoring was conducted with the London dG scoring 
function, which estimated the free energy of binding using 
the following equation based on previous report from 
Labute [24], where c represented the average gain or loss 
of rotational and translational entropy; Eflex accounted 
for the energy penalty due to the loss of flexibility of the 
ligand (calculated from ligand topology only); fHB and fM 
were geometric factors (ranging from 0 to 1) for hydrogen

bonds and metal coordination imperfections, 
respectively; cHB and cM were the ideal energies for 
hydrogen bond and metal coordination; and Di denoted 
the desolvation energy of atom i. Desolvation energy 
differences were calculated according to the formula 
below,

where A and B represented the volume of the protein 
and/or ligand, with atom i belonging to volume B; Ri 
denoted the solvation radius of atom i, defined as the 
OPLS-AA van der Waals sigma parameter plus 0.5 Å; 
and ci was the desolvation coefficient specific to of atom 
i. The coefficients {c,cHB,cM,ci} were derived by fitting 
data from approximately 400 X-ray crystal structures of 
protein-ligand complexes with known experimental pKi 
values. For the assignment of the ci coefficients, atoms 
were classified into approximately a dozen atom types. 
The triple integrals required for desolvation energy Figure 1. Workflow of Virtual Screening in This Study 
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unbound protein, and the free ligand, respectively. 
This methodology incorporated solvation effects and 
electrostatic interactions, yielding a biologically relevant 
assessment of binding stability.

Prediction of ADMET Profile
Since the interaction of compounds with protein targets 

was partially determined by their bioavailability profile, 
we utilized pkCSM webserver (http://biosig.unimelb.edu.
au/pkcsm/prediction) to predict the ADMET properties of 
curcumin derivatives [29]. The SMILES representations of 
the curcumin derivatives were input as queries, generating 
predictive data such as logP, water solubility, Caco-2 
permeability, intestinal absorption, skin permeability, 
VDss, total clearance, max. human tolerated dose, oral 
rat acute toxicity, oral rat chronic toxicity.

Results

Collection of Curcumin Database and Molecular Docking 
Screening of HER2 wild type

A dataset of reported curcumin derivatives was 
systematically retrieved from ChEMBL using a SMILES-
based query to explore their structural diversity and 
pharmacology potential. Given that curcumin derivatives 
had well-documented bioactivities and versatile chemical 
frameworks, modifying their structure could enhance 
binding affinities [30–32]. To refine the dataset, we applied 
a KNIME workflow that enabled automated filtering and 
molecular property analysis (Supplementary Figure 1A). 
Using the RDKit module, KNIME analysis filtered the 
505 curcumin derivatives based on the Lipinski rule of 
five, selecting 317 curcumin derivatives with favorable 
drug-like characteristics (Supplementary Table 1). To 
assess molecular shape diversity, we performed the PMI 
analysis, which played a key role in understanding the 
chemical structure recognition. The PMI profile revealed 
that most derivatives retained a rod scaffold, while some 
displayed a disc structure (Supplementary Figure 1B). 
The curated set of curcumin derivatives was subsequently 
utilized for further computational analysis.

The virtual screening was initiated by performing a 
redocking study and molecular docking screening against 
the HER2 wild-type. This study utilized PDB ID 3RCD, 
considering the presence of known inhibitor TAK-285, 
which bond to the ATP-binding site through a combination 
of hydrophobic contacts and direct hydrogen bonds [22]. 
Our redocking analysis, performed using the default 
docking protocol in MOE, generated a docking score of 
-9.8297 kcal/mol with an RMSD of 0.643 Å, indicating 
that our procedure was acceptable for virtual screening 
(Supplementary Figure 2). The crystal structure model 
was then utilized for molecular docking screening against 
curcumin derivatives. Molecular docking was useful for 
the high-throughput virtual screening identification of 
several inhibitors [33]. From 317 curcumin derivatives, 
the best 100 compounds with the lowest docking score 
were collected for further screening (Supplementary 
Table 2). Among the top 20, curcumin derivatives 
possessed docking scores with a range from -10.2 to -11.5 
kcal/mol, which was lower than that of Lapatinib, with 

calculations were approximated using Generalized Born 
integral formulations.

Further refinement of binding energy estimation 
was performed using GBVI/WSA dG as the rescoring 
procedure to estimate the free energy of binding of the 
ligand from a given pose based on forcefield scoring 
function using the following equation based on Naïm et 
al. [25],

where, c represented entropic contributions; α and β 
were force field-dependent constants 

obtained during training; Ecoul was the coulombic 
electrostatic term, calculated using partial charges with 
a constant dielectric of ϵ=1; Esol was the electrostatic 
solvation energy calculated using the GB/VI solvation 
model; Evdw represented the van der Waals interactions; 
and SAweighted denoted the weighted solvent-accessible 
surface area. The evaluation of the redocking protocol 
was based on the RMSD value, with an acceptable score 
of ≤ 2Å. Top-ranked poses after virtual screening were 
analyzed for key interactions with the kinase domain 
residues.

Molecular Dynamics Simulation
The molecular dynamics (MD) simulation protocol 

was performed according to established procedures 
previously reported by Hermawan et al. [26] . The MD 
simulations were performed using NAMD 2.14 and 
visualized with VMD 1.9.4 [27, 28]. Protein and ligand 
parametrizations were generated with CHARMM36 and 
CGenFF, which were available on the CHARMM-GUI 
web server. To prepare for solvation and neutralization, a 
cubic water box with 20 Å padding was added, followed by 
the addition of K+ and Cl- ions. The complex underwent a 
one ns minimization step, followed by a 10 ns simulation, 
which was carried out under NPT ensemble conditions 
(pressure 1 atm, temperature 303K) to complete the MD 
simulation. The MD results were analyzed using VMD, 
which employed simulation trajectories to calculate the 
root-mean-square deviation (RMSD), root-mean-square 
fluctuation (RMSF), radius of gyration (Rg), and solvent-
accessible surface area (SASA). 

MM-GBSA Calculation
The binding free energies of curcumin derivatives and 

the HER2 protein were estimated using the Molecular 
Generalized Born Surface Area (MM-GBSA) method, 
as implemented in MolAICal. This open-access software 
platform integrated deep learning models with a fragment 
growth algorithm (https://molaical.github.io). MM-GBSA 
calculations were conducted based on MD simulation 
trajectories to account for the dynamic nature of ligand-
receptor interactions. The binding free energy (ΔGbind) 
was determined using the following equation:

Where Gcomplex, Gprotein, and Gligand represented the 
total free energies of the protein-ligand complex, the 

∆Gbind  =  Gcomplex − Gprotein + Gligand
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a docking score of -8.1879 kcal/mol (Table 1). These 
findings verified the potency of curcumin derivatives as 
promising inhibitors of HER2.

Construction of HER2 Mutations
Since the crystal structure of HER2 was still 

unavailable, this study performed an in silico mutation 
of HER2 using the MOE protocol [34]. We selected 
L755S, T798I, and T798M as the representative HER2 
mutations that contribute to Lapatinib resistance [13–15]. 
A single point mutation in MOE was employed, followed 
by energy minimization and evaluation of the Phi-Psi 
geometry profile to identify the outlier. The location of 
all three mutations was in the kinase domain of HER2, 
which could affect the binding affinity of Lapatinib and 
other TKIs (Supplementary Figure 3A). The Phi-Psi angle 
in the Ramachandran plot indicated shifts in the secondary 
structure preferences for the L755S, T798I, and T798M 
mutations compared to typical regions in HER2 WT. These 
differences could reflect the structural destabilization or 
altered flexibility, which might contribute to changes in 
the drug resistance profile. Notably, there were only three 
to five outliers on the HER2 mutation model in this study, 
demonstrating a low disallowed region of less than 0.5% 
(Supplementary Figure 3B). These models were further 
used for molecular docking screening to identify the best 
inhibitors targeting HER2 mutations.

Molecular Docking Screening of Curcumin Derivatives 
toward HER2 WT and Mutations

The HER2 mutation model was then used for molecular 
docking screening of the top 100 curcumin derivatives. 

Previous virtual screening studies on HER2 mutations have 
demonstrated promising results in identifying potential 
inhibitors, highlighting the critical role of molecular 
docking screening in this process [34]. In our study, we 
found that several curcumin derivatives performed lower 
docking scores against Lapatinib for the HER2 L755S 
mutations, suggesting a higher binding affinity (Table 2). 
Similar trends were also observed for the HER2 T798I and 
HER2 T798M, where Lapatinib exhibited weaker binding 
affinities than curcumin derivatives (Table 2). Based 
on chemical structure analysis, the top five curcumin 
derivatives showed unique chemical structures. The 
lengths of each compound were comparable to that of 
ATP, which had a length of around 7-15 Å [35–37]. In 
addition, all of the curcumin derivatives also possessed 
diverse structural modifications that were essential 
for binding interaction [38–41]. Curcumin derivatives 
CHEMBL3758656 and CHEMBL3759749 have geranyl 
modifications on benzene substitution, which contribute 
to the lower docking score compared to other compounds 
(Figure 2). The tripeptide substitution curcumin derivative 
CHEMBL3827366 existed in the top five compounds 
in all HER2 mutations. Series of diphenylamine 
curcumin derivatives such as CHEMBL3598007, 
CHEMBL3598010, and CHEMBL3598019 also 
possessed considerable docking scores as the second 
or third position based on docking score (Figure 2). 
Introduction of pteroyl on curcumin derivatives as found 
on CHEMBL1077035 and CHEMBL1077036  showed 
as middle-rank HER2 inhibitor toward three mutations 
(Figure 2). Our study highlights the top curcumin 
derivatives exhibited unique chemical structure, diverse 

Figure 2. Chemical Structure of Lapatinib and Curcumin Derivatives with Lowest Docking Score against HER2 
Mutants 
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modifications, with specific substitutions contributing to 
their effectiveness as HER2 inhibitors. 

Binding interaction analysis showed that curcumin 

derivatives shared a similar binding interaction profile 
with Lapatinib. Lapatinib in all HER2 mutations bound 
to two key amino acids such as Asp863 and Pro811 

Figure 4. Binding Interaction of Lapatinib and Top Fve Curcumin Derivatives against HER2 T798I in 2D Visualization 

Figure 3. Binding Interaction of Lapatinib and Top Five Curcumin Derivatives against HER2 L755S in 2D Visualization 
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Figure 5. Binding Interaction of Lapatinib and Top Five Curcumin Derivatives against HER2T798M in 2D Visualization 

Figure 6. The RMSD (A), RMSF (B), Rg (C), and SASA (D) value of Lapatinib and Curcumin Derivatives in Complex 
with HER2 L755S 
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Figure 7. The RMSD (A), RMSF (B), Rg (C), and SASA (D) value of Lapatinib and Curcumin Derivatives in Complex 
with HER2 T798I 

(Figure 3-5; Supplementary Figure 4-6). However, 
curcumin derivatives bound to several key amino 
acids in the kinase domain of HER L755S, such as 
Ser728, Lys753, Arg811, Asp863, Pro885, and Lys887 
(Figure 3; Supplementary Figure 4). Disruption on 
Lys753 and Lys887 could affect the structural integrity 
of kinase domain during HER2 activation [42–44]. In 
HER2 T798I, Lapatinib and curcumin derivatives formed 
direct hydrogen bonds and arene bonds toward Lys753, 
Leu785, Arg849, Leu852, Thr862, Asp863, and Pro885 
(Figure 4; Supplementary Figure 5). Binding toward 
Leu785 could affect the overall conformation of kinase 
domain, while interaction on Thr862 could disrupt the 
stability of loop in HER2 active conformation [45–47]. 
Curcumin derivatives and Lapatinib interacted with HER2 
T798M by forming several bonds toward Phe731, Met798, 
Met801, Asp808, Arg811, Asp863, and Leu866 (Figure 5; 
Supplementary Figure 6). Interaction with Met798 and 
Met801 as the primary mutation location could alter the 
HER2 activation on the kinase domain [48–50]. Overall, 
our molecular docking screening revealed that several 
curcumin derivatives exhibited higher binding affinities 
than Lapatinib in HER2 mutations, with key interactions 

potentially disrupting kinase domain activation.

Molecular dynamic simulation of Selected Curcumin 
Derivatives in complex with HER2 Mutations

MD simulation complemented molecular docking 
by providing precise insight into the dynamic behavior 
and binding stability of protein-ligand complexes. From 
the molecular docking screening, CHEMBL3758656 
and CHEMBL3827366 emerged as the top-performing 
curcumin derivatives and were selected for MD simulation 
to assess their binding properties further. After conducting 
10 ns MD simulation, we analyzed several post-MD 
analyses, including RMSF, Rg, and SASA. For HER2 
L755S, both CHEMBL3758656 and CHEMBL3827366 
maintained lower RMSD values compared to Lapatinib, 
indicating enhanced binding stability (Figure 6A; 
Supplementary Table 3). RMSF analysis showed 
minimal differences across all complexes, suggesting 
that ligand binding had no effect on local flexibility 
(Figure 6B; Supplementary Table 3). The Rg profiles 
indicated that CHEMBL3827366 promoted slightly more 
compact protein conformation than other compounds 
(Figure 6C; Supplementary Table 3). In addition, SASA 
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Figure 8. The RMSD (A), RMSF (B), Rg (C), and SASA (D) value of Lapatinib and Curcumin Derivatives in Complex 
with HER2 T798M 

HER2 L755S
Compound Eele (Kcal/mol) Evdw (Kcal/mol) ΔGbind (Kcal/mol)*
HER2 L755S+CHEMBL3758656 -6.4195 -67.3083 -40.3454±0.2076
HER2 L755S+CHEMBL3827366 -74.8577 -69.5355 -47.6623±0.143
HER2 L755S+Lapatinib -6.3196 -52.5136 -33.7071±0.1162

HER2 T798I
Compound Eele (Kcal/Mol) Evdw (Kcal/Mol) ΔGbind (Kcal/Mol)*
HER2 T798I+CHEMBL3758656 -5.8824 -80.5161 -59.3356±0.1608
HER2 T798I+CHEMBL3827366 -74.068 -66.3645 -48.1509±0.1479
HER2 T798I+Lapatinib -4.2536 -53.2063 -32.5919±0.0983

HER2 T798M
Compound Eele (Kcal/Mol) Evdw (Kcal/Mol) ΔGbind (Kcal/Mol)*
HER2T798M+CHEMBL3758656 -5.9529 -79.5778 -59.688±0.1374
HER2 T798M+CHEMBL3827366 -74.5382 -69.546 -52.0749±0.1654
HER2 T798M+Lapatinib -5.193 -54.6709 -32.4044±0.1553

*Data was expressed in mean±SD 

Table 3. MM-GBSA Binding Free Energy Profiles of Curcumin Derivatives and Lapatinib with HER2 Mutations

measurements revealed that both CHEMBL3758656 and 
CHEMBL3827366 binding reduced solvent exposure 
more effectively, implying a tighter overall packing of 

the ligand-protein complex (Figure 6D; Supplementary 
Table 3). In the case of HER2 T798I, the binding of 
CHEMBL3758656 and CHEMBL3827366 resulted in 
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higher RMSD values relative to Lapatinib, reflecting 
increased structural flexibility and reduced binding 
stability (Figure 7A; Supplementary Table 3). The T798I 
gatekeeper was bulkier and more hydrophobic, which 
reduced ATP-site volume and altered local packing 
[15]. The engagement of curcumin derivatives could 
be spanning the activation of loop region resulting in 
elevation of RMSD and Rg. RMSF patterns remained 
largely consistent across all complexes, though Rg 
analysis indicated that CHEMBL3827366 induced a 
more expanded protein structure (Figure 7B and C; 
Supplementary Table 3). This observation was further 
supported by the SASA profile, which showed an increase 
in surface area in the presence of CHEMBL3827366, 
consistent with a less compact conformation that 
CHEMBL3758656 and Lapatinib (Figure 7D; 
Supplementary Table 3). For HER2 T798M, RMSD 
profiles showed comparable trends among all complexes, 
with CHEMBL3827366 inducing slightly greater 
fluctuations (Figure 8A; Supplementary Table 3). The 
RMSF analysis indicated stable local flexibility regardless 
of the bound ligand (Figure 8B; Supplementary Table 3). 
Rg data demonstrated that both CHEMBL3758656 and 
CHEMBL3827366 showed stable Rg profile, suggesting 
a compact conformation (Figure 8C; Supplementary 
Table 3). Correspondingly, SASA analysis revealed an 
increased solvent exposure in both CHEMBL3758656 and 
CHEMBL3827366 complex, whereas Lapatinib binding 
resulted in a less solvent-exposed structure (Figure 8D; 
Supplementary Table 3). Collectively, these results 
suggested that curcumin derivative CHEMBL3758656 
and CHEMBL3827366 modulated HER2 mutations 
dynamic in mutation-dependent manner, stabilizing HER2 
L755S while promoting structural destabilization in HER2 
T798I and T798M, which could have implications for its 
inhibitory activity.

MD simulations of HER2 L755S, HER2 T798I, 
and HER2 T798M also revealed deeper insights into 
distinct conformational behaviors of these proteins in 
both unbound and ligand-bound states. In the absence of 
ligands, HER2 L755S demonstrated a relatively compact 
structural conformation, maintaining its structural 
integrity throughout the simulation (Supplementary Figure 
7). In contrast, HER2 T798I and HER2 T798M exhibited 
a more flexible structure, with notable fluctuations in 

their overall structure (Supplementary Figure 8-9). Upon 
ligand binding, HER2 L755S maintained more stabilized 
conformation with both curcumin derivatives, showing 
minimal structural changes compared to its unbound form 
(Supplementary Figure 7). In HER2 T798I and HER2 
T798M, which were already more flexible in their unbound 
states, underwent further conformational rearrangements 
when bound to curcumin derivatives, particularly around 
the ligand-binding region (Supplementary Figure 8 and 9). 
These changes were particularly pronounced in the binding 
pocket, where curcumin derivatives appeared to induce 
localized stabilization. However, Lapatinib induced more 
pronounced structural shifts in all three mutations, leading 
to greater conformational alterations and suggesting 
less effective stabilization than curcumin derivatives 
(Supplementary Figure 7-9). These findings highlighted 
that curcumin derivatives could stabilize the HER2 L755S, 
HER2 T798I and HER2 T798M through distinct binding 
mechanisms, offering potential as alternative therapeutic 
agents alongside established inhibitors such as Lapatinib.

Building on these conformational insights, the 
binding free energy ΔGbind values derived from 
MM-GBSA calculations further elucidated the 
differential binding affinities of curcumin derivatives 
and Lapatinib across HER2 mutations. The curcumin 
derivatives, CHEMBL3758656, consistently exhibited 
the strongest binding affinity across all HER2 mutations 
(Table 3). Moderate binding interaction was shown 
by CHEMBL3827366, while Lapatinib demonstrated 
the weakest binding across all HER2 mutations. These 
findings supported the superior stabilizing effect of 
CHEMBL3758656, reinforcing its potential as a lead 
compound for overcoming HER2 mutation-associated 
resistance through enhanced and selective binding 
interactions.

ADME Properties of Curcumin Derivatives by pkCSM
Prediction of ADMET properties was crucial for 

evaluating the drug-like properties of compounds. 
The ADMET analysis could identify potential 
pharmacokinetic limitations and toxicity concerns 
early in drug development [51–53]. The ADMET 
predictions by pkCSM for CHEMBL3758656 and 
CHEMBL3827366 revealed several differences in their 
drug potential. CHEMBL3758656 exhibited a higher logP 

Parameter CHEMBL3758656 CHEMBL3827366
logP 13.4106 1.627
Water Solubility (log mol/L) -3.145 -2.899
Caco-2 Permeability (log Papp in 10-6 cm/s) 1.217 0.626
Intestinal Absorption (% Absorbed) 93.228 4.232
Skin Permeability (log Kp) -2.735 -2.735
VDss (log L/kg) -1.208 0.843
Total Clearance (log ml/min/kg) 0.999 0.864
Max. Human Tolerated Dose (Log mg/kg/day) 0.619 0.432
Oral Rat Acute Toxicity (mol/kg) 1.831 2.607
Oral Rat Chronic Toxicity (log mg/kg_bw/day) 0.467 3.93

Table 4. ADMET Prediction of Curcumin Derivatives
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than CHEMBL3827366, indicating higher lipophilicity, 
which aligned with its lower water solubility (Table 4). 
However, CHEMBL3758656 demonstrated superior 
Caco-2 permeability and intestinal absorption, suggesting 
better bioavailability (Table 4). Both compounds shared 
similar skin permeability and total clearance value, 
while the tissue distribution of CHEMBL3758656 was 
lower than CHEMBL3827366 (Table 4). The maximum 
human-tolerated dose was higher for CHEMBL375865, 
implying a wider therapeutic window. In terms of toxicity, 
CHEMBL3827366 possessed higher oral rat acute 
and chronic toxicity, suggesting a better longer-term 
risk. Overall, both curcumin derivatives demonstrated 
comparable bioavailability, favorable toxicity profile, 
and acceptable pharmacokinetic balance, making them 
promising candidates for further drug development.

Discussion

The primary goal of this study was to develop reported 
curcumin derivatives as HER2 inhibitors, particularly 
targeting Lapatinib resistance-associated HER2 mutations 
through multiple virtual screening. Lapatinib is used as the 
first line therapy for HER2-expressed cancer cells without 
or with other chemotherapy such as Trastuzumab or 
Capecitabine [54–57]. However, the increasing prevalence 
of HER2 mutations in breast cancer and their association 
with resistance to Lapatinib highlight the urgent need for 
further research on alternative therapeutic strategies [58–
61]. HER2 mutations such as L755S, T798I, and T798M 
significantly alter the binding affinity of conventional 
inhibitors, reducing their efficacy and necessitating the 
development of novel compounds [62–64]. By leveraging 
computational methodologies, this study contributed to 
the ongoing search for targeting HER2 protein and its 
mutations related to Lapatinib resistance.

The integration of molecular docking and molecular 
dynamic simulation in our study effectively identified 
potential curcumin derivatives that targeted HER2 WT 
and its mutations. Notably, CHEMBL3758656 and 
CHEMBL3827366 consistently ranked among the top 
five compounds with low docking score across all three 
HER2 mutations. CHEMBL3758656, which incorporated 
a geranyl group on the  hydroxyl groups of both phenolic 
rings and one of its C-alpha center, had been reported as 
a weak inhibitor of HDAC and mPGES-1 [65]. Moreover, 
CHEMBL3827366, a conjugated curcumin derivative 
linked to the fibrinogen-derived peptide fragment Pro-
Ala-Lys, had demonstrated the ability to restore the 
mitochondrial reticular networks and promote cell survival 
[66]. Both compounds exhibited stable interaction with key 
amino acids in the kinase domain of HER2 despite their 
relatively large molecular sizes. MD analysis revealed that 
RMSD, Rg, and SASA patterns of curcumin derivatives 
were consistent with mutation-dependent modulation. The 
MM-GBSA scores of curcumin derivatives were also more 
superior than Lapatinib, implying enhanced structural 
stabilization of the kinase domain. Such stabilization 
may hinder conformational transitions necessary for ATP 
binding and phosphorylation, mimicking the biological 
inhibition mechanism [67]. Binding interaction also 

suggested that curcumin derivatives extended beyond 
the canonical ATP-binding cleft toward peripheral 
regions, potentially engaging allosteric sites. The ability 
to access such alternative binding modes is especially 
relevant for T798I and T798M, where steric hindrance 
could block traditional hinge-binding inhibitors [15]. 
Owing to the conserved structure of kinase domains, 
many small-molecule targeted therapies display varying 
degrees of selectivity and could interact with multiple 
kinases [67–69]. Several studies support the importance 
of large-sized small molecules in effectively targeting the 
HER2 kinase domain. For example, bulky substituents 
added to small molecule inhibitors, such as benzyl ether 
groups in quinazoline derivatives, have been shown to 
increase potency and selectivity toward HER2 by better 
occupying its larger hydrophobic pocket [70]. However, 
designing such molecules required careful balancing 
of size to maintain sufficient membrane permeability 
and favorable pharmacokinetic properties [71-73]. Our 
findings highlight the potential of curcumin derivatives, 
particularly CHEMBL3758656 and CHEMBL3827366, 
to interact with HER2 and its mutations.

Docking scores and binding free energies 
correlated well with predicted ADMET properties. 
ADMET predictions further supported the potential 
of CHEMBL3758656 and CHEMBL3827366 as drug 
candidates. CHEMBL3758656, with the lowest MM-
GBSA energies, also showed favorable oral absorption 
and moderate lipophilicity which is associated with 
effective kinase inhibition. CHEMBL3827366, despite 
slightly higher docking energies, displayed an acceptable 
toxicity profile and solubility, suggesting potential for 
safer chronic administration. Both compounds exhibited 
favorable pharmacokinetic properties, including high 
intestinal absorption and acceptable toxicity profiles. The 
superior bioavailability of these curcumin derivatives 
enhances their therapeutic prospects. However, differences 
in lipophilicity and clearance rates suggest the need 
for further optimization to improve drug likeness and 
minimize potential side effects [74-76]. The limitation of 
this study was the exclusive use of curcumin derivatives 
sourced from the ChEMBL database, as well as its focus 
on only three mutations. In addition, future studies should 
focus on in vitro and in vivo validation of these compounds 
to confirm their efficacy and safety in biological systems.

In conclusion, this study demonstrates the potency 
of curcumin derivatives as an effective inhibitor of 
HER2, particularly in the context of mutations associated 
with Lapatinib resistance, such as L755S, T798I, and 
T798M. The findings underscore the results from virtual 
screening using 505 curcumin databases to identify the 
top two curcumin derivatives, CHEMBL3758656 and 
CHEMBL3827366, as the most promising compounds 
against three HER2 mutations and exhibited favorable 
ADMET profiles.
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