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Abstract

Background: Lapatinib resistance evolution in HER2+ breast cancer is still a crucial therapeutic hurdle, with immune
microenvironmental reprogramming playing a minimally explored role. Beyond its canonical expression on T cells,
programmed cell death protein 1 (PD-1/PDCD1) is intrinsically induced in resistant breast tumors. Through the binding
of tumor-intrinsic PD-1 to PD-L1 on adjacent tumor or stromal cells, inhibitory signals are generated, establishing
an immunosuppressive microenvironment. Methods: This exploratory study investigated the tumor-intrinsic (PD-1)-
lapatinib resistance (PLR) regulatory network driving lapatinib resistance in HER2"/ER—/PR— breast cancer using an
integrative bioinformatics analysis. The GSE38376 dataset and PDCD/ co-expressed genes were utilized to construct
the protein-protein interaction (PPI) of the PLR regulatory network. Gene expression patters were visualized using a
complex heatmap. Gene ontology, KEGG functional enrichment, gene-metabolite interaction network, immune cell
infiltration, comparative gene expression profiling, correlation analysis of PDCDI-hub genes, survival analysis, and
genetic alterations analysis were performed on the PLR regulatory network to elucidate the mechanisms of lapatinib
resistance. Results: Pathways and gene-metabolite analyses showed that the PLR regulatory network genes were
enriched in immune regulation pathways and lipid metabolic reprogramming. The top 10 PLR-hub genes were identified.
Expression profiling in lapatinib-resistant cells revealed the upregulation of PDCD1, B2M, and ITGB2, while other genes,
particularly those involved in interferon response and antigen presentation, were downregulated. Immune infiltration
analysis indicated exhausted T cells and an immunosuppressive microenvironment. Comparative gene expression and
survival analyses of PLR-hub genes implicated the PLR regulatory network in lapatinib resistance. Genetic alterations
were infrequent, suggesting that regulation may occur epigenetically or transcriptionally. Conclusion: The findings
revealed that the PLR regulatory network is associated with HER2"/ER—/PR— lapatinib resistance through multiple
mechanisms, including interferon signaling silencing, T cell exhaustion, and the fostering of an immunosuppressive
niche. These insights pave the way for interventions aimed at overcoming lapatinib resistance in HER2* breast cancer.
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Introduction

Human epidermal growth factor receptor 2 (HER2,
ErbB2) amplification promotes aggressive breast
cancer phenotypes via fueling downstream oncogenic
signaling. HER? is targeted by receptor tyrosine
kinase inhibitors such as lapatinib, a dual EGFR/HER?2
suppressor that hinders receptor autophosphorylation
and downstream signaling. Although lapatinib initially
shows efficacy in HER2" breast cancer, resistance
frequently emerges through oncogenic mechanisms,
including HER?2 bypass via PI3K/Akt/mTOR activation
and epithelial-mesenchymal transition (EMT). Emerging
evidence also implicates tumor microenvironment (TME)
reprogramming and immune-evasion mechanisms as
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critical drivers of therapeutic escape [1]. Breast tumors
can modulate lapatinib response by developing rigid
extracellular matrices via YAP/TAZ signaling, disrupting
immune cell infiltration [2].

Programmed cell death protein 1 (PDCDI, PD-1,
CD279) is an inhibitory immune checkpoint expressed
on activated T cells that, upon binding with its ligands
PD-L1 or PD-L2, stimulates SHP2 phosphatase to
dephosphorylate T cell receptor (TCR) signaling
molecules and enforce T cell exhaustion, a state of
functional impairment characterized by lower cytokine
synthesis and proliferative potency [3]. The PD-1
pathway is co-opted to evade anti-tumor immunity by
breast tumors. Although classically expressed on T cells,
PD-1 is intrinsically upregulated in resistant breast cancer
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cells, where it delivers SHP2-dependent inhibitory signals
that dampen TCR signaling and tumor cell apoptosis
pathways. Cancer cell-intrinsic PD-1 remodels the TME,
suppressing anti-tumor immunity, and drives malignant
progression. By the binding of cancer cell-intrinsic PD-1
to PD-LI on adjacent tumor or stromal cells, inhibitory
signals are generated that reduce CD8+ T cells, effector
T cell infiltration, and establish an immunosuppressive
microenvironment [4]. Tumor-intrinsic PD-/ is a critical
driver of tumor therapy resistance through direct,
immune-independent mechanisms that simultaneously
shape an immunosuppressive TME. In cancers such as
melanoma, hepatocellular carcinoma, and glioblastoma,
cancer cell-intrinsic PD-/ activation promotes tumor
growth and self-renewal by directly stimulating oncogenic
pathways, including mTOR and NF-kB. Conversely, in
non-small cell lung and colon cancers, tumor-intrinsic
PD-1unexpectedly functions as a tumor suppressor, so its
blockade can inadvertently accelerate disease. This dual
role, dictated by tumor type and upstream drivers like p53,
allows tumor-intrinsic PD-/ to fuel malignancy directly
and contribute to a cold TME, creating a formidable barrier
to the efficacy of immunotherapy [9].

Regulatory mechanisms of PD-1/PD LI in cancers
include transcriptional regulation by interferon signaling,
epigenetic modifications, canonical NF-kB signaling,
and microenvironmental cytokines such as IFNy and
TNFa [5, 6]. Evidence highlight that HER?2 signaling
intersecting with immune checkpoints affects TME
and drug sensitivity. For instance, trastuzumab, another
HER?2-targeting antibody, triggers PD-LI via NF «B
stimulation, attenuating drug efficacy and promoting
an immune suppression signature [2, 5, 7, §]. Lapatinib
modulates cytokine release and may prime tumors for
checkpoint blockade, yet the molecular networks linking
tumor-intrinsic PD-1 regulation to lapatinib resistance
remain undefined [9, 10].

This study aims to investigate the tumor-intrinsic
PDCD]-lapatinib resistance (PLR) regulatory network
driving lapatinib resistance in HER2+ breast cancer via
integrative bioinformatic and transcriptomic analyses.

Materials and Methods

Lapatinib structure and lapatinib-protein interaction
network construction

The chemical structure and formula of lapatinib were
obtained from the Drug Bank database (DrugBank ID:
DB01259; https://go.drugbank.com/drugs/DB01259).
The lapatinib-protein interaction network was retrieved
from the STITCH database (version 5.0; http:/stitch.embl.
de/) by querying the compound identifier “lapatinib” and
organism identifier “Homo Sapiens”. The lapatinib-protein
interactions were filtered to include only those with a high
confidence score > 0.7.

Data mining and processing

Tumor-intrinsic PDCDI co-expressed genes were
retrieved from the TCGA dataset from cBioportal (https://
www.cbioportal.org/), a cancer genomics database, using
the keywords “PDCDI” and “breast cancer”. Firechose
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legacy and Cell 2015 datasets were merged, then the
dplyr package in R filtered the data based on a p-value
less than 0.05 and Spearman’s correlation values >0.4 or
<-0.4. Regulatory genes implicated in HER2*/ER—/PR—
breast cancer resistance to lapatinib were obtained from
the Gene Expression Omnibus (GEO; https://www.ncbi.
nlm.nih.gov/geo/) database, a resource containing high-
throughput gene expression data, microarray, RNA-Seq,
and other forms of genomics data. The search strategy
targeted datasets related to lapatinib-resistant HER2*/ER—/
PR-Dbreast cancer based on the terms “lapatinib-resistant”
and “lapatinib-sensitive” in the search query using the
advanced search. For an exploratory bioinformatics
study, the inclusion criteria were human HER2'/ER—/
PR- breast cancer with at least three samples per group,
and the presence of 4 groups: lapatinib-resistant control
(RC), lapatinib-resistant treated (RT), lapatinib-sensitive
control (SC), and lapatinib-sensitive treated (ST) groups,
to ensure minimal statistical validity. The exclusion criteria
were non-human studies and datasets with a small sample
size. One dataset was selected, GSE38376, which was
generated using the GPL6947 [llumina HumanHT-12 V3.0
expression beadchip platform. The GSE38376 dataset
comprises 18 samples of HER2'/ER—/PR— SKBR3 and
SKBR3-R breast cancer cells, 3 RC, 6 RT (3 samples
treated with 0.1 pM and 3 samples treated with 1 uM),
3 SC, and 6 ST (3 samples treated with 0.1 uM and 3
samples treated with 1 pM) [11]. The GEO2R tool was
used to analyze differentially expressed genes (DEGs)
of the GSE38376 dataset based on the R programming
packages, including limma, a well-known R package for
microarray analysis, which performs statistical analysis,
and the GEOquery and umap packages. The GEO2R tool
provides normalized data, log2-fold change determination,
and adjusted p-values using the Benjamini-Hochberg
method (FDR, False discovery rate). The generated gene
list was downloaded, and the dplyr package filtered the
significant genes based on a log2-fold change >1 (2x
change) and an adjusted p-value less than 0.05. Differential
expression analysis was performed using the limma
package. Pairwise contrasts were generated cyclically
(For instance, RC/RT, RT/SC, SC/ST, ST/RC), where the
numerator is the first group and the denominator is the
second. Genes were ranked by the moderated F-statistic,
which accounts for variance moderation across genes,
allowing robust identification of those with the strongest
differential expression. The intersection of PDCD]I co-
expression data from cBioportal and lapatinib resistance
data from GSE38376 was retrieved using Venny 2.1.0
(https://bioinfogp.cnb.csic.es/tools/venny/), and data were
considered overlapping genes implicated in the PDCD -
lapatinib resistance (PLR) regulatory network. Then, the
PLR genes with strong Spearman’s correlation values >0.6
or <-0.6 were identified by utilizing the dplyr package.

Microarray data processing and representation of PLR-
DEGs

The expression matrix file for the GSE38376
dataset was processed, checked for quality control, and
normalized using R packages. A log2-fold change >1,
FDR < 0.05, and adjusted p-value less than 0.05 were
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considered the threshold values for PLR-DEGs. The
annotation of probe identifiers with gene symbols was
performed using the GEOquery package, which depends
on the GPL6947 Illumina HumanHT-12 V3.0 expression
beadchip platform. Genes mapped to multiple probes were
aggregated by calculating their mean values. In addition,
the heatmap was constructed using the ComplexHeatmap
R package to showcase the significant PLR-DEGs, and
gene expression data were represented as z-scores.

Gene ontology and KEGG pathway enrichment analysis

Gene ontology enrichment of PLR genes was
performed using an over-representative analysis (ORA)
and a genome protein-coding reference set on WebGestalt
(http://www.webgestalt.org/process.php). In this test, the
biological process, cellular component, and molecular
function were analyzed, and the results were visualized
as bar plots and interpreted accordingly. The selection
criteria for PLR genes submitted to the server for analysis
were ORA query, FDR < 0.05, and the Benjamini-
Hochberg method for multiple test adjustment. Gene-
Terms network is processed using the dplyr and tidyr
packages and constructed via the ggraph, tidygraph, and
igraph packages in R. The network illustrates common
genes and central biological processes among the
significantly enriched gene ontology terms. In addition,
the Term-Gene association heatmap is processed using the
dplyr and tidyr packages and constructed via the ggplot2
package in R. This plot exhibits core genes involved in
several enriched biological processes, demonstrating they
may be key regulators or biomarkers in lapatinib-resistant
breast cancer. Data with p-value<0.05 are selected and
presented for the network and heatmap.

PLR genes were analyzed for the Kyoto Encyclopedia
of genes and genomes (KEGG) pathway using Database
for Annotation, Visualization, and Integrated Discovery
(DAVID version 6.8; https://david.ncifcrf.gov/tools.Jsp),
a set of functional annotation tools. PLR genes were
submitted to the server for analysis as a query in DAVID
with Homo Sapiens and FDR < 0.05 as selection criteria.
A scatter plots (bubble plot) were created in R using
the ggplot2 package to represent significantly enriched
KEGG pathways and clusters, with a p-value < 0.05.
Modified Fisher’s exact test was used to analyze data,
and Benjamini-Hochberg FDR was applied for multiple
testing correction.

Construction of protein-protein interaction network and
selection of hub genes

The protein-protein interaction (PPI) network was
analyzed and constructed using Search Tool for the
Retrieval of Interacting Genes/Proteins (STRING version
12.0; https://string-db.org/), a resource that predicts
protein-protein interactions. PLR genes were uploaded
based on the settings selection of “Homo sapiens” model,
medium FDR stringency < 0.05, and 0.4 confidence for
the interaction between the targets. The network nodes
exhibited proteins, and edges reflected the PLR protein-
protein interactions. Using the CytoHubba plugin of
Cytoscape, hub genes were identified based on degree
ranking, and the top 10 genes with the highest scores were

selected for further analysis.

Construction of gene-metabolite interaction network

The gene-metabolite interaction network was analyzed
and constructed using the MetaboAnalyst tool (https://
www.metaboanalyst.ca/), a comprehensive metabolomics
data analysis platform presenting functional and
integrative analysis tools. The chemical and human gene
associations are extracted from STITCH, and only high-
confidence interactions are obtained.

Correlation between PLR-hub gene expression and
infiltration of immune cells

The association between PLR-hub gene expression
and immune cell infiltration was analyzed using Tumor
Immune Estimation Resource 2.0 (TIMER2.0; http://
timer.cistrome.org/), a bioinformatics tool designed to
analyze and visualize tumor-infiltrating immune cells
using deconvolution algorithms across various cancer
types, including HER2" breast cancer. Spearman’s
correlation values were selected for BRCA-HER2*
samples. The Wilcoxon signed-rank test is used to analyze
data. The corrplot package in R was utilized to visualize
the correlation between PLR-hub gene expression and
infiltration of immune cells in HER2* breast tumors, and
the significant associations are labeled with stars. On
the other hand, the immune cell composition analysis in
the lapatinib-resistant GSE38376 dataset was conducted
using CIBERSORTx (https://cibersortx.stanford.edu/),
a deconvolution algorithm-based computational tool
designed to quantify the immune cell composition based
on normalized gene expression profiles [ 12]. The absolute
mode quantification and LM22 leukocyte signature matrix
were selected to estimate cell-type-specific abundances
from bulk gene expression data of the GSE38376 matrix
file. The absolute cell fractions were imputed, and B-mode
batch correction, quantile normalization, and 1,000
permutations were chosen for the analysis, mitigating
technical variability, standardizing distributions across
samples, and reducing statistical bias. The findings of
absolute quantification were normalized and visualized via
a dual-encoded bubble plot using the R ggplot2 package.

Comparative gene expression of PLR-hub genes in breast
cancer samples

Gene expression analysis of the PLR-hub genes in
normal and tumor breast tissues was conducted using Gene
Expression Profiling Interactive Analysis (GEPIA; http://
GEPIA.cancer-pku.cn/index.html), a bioinformatics web-
based tool designed for comprehensive gene expression
analysis. The BRCA datasets of the TCGA were utilized
to compare hub gene expression between normal and
tumor breast tissues, and Student’s t-test was applied for
statistical analysis. Expression levels of PLR-hub genes
in normal, tumor, and metastatic breast cancer tissues
were assessed using TNMPlot (https://tnmplot.com/
analysis/), with statistical comparisons across the three
groups performed using the Kruskal-Wallis test. The
University of ALabama at Birmingham CANcer data
analysis Portal (UALCAN; https://ualcan.path.uab.edu/), a
resource designed for analyzing cancer OMICS data, was
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utilized to investigate the PLR-hub gene expression in
normal breast tissues as well as major subtypes of breast
cancer, including HER2" breast cancer. Welch’s t-test was
applied to compare the normal group with the HER2*
group, as the two groups have unequal variances and
sample sizes. PLR-hub gene expression analysis in HER2"
and HER2- breast cancer samples was conducted using
the Breast Cancer Gene-Expression Miner v5.2 portal
(be-GenExMiner v5.2; https://bcgenex.ico.unicancer.
fr/BC-GEM/GEM-Requete.php?mode=8), and Welch’s
t-test was used for statistical comparison. Moreover,
UALCAN (https://ualcan.path.uab.edu/) was utilized to
investigate the PLR-hub gene expression based on 7P53
mutation status, providing a deeper insight into the role
of PLR-hub genes in TP53-mutant and non-mutant breast
cancer. 7P53 mutation status was obtained from TCGA
whole-exome sequencing data, and the samples with or
without 7P53 mutation were matched with RNA-seq data.
Welch’s t-test was applied to compare the three groups,
as all groups have unequal variances and sample sizes.

Correlation between the gene expression of PDCDI and
PLR-hub genes

The correlation between PDCDI and PLR-hub
genes in BRCA-HER?2" samples was analyzed using
TCGA breast cancer datasets in GEPIA (http://GEPIA.
cancer-pku.cn/) and TIMER2.0 (http://timer.cistrome.
org/). Spearman’s correlation and derived p-value from
the strength of the association were exploited to estimate
the level of correlation in both GEPIA and TIMER 2.0
platforms. The ggplot2 package in R was used to generate
scatter plots representing correlations.

Survival analysis

PDCDI and PLR-hub gene prognostic values were
estimated by Kaplan-Meier Plotter (KMPlotter; https://
kmplot.com/analysis/), a tool for survival analysis based
on databases such as GEO, EGA, TCGA, Metabric,
Impact, and PubMed repositories. The selection criteria
were HER2*/ER—/PR— breast cancer, and the observations
are exhibited as hazard ratio (HR) and relapse-free
survival (RFS). The significance level is calculated via the
Log-Rank Test (Mantel-Cox test). The ggplot2 package
in R generated a forest-style horizontal dot plot.

Genetic alteration analysis of PDCD1 and PLR-hub genes

PDCDI and PLR-hub gene genetic alterations were
investigated using cBioportal (https://www.cbioportal.
org/), depending on the PanCancer Atlas study for
oncoprint, co-occurrence tendency, and mutual exclusivity
analysis. TCGA breast invasive carcinoma and samples
with mutations and Copy Number Alteration (CNA)
were selected as criteria. For co-occurrence tendency, the
two-sided Fisher Exact Test was applied to evaluate the
significance level, and the Benjamini-Hochberg method
(FDR correction procedure) was utilized for adjustment.
Genetic alterations of PLR-hub genes were represented
as a log-scale box and whisker plot.

Statistical analysis
Data analyses and visualizations were conducted using
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the R programming language version 4.3.3. A p-value
threshold of less than 0.05 was considered statistically
significant.

Results

Lapatinib-protein interaction network

The lapatinib-protein interaction network shows
strong interactions with the ErbB receptor family,
including ErbB2 (HER2") and EGFR (both with a score of
0.999), followed by ERBB3 (0.976) and ERBB4 (0.967),
underscoring its role as a dual HER2*/EGFR tyrosine
kinase inhibitor (Figure 1A and 1B). Lapatinib is also
associated with signaling molecules such as AKT1, a part
of PI3K/AKT signaling. Furthermore, VEGFA, ABCC10,
MCLI, ESR1, and the tumor suppressor 7P53 may also
be affected via lapatinib. The network also demonstrated
a broad spectrum of protein-protein interactions, which
may influence therapeutic response and resistance.

Data mining and identification of the PDCD1-lapatinib
resistance regulatory network

Following the filtration of genes based on p-value
less than 0.05 and Spearman’s correlation values >0.4
or <-0.4, the Firehose legacy and Cell 2015 TCGA
Breast cancer datasets from cBioportal were merged.
1083 PDCD1 co-expressed genes, 1071 with positive
and 12 with negative correlations, were obtained. For
lapatinib-resistant HER2"/ER—/PR— breast cancer, the
GSE38376 dataset met the criteria and was selected.
The GSE38376 dataset includes 18 samples of HER2"/
ER—/PR—~ SKBR3 and SKBR3-R breast cancer cells, 3
RC, 6 RT, 3 SC, and 6 ST. Following the dataset analysis
using GEO2R, the median expression intensities via
boxplot indicated normalized comparable distribution
profiles between the samples (Figure 1C). Uniform
manifold approximation and projection (UMAP) plot
for the 4 groups exhibited consistency and similarity in
the characteristics within each group (Figure 1D). Genes
were filtered based on adjusted p-value less than 0.05, and
5,694 significant genes implicated in lapatinib-resistant
breast cancer were selected. The intersection between
1083 PDCDI co-expressed genes and 5,694 lapatinib-
resistant breast cancer genes was determined using Venny
2.1.0 (Figure 1E). From the resulting 187 PLR genes, 49
PLR regulatory network genes with strong Spearman’s
correlation values >0.6 or <-0.6 were picked.

To build a heatmap for PLR genes based on microarray
data, the GSE38376 dataset expression matrix file was
checked for quality control, normalized, and screened
using R packages based on the following criteria: log2-
fold change >1, FDR < 0.05, and adjusted p-value less
than 0.05. Then, PDCD] and 49 PLR gene expressions
were visualized using a complex heatmap based on
z-scores, showing a clear clustering between the samples
of the 4 groups, thus underlining the robustness of the
gene expression variations observed (Figure 1F). Of
these, PDCDI and 49 PLR regulatory network, 12
genes were upregulated, while 38 were downregulated
in the lapatinib-resistant groups (Table 1). These
findings highlight the molecular differences between
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Figure 1. Lapatinib Structure and Interactions, Data Processing, and Differential Expression Analysis of SC, ST, RC,
and RT Breast Cancer Groups. (A) Lapatinib structure derived from the Drug Bank. The chemical formula of lapatinib
is C,,H, CIFN,O,S. (B) Lapatinib-protein interactions network constructed using the STITCH tool. Protein-protein
interactions are represented in grey, and chemical-protein interactions in green. Lapatinib directly interrupts HER2/
neu and epidermal growth factor receptor (EGFR) pathways. (C) Intensity distribution boxplot of 18 samples of the
GSE38376 dataset based on log2-transformed normalized expression values. Median-centered values of 18 samples
indicate that the data are normalized and cross-comparable. (D) UMAP plot of 18 samples of the GSE38376 dataset.
The UMAP plot exhibits that the 18 samples, SC, ST, RC, and RT, are clustered based on expression similarity. This
supports the idea that resistant groups deviate from sensitive groups based on DEGs. (E) Venn diagram of lapatinib
resistance DEGs and PDCDI regulatory network, resulting in 187 genes that are considered genes involved in the
PLR regulatory network. (F) Heatmap of the PDCDI1 and 49 differentially expressed PLR regulatory network genes
with strong Spearman's correlation values >0.6 or <-0.6 between SC, ST, RC, and RT groups.

Table 1. Upregulated and Downregulated PLR Genes in the Lapatinib-Resistant Groups

Upregulated PLR Genes

Downregulated PLR Genes

B2M, CTSC, HLA-DMA,
INPP5D, ITGB2, LILRBI,
LPXN, LTA, LYZ, MS444A,
SELIL3, PDCDI.

AKNA, APOBEC3G, APOLG6, Clorfl62, CCL2, CCL5, CD7, CD79B, COROIA, CSF2RA,
CXCL10, GBPI, HLA-B, HLA-E, ILI8BP, IL32, IRFI, ITGB7, KBTBDS, MAL, MAP4KI,
MEII, PIK3CD, PLACS, PLCB2, PRKCQ, PSMBY, PTGER4, RAC2, RUNX3, STATI, TAPI,
TAP2, TNFSF14, WIPFI, GBPIPI, IDO2, TOX2.
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lapatinib-sensitive and lapatinib-resistant breast cancers.
The distinct up- and downregulation of specific genes
proposes intricate molecular mechanisms playing a
role in the evolution of breast cancer clones resistant to
lapatinib. The selected PLR regulatory network genes
present a promising basis for further investigations into
the mechanisms underlying breast cancer resistance to
lapatinib and potential therapeutic targets.

Gene ontology and KEGG pathway enrichment analysis

Gene ontology enrichment analysis shows PDCD]
and PLR regulatory network genes’ relation to biological
processes, cellular components, and molecular functions
(Figure 2A). Gene Ontology enrichment analysis revealed
significant immune-related biological processes, with the
top 20 enriched terms dominated by adaptive immunity
(G0O:0002250, p = 7.34e-14), leukocyte adhesion
(GO:0007159, p = 5.94e-11), and immune regulation
(GO:0002683, p = 1.06e-7). These terms exhibited high
enrichment ratios (up to 11.96) and stringent statistical
significance (FDR < le-6), indicating association with
immune activation and regulatory mechanisms. For
example, genes including CCLS5, HLA-E, PIK3CD,
IRF1, and STATI recur across several gene ontology
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terms, underscoring their role as central hubs in
immune regulation. The network plot demonstrated
dense connectivity between clusters, 81 nodes and 341
edges, and the highly connected nodes are positioned
centrally (Figure 2B). For example, the network shows
dense connectivity between adaptive immunity and cell
adhesion clusters, sharing genes like HLA-E, ITGB2,
and CCLS5. The heatmap further delineated gene-term
associations, revealing chemokines such as CCLS as
multifunctional molecules in cytokine signaling and cell
migration (Figure 2C). CXCLI0 and CCL2 dominate
chemotaxis-associated terms. PDCD] appears exclusively
in adaptive immunity terms, reflecting its function as an
immune checkpoint. The heatmap exhibits multifunctional
genes such as /RF1 and STAT! acting across interferon
response and leukocyte activation. Furthermore, the
heatmap emphasizes gene pleiotropy; for example, CCL5
exists in both chemotaxis and cytokine production. The
readouts illustrate a connected and regulated immune
network with PDCDI-PLR genes, suggesting potential
therapeutic targets for modulating immune responses
in contexts such as PD--mediated lapatinib resistance.
KEGG pathway enrichment analysis of PDCD1 and
PLR genes revealed 27 highly enriched pathways (Fold
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Figure 2. Gene Ontology Enrichment of PDCDI and 49 PLR Regulatory Network in Homo Sapiens. (A) Gene
ontology enrichment analysis of PDCD/ and 49 PLR genes with strong Spearman's correlation values >0.6 or <-0.6.
This bar chart presents genes involved in biological processes, cellular components, and molecular functions. (B)
Gene-Terms network for the significantly enriched gene ontology terms. This network helps to identify shared genes
and core biological processes. (C) Term-gene association heatmap for the significantly enriched terms and shared
genes. For the network and heatmap, the significant data with P<0.05 were selected and presented.
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Enrichment (FE) > 5.0) that dominate the outcomes,
indicating strong biological relevance. For example,
herpes simplex virus 1 infection (FE = 15.2), antigen
processing (FE = 17.1), type I diabetes (FE = 20.97),
Epstein-Barr virus infection (FE = 11.3), viral myocarditis
(FE = 16.5), and B cell receptor signaling (FE = 12.7).
These 6 pathways exceed FE 10.0. KEGG pathway
enrichment analysis revealed 34 moderately enriched
pathways (FE > 2.0), reflecting broad stimulation of
immune and viral response mechanisms. All these
pathways are biologically impactful, with viral infection
and immune regulation pathways showing the strongest
enrichment. Significant KEGG pathway enrichment is
provided with p-value, gene count, and FE (Figure 3A).
KEGG pathway enrichment analysis of PDCDI and
PLR genes generated 5 significant clusters (Figure 3B).
Cluster 1 (Enrichment Score: 4.40) is associated with
viral infection and immune response. The top significant
key genes of cluster 1 are HLA-DMA, HLA-B, HLA-E,
STATI, CCLS, LTA, TAPI, B2M, and TAP2. Cluster 2
(Enrichment Score: 1.97) is associated with B cell and Fc
receptor signaling. The top significant key genes of cluster
2 are INPP5D, RAC2, CD79B, and PIK3CD. Cluster 3
(Enrichment Score: 1.70) is associated with cytokine/
chemokine signaling and inflammation. The top significant
key genes of cluster 3 are CCLS5, CCL2, STATI, IRF1,
PLCB2, CXCLI10, and PIK3CD. Cluster 4 (Enrichment
Score: 1.34) is associated with viral carcinogenesis and
hormone signaling. The top significant key genes of cluster
4 are STATI, IRF1, HLA-B, HLA-E, and PIK3CD. Cluster
5 (Enrichment Score: 0.88) is associated with metabolic
signaling. The top significant key genes of cluster 5 are
INPP5D, PIK3CD, IDO2, and PLCB2. These clusters
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could be involved in lapatinib resistance via several
mechanisms, including immune evasion, oncogenic
signaling activation, recruiting immunosuppressive cells
via cytokine storm, and metabolic reprogramming.

Construction of protein-protein interaction network and
selection of hub genes

The PPI network of PLR genes is constructed using
the STRING database, and the criteria include medium
FDR stringency < 0.05 and 0.4 confidence for the target
interaction. The network nodes represent the proteins,
while the edges reflect the PLR protein-protein interactions.
The PLR regulatory network is densely connected, and
its characteristics are 48 nodes, 129 edges, 5.38 average
node degree, 0.517 average local clustering coefficient, 22
expected number of edges, and < 1.0e-16 PPI enrichment
p-value, implying a strong interconnectedness among
the encoded proteins (Figure 4A). The interaction
network generated in STRING incorporated multiple
evidence types, including text-mining, experiments,
databases, co-expression, neighborhood, gene fusion,
and co-occurrence. GBPIPI is not involved in the PPI-
PLR network due to its classification as a pseudogene,
specifically a pseudogene of the GBPI gene. However,
the GBPIPI pseudogene is non-functional and, like
other pseudogenes, it might still have regulatory roles,
such as acting as a competing endogenous RNA or being
transcribed into non-coding RNA, but not a protein-coding
role as it lacks a valid open reading frame for translation
into a functional protein. The PLR-hub gene selection is
conducted using the CytoHubba plugin of Cytoscape,
and the findings contain the top 10 PLR-hub regulatory
network genes with the highest degree scores (Table 2).
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P-value < 0.05

!
Herpes simplex virus 1 infection | [ ]
Human cytomegalovirus infection | [ ]
Epstein-Barr virus infection | [ ]

Antigen processing and presentation

Phagosome

TNF signaling pathway } (]

Chemokine signaling pathway : [ ]
" L]

Viral myocarditis
Cluster

i o1
Cell adhesion molecules

B cell receptor signaling pathway
Influenza A

[ ]

: (]

: ° o 2

! ° o3

'Y 4
Type | diabetes mellitus ° 5
Cytokine-cytokine receptor interaction 1 [ ]

Human papillomavirus infection | Gene Count
NOD-like receptor signaling pathway L] ® 4
° [ X}
° X
° @

Chagas disease |

Tollike receptor signaling pathway |
Allograft rejection
Graft-versus-host disease
Autoimmune thyroid disease

Fc epsilon Rl signaling pathway
Prolactin signaling pathway
Inositol phosphate metabolism
Pancreatic cancer »

Neutrophil extracellular trap formation —~ ®
®
]

Kaposi sarcoma-associated herpesvirus infection

25 50 75 100
~logyo(P value)

Figure 3. KEGG Pathway Enrichment Analysis of PDCDI and 49 PLR Regulatory Network in Homo Sapiens. (A)
The significantly enriched KEGG pathways. (B) The significantly enriched KEGG Functional Clusters. Data with a
p-value < 0.05 were included and considered significant for KEGG pathways and clusters. Modified Fisher's exact test
was used to analyze data, and Benjamini-Hochberg FDR was applied for multiple testing correction.
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Figure 4. PPI Network and top /0 hub Genes of PLR and Their Correlation with Metabolites and Immune cell Infiltration
in HER2+ Breast Cancer. (A) PPI network of the PLR genes from the STRING database. PLR genes are highly
associated, indicating their involvement in lapatinib-resistant breast cancer. (B) Top 10 PLR-hub genes depending on
degree score. (C) Gene-metabolite interaction network. This analysis was performed using the MetaboAnalyst tool.
(D) Correlation analysis of gene expression of PDCD] and the top /0 PLR-hub genes with immune cell infiltration
in HER2+ breast cancer. Immune deconvolution analysis was performed using TIMER 2.0, and the corrplot package
in R visualizes the correlation. (E) Immune deconvolution analysis of the differentially infiltrated immune cells in the
GSE38376 lapatinib-resistant dataset. Spearman’s correlation and Wilcoxon signed-rank tests were utilized to analyze

data; *P<0.05.

The PLR-hub regulatory network genes are STAT1, CCL5,
PSMBY9, CXCL10, B2M, ITGB2, IRF1, CCL2, HLA-B, and
GBP]I (Figure 4B). The dense interconnectivity among the
10 PLR-hub regulatory network proteins suggests they
likely function in a coordinated rather than independent
pattern. This potential shared or cooperative role supported
the decision to retain all the genes for the next analyses.
Construction of gene-metabolite interaction network
The gene-metabolite interaction network of PLR
genes is constructed using the MetaboAnalyst tool. The
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outputs show that CCL2, ITGB2, STATI, CCL5, CXCL10,
IRF1, and PDCDI genes are associated with many
metabolites including, gefitinib, glycerol, leukotriene
B4, all-trans-retinoic acid, superoxide, adenosine,
prostaglandin E2, genistein, prostaglandin E1, estradiol,
angiotensin II, 3,3”,4’5-tetrahydroxystilbene, ethanol,
magnesium, guanosine monophosphate, serotonin,
hydrogen peroxide, and ADP (Figure 4C). The PLR gene-
metabolite interaction network is highly connected, and
its characteristics are 25 nodes, 49 edges, and 7 seeds.
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Table 2. The Top 10 Tumor-Intrinsic PLR Regulatory Network Genes Ranked Using the Degree Method

No PLR network proteins Degree score
1 Signal Transducer and Activator of Transcription 1 (STAT1) 18
2 C-C Motif Chemokine Ligand 5 (CCL5) 16
3 Proteasome Subunit Beta 9 (PSMB9) 15
4 C-X-C Motif Chemokine Ligand 10 (CXCL10) 15
5 Beta-2-Microglobulin (B2M) 15
6 Integrin Subunit Beta 2 (ITGB2) 14
7 Interferon Regulatory Factor 1 (IRF1) 13
8 C-C Motif Chemokine Ligand 2 (CCL2) 13
9 Major Histocompatibility Complex, Class I, B (HLA-B) 13

—_
o

Guanylate Binding Protein 1 (GBP1)

11

These compounds are involved in lipid metabolism and
signaling, energy metabolism, redox balance, nucleotide
metabolism, amino acid metabolism, polyphenols, and
pharmacological agents.

Immune dysfunction characterizes the lapatinib-resistant
HER2" TME

PLR-hub regulatory network genes are negatively
associated with HER2" breast tumor purity, implying that
higher expression of these genes is correlated with lower
tumor purity, and thus, more immune cell infiltration.
Most PLR-hub regulatory network genes are positively
associated with infiltration of B cells, CD4+, CD8+,
Tregs, NK-activated cells, and mast-activated cells. On
the other hand, M1 and M2 macrophages are positively
associated with all PLR-hub regulatory network genes;
thus, they are infiltrated into the TME. In addition, all
PLR-hub genes are positively correlated with neutrophil
infiltration. A weak positive correlation between the
PLR-hub regulatory network and the myeloid dendritic
resting cells is observed. On the other hand, upregulated
PLR-hub genes are negatively correlated with the
infiltration of myeloid-derived suppressor cells (MDSCs).
Cancer-associated fibroblasts (CAFs) negatively correlate
with high STAT1, IRF1, and GBPI expression in HER2*
breast tumors. Figure 4D shows the correlation between
PLR-hub regulatory network genes and immune cell
infiltration. The gene expression of PDCDI-PLR-hub
genes in the lapatinib-resistant group shows that PDCD1,
ITGB2, and B2M genes are upregulated compared
to the rest of the PLR genes (STATI, CCL5, PSMB?Y,
CXCLI10, IRF1, CCL2, HLA-B, and GBPI), which
are downregulated. Thus, the immune signature and
infiltration differ in the lapatinib-resistant conditions.
Therefore, immune deconvolution analysis of the
differentially infiltrated immune cells was performed on
the GSE38376 lapatinib-resistant dataset (Figure 4E). The
results show that naive B cells, naive MO macrophages,
activated dendritic cells, and T follicular helper cells are
elevated in lapatinib-sensitive and -resistant samples. M2
macrophages in resistant samples are more abundant than
M1. Plasma cells are increased in lapatinib-sensitive and
lapatinib-resistant samples, but with a higher increase
in the sensitive group. The resting NK cells and CD4+
memory cells dominate over their active, inhibited forms.

CD8+ T cells, monocytes, Tregs, and neutrophils are
minimally or moderately infiltrated in resistant samples.
This pattern predicts a HER2" lapatinib-resistant breast
cancer TME characterized by T cell exhaustion and
reduced overall anti-tumor immune cell infiltration, and
thus an immunosuppressive microenvironment.

Gene expression of PLR-hub genes in breast cancer
samples

The expression pattern of PDCDI-PLR genes in
normal breast tissues and tumor breast tissues was
explored via GEPIA. Most PDCDI-PLR genes are
upregulated in tumor breast tissues, with STAT1, CCLS5,
CXCL10, and ITGB2 being significantly upregulated.
However, CCL2 expression is slightly higher in normal
breast tissues (Figure 5). No variation in GBPI gene
expression is observed between normal and tumor breast
tissues. Furthermore, the gene expression of most of the
PLR regulatory network genes is upregulated in metastatic
breast tissues compared to normal breast tissues (Figure 5).
Nonetheless, PDCD1 gene expression is downregulated
in metastatic breast tissues compared to normal breast
tissues. This analysis is conducted using TNMplot.

The expression pattern of PDCDI-PLR genes in
HER2+ breast cancer tissues compared to normal, luminal
breast cancer, and triple negative breast cancer (TNBC)
tissues was examined via UALCAN (Supplementary
Figure 1). The expression pattern of PDCDI-PLR genes
is similar to GEPIA; 9 genes are upregulated in HER2+
compared to normal breast tissues. B2M shows no
statistically significant difference. 10 genes are highly
upregulated in TNBC compared to normal and other
subtypes. The PDCD1-PLR gene expression in HER2*
and HER2— breast cancer samples was analyzed using bc-
GenExMiner v5.2 (Supplementary Figure 2). The findings
point out that all genes are upregulated significantly in
HER2" compared to HER2— breast cancer.

Eventually, the association between PDCD-PLR gene
expression and 7P53 mutation status was assessed in breast
cancer via UALCAN (Supplementary Figure 3). TP53 is a
crucial tumor suppressor gene frequently mutated in breast
cancer. This analysis illustrated that the group with the
TP53 mutation had significantly higher expression levels
of the PDCDI-PLR gene compared to the unmutated
group. Gene expression data of lapatinib-resistant HER2",
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expression. (V) GBPI gene expression.

derived from SKBR3 cells with mutant-7P53, shows
that PDCD1, ITGB2, and B2M gene expression remains
upregulated. These findings hypothesize a potential link
between 7P53 mutation and the upregulation of PDCD1,
ITGB2, and B2M genes, highlighting the crosstalk
between mutant-7P53 and the elevation of these genes
in lapatinib-resistant HER2* breast cancer.

Correlation between the gene expression of PDCDI and
PLR-hub genes
The correlation analyses between PDCD and the PLR

622  Asian Pacific Journal of Cancer Prevention, Vol 27

gene regulatory network in HER2+ breast cancer cells are
conducted via GEPIA and TIMER 2.0 (Supplementary
Figure 4A and 4B). The outcomes between the two
tools are similar, validating the readouts. All PLR genes
are significantly positively correlated. CCLS5, PSMB9Y,
CXCL10, ITGB2, and IRF'] strongly correlated with
PDCDI. Furthermore, STATI and B2M are moderately
correlated. HLA-B and GBPI genes fluctuate between
moderate and strong correlation in GEPIA and TIMER
2.0. Nevertheless, CCL2 is moderately correlated in
TIMER 2.0 and weakly correlated in GEPIA. The positive
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Table 3. Mutual Exclusivity Analysis of the PLR Regulatory Network

Gene A Gene B Log2 Odds Ratio p-value g-value Tendency

PSMB9 HLA-B >3 <0.001 <0.001 Co-occurrence
CCLS5 cCcL2? >3 <0.001 <0.001 Co-occurrence
PSMBY GBPI >3 0.017 0.263 Co-occurrence
HLA-B GBPI >3 0.023 0.263 Co-occurrence
ITGB2 HLA-B 2.886 0.041 0.416 Co-occurrence

correlation suggests potential co-regulation, shared
pathway involvement, or common microenvironmental
influences.

Survival analysis

Survival analysis of the PLR gene regulatory network
in HER2"/ER—/PR- breast cancer patients was conducted
via KMPlotter depending on the prognostic value. The
findings demonstrate that patients with elevated mRNA
of STAT1, PSMB9, CXCL10, B2M, HLA-B, and GBPI
have better RFS than patients with reduced mRNA levels
(Supplementary Figure 4C). However, in the HER2"/ER—/
PR- lapatinib resistance gene expression data, STATI,
PSMB9,CXCL10, HLA-B, and GBPI are downregulated,
which worsens the RFS. B2M is upregulated in the
lapatinib resistance group; however, its upregulation
alone does not correlate with improved survival outcomes.
PDCD] alone does not stratify survival here (HR ~1.08
(0.58 - 2.02), p = 0.81). That may reflect the complexity
of PD-1 biology, as elevated PD-1 can show either active
anti-tumor immunity or terminal exhaustion; thereby;, it is
not a straightforward prognostic marker.

Genetic alteration analysis of PDCD1 and PLR-hub genes

The genetic alteration analysis is performed for
PDCDI-PLR-hub genes in breast cancer samples using
the cBioportal, depending on the TCGA PanCancer
atlas study. The oncoprint analysis of genetic alteration
frequency in PDCDI-PLR genes shows that the percentage
of alterations in breast cancer samples occurred in 0.7%
to 2.3%, and most alterations are amplifications and deep
deletions (Supplementary Figure 5). Moreover, the copy
number alterations versus gene expression for PDCDI-
PLR-hub genes are presented. A monotonic dosage effect
is observed; breast tumors with fewer copies (deep/
shallow deletions) have lower PDCDI-PLR expression,
breast tumors with normal copies (diploid) sit at a baseline,
and breast tumors with more copies (gains/amplifications)
have higher PDCDI-PLR expression. These genomic
alterations in breast tumors could up- or down regulate
PDCDI-PLR gene expression, potentially reinforcing
either an immune active or an immune cold state. Further
mutual exclusivity analysis exhibited that five significant
gene pairs co-occurred in mutation, PSMB9-HLA-B,
CCL5-CCL2, PSMBY9- GBP1, HLA-B- GBP1, and ITGB2-
HLA-B (Table 3).

Discussion

The evolution of lapatinib resistance in HER2*/ER—/
PR- breast cancer exemplifies the complex crosstalk

between tumor-intrinsic oncogenic signaling rewiring
and immune microenvironmental reprogramming [1].
This study determined the tumor-intrinsic PD-/-centered
regulatory network (PDCDI-PLR regulatory network)
that drives immunosuppressive microenvironment
adaptation, permitting immune evasion and aggressive
breast tumor behavior. Through diverse bioinformatics
analyses, a mechanistic model was defined where lapatinib
resistance is orchestrated not only by HER2" pathway
restoration but also by substantial immunomodulatory
reprogramming (Supplementary Figure 6). These
observations harmonize with evolving evidence that
targeted therapies unexpectedly trigger the TME to favor
resistance via cancer immunoediting mechanisms, a
phenomenon that is progressively recognized in HER2+
breast tumors [13,14].

PD-1 is a checkpoint receptor that represses T cell
effector functions via SHP-2-mediated dephosphorylation
of TCR signaling components [5]. Gene expression
findings of lapatinib resistance HER2"/ER—/PR— breast
cancer indicate that the center of the network, tumor-
intrinsic PDCD1 (PD-1), is upregulated. While PD-1
inhibitors have revolutionized cancer immunotherapy,
the insights uncover HER2 a paradoxical impact of
tumor-intrinsic PD-1 in HER2+ resistance, which has
received much less attention than the typical PD-/
expressed on immune cells. Recent findings demonstrate
that tumor-intrinsic PD-1 triggers carcinogenesis in
melanoma, hepatocellular carcinoma, pancreatic ductal
adenocarcinoma, thyroid cancer, glioblastoma, and TNBC
[9,15,16]. Thus, breast tumor cells can express PD-1 and
engage ligand interactions in cis or trans, such as PD-L]
and PD-L2, to stimulate oncogenic intracellular signaling,
promoting progression and survival independent of
adaptive immunity. PD-1/PD-L1 interactions within breast
tumor cells have been shown to induce chemoresistance
via activation of the PI3K/Akt, MAPK/ERK, and mTOR
pathways and upregulation of drug-efflux pumps [9,17].
A previous study has shown that Y-box binding protein 1
(YB-1) is aberrantly upregulated in TNBC and promotes
tumor-intrinsic PD-1/PD-L1 expression via translational
stimulation, leading to TNBC progression. However,
silencing YB-1 can inhibit tumorigenesis and metastatic
potential, but these inhibitory effects are completely
rescued by exogenous PD-1/PD-L1 expression [18].

In the tumor-intrinsic PDCDI-PLR regulatory
network, IFN-responsive genes (STATI, IRF1, CXCLI10,
CCL5) and antigen presentation machinery genes
(PSMBY9, HLA-B) are suppressed in lapatinib-resistant
groups, generating a cold TME, distinguished by impaired
T cell recruitment and deregulated antigen processing.

Asian Pacific Journal of Cancer Prevention, Vol 27 623
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Preclinical data in murine HER2" models demonstrate
that lapatinib can enhance STAT/-dependent anti-tumor
immunity by increasing IFNy-secreting CD8* T cells and
chemokines such as CXCLI0 [19]. The data state that
STATI deficiency in lapatinib-resistant cells abrogates
this effect and impairs T cell infiltration, proposing a
tumor-intrinsic rewiring that silences IFNy signaling and
chemokine biosynthesis to evade immune surveillance.
IRF1, a central regulator of IFNy-induced gene expression
and pro-apoptotic signaling, is similarly inhibited in
lapatinib-resistant HER2+ cells, shifting breast tumors
towards progression and hindering the normal activation
of antigen-processing genes and immunogenic cell death
pathways [20]. The lower level of STAT! and IRFI
suggests an adaptive resistance mechanism for immune
escape.

On the other hand, a paradoxical upregulation
of B2M and ITGB2 gene expression is observed in
lapatinib-resistant cells, which reflects a dual role,
preserving MHC-I complexes to prolong chronic antigen
presentation, resulting in T cell exhaustion, while
promoting leukocyte cell adhesion through /7GB2, driving
the infiltration of MO and M2 macrophages, MDSCs,
and Tregs. Integrins also explain moderately infiltrated
monocytes and neutrophils. B2M elevation may also show
dysregulated MHC I turnover associated with immune
escape. MDSCs secrete IL-10 and TGF-J to attenuate T
cell responses, while CAFs generate extracellular matrix
proteins that obstruct breast tumors from immune cell
infiltration. Therefore, lapatinib-resistant breast cancer
cells may depend on a feedback loop by hijacking PD-1
signaling to stimulate stromal barriers while repressing
chemokine-driven immune stimulation [21-23]. This is
consistent with the outcomes of the study, illustrating that
ITGB?2 elevation in breast cancer may stimulate metastasis
via immune-suppressive stromal interactions.

The immune infiltration analysis illustrates that most
of the tumor-intrinsic PLR genes are positively correlated
with anti-tumor immune cell infiltration in HER2+,
highlighting the baseline immunogenicity of HER2+
breast cancer; thus, if these PLR genes are inhibited, this
could lead to an overall decrease in anti-tumor immune cell
infiltration and may also result in cold immunosuppressive
TME by elevating MDSCs, Tregs, and CAFs, making
breast cancer cells less responsive to targeted treatments
and immunotherapy [13,24,25]. Interestingly, in the
lapatinib-resistant groups, PDCDI, ITGB2, and B2M
remained upregulated while other PLR genes (STAT/,
CCL5, PSMBY, CXCL10, IRFI, CCL2, HLA-B, and
GBP1) were reduced. PD-1/PD-L1 axis in lapatinib-
resistant breast tumors/CD8+ T cells transfers potent
inhibitory signals via SHP2-mediated dephosphorylation
of TCR signaling intermediates, exhausting T cells, and
attenuating anti-tumor immune responses [26]. Previous
studies discussed that CXCL /0 is a central chemoattractant
for CXCR3+ cytotoxic T cells and NK cells, and its loss
has been associated with immune exclusion in melanoma
and colorectal cancer. Furthermore, CCL5 recruits
CCRS5+ dendritic cells and T cells, and its inhibition in
resistant cancer cells results in a myeloid dendritic cell
quiescent state [27-29]. Despite elevated dendritic cells
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in lapatinib-resistant samples, STAT/IRF1 and CXCL10/
CCLS5 are repressed, implying possible impaired function
or inefficient antigen presentation, resulting in immune
evasion. The elevated infiltrated dendritic cells could be
exploited via an ex vivo-generated dendritic cell-based
vaccine loaded with tumor antigens to enhance antitumor
immunity [30]. Furthermore, the broad suppression
of interferon signaling, chemokine-mediated immune
recruitment, and the persistent PD-/ expression may reflect
dysfunctional or ineffective T cell responses, potentially
contributing to immune evasion and therapeutic resistance.
These data indicate that immune exhaustion is a key
characteristic of lapatinib resistance and suggest that PD-/
inhibition or IFN pathway reactivation may help reverse
the immunosuppressive state, enhance T-cell infiltration,
and overcome resistance [31].

Gene ontology analysis supports the immune
involvement, and KEGG pathway analysis strengthens
this model, revealing immune-metabolic interplay as a
resistance driver. Clusters 1-3, viral infection and cytokine
signaling pathways, highlight the tumor’s mimicry of
chronic inflammatory states that lead to persistent antigen
exposure and thus T cell exhaustion. This oncogenic
mechanism is recognized in hepatitis B-associated
hepatocellular carcinoma. On the other hand, clusters
4-5, metabolic and hormonal signaling, indicate lipid
metabolism rewiring involvement in lapatinib resistance
HER2+ breast cancer cells. The gene-metabolites
analysis also validated these results, indicating that the
PLR regulatory network is involved in lipid metabolic
reprogramming and oncogenic signaling. Thus, resistant
HER2+ breast tumors shift metabolism to synthesize
cholesterol that stimulates PI3K/AKT signaling, an axis
implicated in HER2+ breast cancer resistance, while
nurturing an immunosuppressive lipid raft environment
that sequesters TCR signaling components [32]. The
data also demonstrate potential immune evasion via the
androgen receptor signaling, disrupting normal MHC-I
expression and promoting T cell exclusion [33].

Survival and genetic alteration analyses present a
translational relevance of the PLR regulatory network
findings. The correlation between the elevated expression
of STAT1, PSMBY9, and HLA-B and the enhanced prognosis
in HER2*/ER—/PR— breast cancer aligns with their roles in
antigen presentation and IFNy responsiveness. However,
these genes are downregulated in lapatinib-resistant cells,
and the elevated B2M represents the duality of immune
biomarkers, due to its role in antigen presentation and
T cell exhaustion. On the other hand, genetic alteration
analysis explains that genomic instability is not the
primary resistance driver. Comparative gene expression
profiling demonstrates that most PLR-hub genes are
overexpressed in baseline breast tumors compared to
normal breast tissue, with the highest expression in
metastatic and 7P53 mutant backgrounds; however, in
lapatinib-resistant cells, the expression pattern differs.
The focal copy number gains/amplifications in PDCD],
ITGB2, and B2M can generate high gene expression in
a small subset of breast tumors; however, such gains/
amplifications occur in fewer than 2% of breast cancer
cases and cannot elucidate the uniform upregulation
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of these genes observed in lapatinib resistant breast
cancer cells, implicating lapatinib induced epigenetic or
transcriptional modulations instead of genomic alteration
alone [34,35]. The low frequency of PDCD] alterations
(1.2%) further implicates transcriptional regulation via
NFATcl or AP-1, factors stimulated by HER2/EGFR
signaling. Moreover, the consistent downregulation
of IFN-responsive and antigen presentation genes
(8STAT1, CCLS5, PSMB9, CXCL10, IRF1, CCL2, HLA-B,
and GBPI) indicates widespread suppression of IFNy
signaling and chemokine expression beyond copy number
alterations.

These findings recommend several therapeutic
approaches to tackle lapatinib resistance in breast cancer
by addressing both tumor-intrinsic signaling and extrinsic
immune dysfunction. Combining PD-/ inhibitors with
agents that restore IFNy signaling, such as stimulator
of interferon genes (STING) agonists, or intratumoral
IFNy that could reverse chemokine inhibition and restore
MHC-I normal function. Previous experiments on TNBC
show that STING agonists synergize with anti-PD-/
therapy to promote CD8+ T cell infiltration and dendritic
cell maturation [31]. A prior study exhibited that lapatinib
combination with the TLR7 agonist SZU-101 maintains
immunostimulatory activity and promotes tumor
clearance, making it a promising candidate for combined
immunotherapy/targeted therapy. Other tyrosine kinase
inhibitors, such as sunitinib, dasatinib, and sorafenib
may interfere with immune activation and should be
selected with caution in such combination protocols
[36]. The data hypothesize that epigenetic modifiers,
including DNA methyltransferase or histone deacetylase
inhibitors (HDAC) inhibitors, could restore STAT! and
CCLS5 expression. Further evidence has illustrated that
promoting immunoproteasome function through cytokine
therapy or small molecule agonists could raise PSMB9
expression and enhance proteasome function, resulting
in better survival in several cancer types [37]. Metabolic
interventions targeting lipid synthesis, such as fatty acid
synthase (FASN) inhibitors, or cholesterol trafficking, such
as statins, can also disrupt immunosuppressive signaling.
Statins also enhance innate immunity in breast cancer
by suppressing mutant-7P53 [38,39]. A prior study has
demonstrated that high membrane cholesterol preserves
HER2+ at the cell surface by elevating membrane
rigidity. Thus, decreasing cholesterol via lovastatin
enhances internalization and degradation of HER2+,
which promotes the efficacy of lapatinib. Experiments
on mouse models have shown that combining lovastatin
with lapatinib significantly mitigated breast tumor
growth [40]. A prior experiment showed that combining
MRTX849 with lapatinib significantly enhanced treatment
efficacy in mice having KRASG12C-mutant head and
neck cancer. Immune analysis exhibited upregulation
of PD-LI and changes in TME composition, including
CDS8" T cell dynamics. However, depletion of CD8" T
cells decreased therapy effectiveness, while adding anti-
PD-1 (aPD-1) therapy improved anti-tumor responses,
especially in resistant tumors. These findings suggest that
targeting bypass pathways and modulating the immune
microenvironment are essential approaches to tackle

resistant KRASG12C-mutant head and neck cancer
[41]. These observations are promising and recommend
applying this protocol to tackle lapatinib resistance in
HER2+ breast cancer.

PANACEA phase 1b-2 trial has demonstrated that
the combination of pembrolizumab (a PD-/ inhibitor)
and trastuzumab in patients with advanced, HER2+
trastuzumab-resistant breast cancer is safe and potentially
beneficial in PD-LI-positive cases, highlighting the role
of immune mechanisms in resistance. Another approach
is adoptive cell therapies, such as engineered chimeric
antigen receptor (CAR) T cells or tumor-infiltrating
lymphocyte infusions, that reversed exhausted T cells
via blocking PD-/ and promoting chemokine-mediated
trafficking. Previous evidence exhibits that third-
generation anti-HER2 CAR-T cells effectively target
trastuzumab-resistant HER2+ breast cancer cells in vitro
and in vivo. Therefore, combining CAR-T cells with
PD-1 blockade further improved their cytotoxicity and
tumor inhibition, showing a potential approach to tackle
HER?2+ breast cancer resistance [42]. These approaches
and studies present insights into the mechanisms of
lapatinib resistance. Comprehending these approaches is
significant for the development of effective strategies to
tackle lapatinib resistance and enhance patient outcomes.

In conclusion, this integrative bioinformatic and
transcriptomic analyses identify the tumor-intrinsic PLR
regulatory network implicated in lapatinib resistance
through dynamically reprogramming the HER2'/ER—/
PR- breast cancer TME. Lapatinib-resistant breast
cancer cells can evade the immune system via multiple
mechanisms, including amplifying immunosuppressive
signals, silencing interferon responses, and impairing
efficient antigen presentation. These insights argue for a
paradigm shift in HER2+ breast cancer targeted therapy
by introducing combinatorial regimens that co-target
immune and metabolic pathways implicated in resistance.
This study was based on computational analyses of
GEO data. The relatively small sample size may affect
statistical power, and gene expression changes do not
always correspond to protein-level alterations due to post-
transcriptional regulation. Experimental validation will be
required to confirm and extend these outcomes. Future
research should focus on validating the tumor-intrinsic
PLR regulatory network in patient-derived organoids to
map stromal-immune interactions in resistant niches and
revolutionize personalized immuno-oncology approaches
for HER2+ breast cancer.
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