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Introduction

Human epidermal growth factor receptor 2 (HER2, 
ErbB2) amplification promotes aggressive breast 
cancer phenotypes via fueling downstream oncogenic 
signaling. HER2 is targeted by receptor tyrosine 
kinase inhibitors such as lapatinib, a dual EGFR/HER2 
suppressor that hinders receptor autophosphorylation 
and downstream signaling. Although lapatinib initially 
shows efficacy in HER2⁺ breast cancer, resistance 
frequently emerges through oncogenic mechanisms, 
including HER2 bypass via PI3K/Akt/mTOR activation 
and epithelial-mesenchymal transition (EMT). Emerging 
evidence also implicates tumor microenvironment (TME) 
reprogramming and immune‐evasion mechanisms as 
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critical drivers of therapeutic escape [1]. Breast tumors 
can modulate lapatinib response by developing rigid 
extracellular matrices via YAP/TAZ signaling, disrupting 
immune cell infiltration [2].

Programmed cell death protein 1 (PDCD1, PD-1, 
CD279) is an inhibitory immune checkpoint expressed 
on activated T cells that, upon binding with its ligands 
PD-L1 or PD-L2, stimulates SHP2 phosphatase to 
dephosphorylate T cell receptor (TCR) signaling 
molecules and enforce T cell exhaustion, a state of 
functional impairment characterized by lower cytokine 
synthesis and proliferative potency [3]. The PD-1 
pathway is co-opted to evade anti-tumor immunity by 
breast tumors. Although classically expressed on T cells, 
PD-1 is intrinsically upregulated in resistant breast cancer 
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cells, where it delivers SHP2-dependent inhibitory signals 
that dampen TCR signaling and tumor cell apoptosis 
pathways. Cancer cell-intrinsic PD-1 remodels the TME, 
suppressing anti-tumor immunity, and drives malignant 
progression. By the binding of cancer cell-intrinsic PD-1 
to PD-L1 on adjacent tumor or stromal cells, inhibitory 
signals are generated that reduce CD8+ T cells, effector 
T cell infiltration, and establish an immunosuppressive 
microenvironment [4]. Tumor-intrinsic PD-1 is a critical 
driver of tumor therapy resistance through direct, 
immune-independent mechanisms that simultaneously 
shape an immunosuppressive TME. In cancers such as 
melanoma, hepatocellular carcinoma, and glioblastoma, 
cancer cell-intrinsic PD-1 activation promotes tumor 
growth and self-renewal by directly stimulating oncogenic 
pathways, including mTOR and NF-κB. Conversely, in 
non-small cell lung and colon cancers, tumor-intrinsic 
PD-1 unexpectedly functions as a tumor suppressor, so its 
blockade can inadvertently accelerate disease. This dual 
role, dictated by tumor type and upstream drivers like p53, 
allows tumor-intrinsic PD-1 to fuel malignancy directly 
and contribute to a cold TME, creating a formidable barrier 
to the efficacy of immunotherapy [9]. 

Regulatory mechanisms of PD-1/PD L1 in cancers 
include transcriptional regulation by interferon signaling, 
epigenetic modifications, canonical NF-κB signaling, 
and microenvironmental cytokines such as IFNγ and 
TNFα [5, 6]. Evidence highlight that HER2 signaling 
intersecting with immune checkpoints affects TME 
and drug sensitivity. For instance, trastuzumab, another 
HER2‐targeting antibody, triggers PD-L1 via NF κB 
stimulation, attenuating drug efficacy and promoting 
an immune suppression signature [2, 5, 7, 8]. Lapatinib 
modulates cytokine release and may prime tumors for 
checkpoint blockade, yet the molecular networks linking 
tumor-intrinsic PD-1 regulation to lapatinib resistance 
remain undefined [9, 10].

This study aims to investigate the tumor-intrinsic 
PDCD1-lapatinib resistance (PLR) regulatory network 
driving lapatinib resistance in HER2+ breast cancer via 
integrative bioinformatic and transcriptomic analyses. 

Materials and Methods

Lapatinib structure and lapatinib-protein interaction 
network construction

The chemical structure and formula of lapatinib were 
obtained from the Drug Bank database (DrugBank ID: 
DB01259; https://go.drugbank.com/drugs/DB01259). 
The lapatinib-protein interaction network was retrieved 
from the STITCH database (version 5.0; http://stitch.embl.
de/) by querying the compound identifier “lapatinib” and 
organism identifier “Homo Sapiens”. The lapatinib-protein 
interactions were filtered to include only those with a high 
confidence score ≥ 0.7.

Data mining and processing
Tumor-intrinsic PDCD1 co-expressed genes were 

retrieved from the TCGA dataset from cBioportal (https://
www.cbioportal.org/), a cancer genomics database, using 
the keywords “PDCD1” and “breast cancer”. Firehose 

legacy and Cell 2015 datasets were merged, then the 
dplyr package in R filtered the data based on a p-value 
less than 0.05 and Spearman’s correlation values ≥0.4 or 
≤-0.4. Regulatory genes implicated in HER2⁺/ER–/PR– 
breast cancer resistance to lapatinib were obtained from 
the Gene Expression Omnibus (GEO; https://www.ncbi.
nlm.nih.gov/geo/) database, a resource containing high-
throughput gene expression data, microarray, RNA-Seq, 
and other forms of genomics data. The search strategy 
targeted datasets related to lapatinib-resistant HER2⁺/ER–/
PR– breast cancer based on the terms “lapatinib-resistant” 
and “lapatinib-sensitive” in the search query using the 
advanced search. For an exploratory bioinformatics 
study, the inclusion criteria were human HER2⁺/ER–/
PR– breast cancer with at least three samples per group, 
and the presence of 4 groups: lapatinib-resistant control 
(RC), lapatinib-resistant treated (RT), lapatinib-sensitive 
control (SC), and lapatinib-sensitive treated (ST) groups, 
to ensure minimal statistical validity. The exclusion criteria 
were non-human studies and datasets with a small sample 
size. One dataset was selected, GSE38376, which was 
generated using the GPL6947 Illumina HumanHT-12 V3.0 
expression beadchip platform. The GSE38376 dataset 
comprises 18 samples of HER2⁺/ER–/PR– SKBR3 and 
SKBR3-R breast cancer cells, 3 RC, 6 RT (3 samples 
treated with 0.1 μM and 3 samples treated with 1 μM), 
3 SC, and 6 ST (3 samples treated with 0.1 μM and 3 
samples treated with 1 μM) [11]. The GEO2R tool was 
used to analyze differentially expressed genes (DEGs) 
of the GSE38376 dataset based on the R programming 
packages, including limma, a well-known R package for 
microarray analysis, which performs statistical analysis, 
and the GEOquery and umap packages. The GEO2R tool 
provides normalized data, log2-fold change determination, 
and adjusted p-values using the Benjamini-Hochberg 
method (FDR, False discovery rate). The generated gene 
list was downloaded, and the dplyr package filtered the 
significant genes based on a log2-fold change >1 (2× 
change) and an adjusted p-value less than 0.05. Differential 
expression analysis was performed using the limma 
package. Pairwise contrasts were generated cyclically 
(For instance, RC/RT, RT/SC, SC/ST, ST/RC), where the 
numerator is the first group and the denominator is the 
second. Genes were ranked by the moderated F-statistic, 
which accounts for variance moderation across genes, 
allowing robust identification of those with the strongest 
differential expression. The intersection of PDCD1 co-
expression data from cBioportal and lapatinib resistance 
data from GSE38376 was retrieved using Venny 2.1.0 
(https://bioinfogp.cnb.csic.es/tools/venny/), and data were 
considered overlapping genes implicated in the PDCD1-
lapatinib resistance (PLR) regulatory network. Then, the 
PLR genes with strong Spearman’s correlation values ≥0.6 
or ≤-0.6 were identified by utilizing the dplyr package.

Microarray data processing and representation of PLR-
DEGs

The expression matrix file for the GSE38376 
dataset was processed, checked for quality control, and 
normalized using R packages. A log2-fold change >1, 
FDR < 0.05, and adjusted p-value less than 0.05 were 
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selected for further analysis.

Construction of gene-metabolite interaction network 
The gene-metabolite interaction network was analyzed 

and constructed using the MetaboAnalyst tool (https://
www.metaboanalyst.ca/), a comprehensive metabolomics 
data analysis platform presenting functional and 
integrative analysis tools. The chemical and human gene 
associations are extracted from STITCH, and only high-
confidence interactions are obtained. 

Correlation between PLR-hub gene expression and 
infiltration of immune cells

The association between PLR-hub gene expression 
and immune cell infiltration was analyzed using Tumor 
Immune Estimation Resource 2.0 (TIMER2.0; http://
timer.cistrome.org/), a bioinformatics tool designed to 
analyze and visualize tumor-infiltrating immune cells 
using deconvolution algorithms across various cancer 
types, including HER2⁺ breast cancer. Spearman’s 
correlation values were selected for BRCA-HER2⁺ 
samples. The Wilcoxon signed-rank test is used to analyze 
data. The corrplot package in R was utilized to visualize 
the correlation between PLR-hub gene expression and 
infiltration of immune cells in HER2⁺ breast tumors, and 
the significant associations are labeled with stars. On 
the other hand, the immune cell composition analysis in 
the lapatinib-resistant GSE38376 dataset was conducted 
using CIBERSORTx (https://cibersortx.stanford.edu/), 
a deconvolution algorithm-based computational tool 
designed to quantify the immune cell composition based 
on normalized gene expression profiles [12]. The absolute 
mode quantification and LM22 leukocyte signature matrix 
were selected to estimate cell-type-specific abundances 
from bulk gene expression data of the GSE38376 matrix 
file. The absolute cell fractions were imputed, and B-mode 
batch correction, quantile normalization, and 1,000 
permutations were chosen for the analysis, mitigating 
technical variability, standardizing distributions across 
samples, and reducing statistical bias. The findings of 
absolute quantification were normalized and visualized via 
a dual-encoded bubble plot using the R ggplot2 package.

Comparative gene expression of PLR-hub genes in breast 
cancer samples

Gene expression analysis of the PLR-hub genes in 
normal and tumor breast tissues was conducted using Gene 
Expression Profiling Interactive Analysis (GEPIA; http://
GEPIA.cancer-pku.cn/index.html), a bioinformatics web-
based tool designed for comprehensive gene expression 
analysis. The BRCA datasets of the TCGA were utilized 
to compare hub gene expression between normal and 
tumor breast tissues, and Student’s t-test was applied for 
statistical analysis. Expression levels of PLR-hub genes 
in normal, tumor, and metastatic breast cancer tissues 
were assessed using TNMPlot (https://tnmplot.com/
analysis/), with statistical comparisons across the three 
groups performed using the Kruskal–Wallis test. The 
University of ALabama at Birmingham CANcer data 
analysis Portal (UALCAN; https://ualcan.path.uab.edu/), a 
resource designed for analyzing cancer OMICS data, was 

considered the threshold values for PLR-DEGs. The 
annotation of probe identifiers with gene symbols was 
performed using the GEOquery package, which depends 
on the GPL6947 Illumina HumanHT-12 V3.0 expression 
beadchip platform. Genes mapped to multiple probes were 
aggregated by calculating their mean values. In addition, 
the heatmap was constructed using the ComplexHeatmap 
R package to showcase the significant PLR-DEGs, and 
gene expression data were represented as z-scores.

Gene ontology and KEGG pathway enrichment analysis
Gene ontology enrichment of PLR genes was 

performed using an over-representative analysis (ORA) 
and a genome protein-coding reference set on WebGestalt 
(http://www.webgestalt.org/process.php). In this test, the 
biological process, cellular component, and molecular 
function were analyzed, and the results were visualized 
as bar plots and interpreted accordingly. The selection 
criteria for PLR genes submitted to the server for analysis 
were ORA query, FDR < 0.05, and the Benjamini-
Hochberg method for multiple test adjustment. Gene-
Terms network is processed using the dplyr and tidyr 
packages and constructed via the ggraph, tidygraph, and 
igraph packages in R. The network illustrates common 
genes and central biological processes among the 
significantly enriched gene ontology terms. In addition, 
the Term-Gene association heatmap is processed using the 
dplyr and tidyr packages and constructed via the ggplot2 
package in R. This plot exhibits core genes involved in 
several enriched biological processes, demonstrating they 
may be key regulators or biomarkers in lapatinib-resistant 
breast cancer. Data with p-value < 0.05 are selected and 
presented for the network and heatmap.

PLR genes were analyzed for the Kyoto Encyclopedia 
of genes and genomes (KEGG) pathway using Database 
for Annotation, Visualization, and Integrated Discovery 
(DAVID version 6.8; https://david.ncifcrf.gov/tools.Jsp), 
a set of functional annotation tools. PLR genes were 
submitted to the server for analysis as a query in DAVID 
with Homo Sapiens and FDR < 0.05 as selection criteria. 
A scatter plots (bubble plot) were created in R using 
the ggplot2 package to represent significantly enriched 
KEGG pathways and clusters, with a p-value < 0.05. 
Modified Fisher’s exact test was used to analyze data, 
and Benjamini-Hochberg FDR was applied for multiple 
testing correction.

Construction of protein-protein interaction network and 
selection of hub genes

The protein-protein interaction (PPI) network was 
analyzed and constructed using Search Tool for the 
Retrieval of Interacting Genes/Proteins (STRING version 
12.0; https://string-db.org/), a resource that predicts 
protein-protein interactions. PLR genes were uploaded 
based on the settings selection of “Homo sapiens” model, 
medium FDR stringency < 0.05, and 0.4 confidence for 
the interaction between the targets. The network nodes 
exhibited proteins, and edges reflected the PLR protein-
protein interactions. Using the CytoHubba plugin of 
Cytoscape, hub genes were identified based on degree 
ranking, and the top 10 genes with the highest scores were 
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utilized to investigate the PLR-hub gene expression in 
normal breast tissues as well as major subtypes of breast 
cancer, including HER2⁺ breast cancer. Welch’s t-test was 
applied to compare the normal group with the HER2⁺ 
group, as the two groups have unequal variances and 
sample sizes. PLR-hub gene expression analysis in HER2⁺ 
and HER2– breast cancer samples was conducted using 
the Breast Cancer Gene-Expression Miner v5.2 portal 
(bc-GenExMiner v5.2; https://bcgenex.ico.unicancer.
fr/BC-GEM/GEM-Requete.php?mode=8), and Welch’s 
t-test was used for statistical comparison. Moreover, 
UALCAN (https://ualcan.path.uab.edu/) was utilized to 
investigate the PLR-hub gene expression based on TP53 
mutation status, providing a deeper insight into the role 
of PLR-hub genes in TP53-mutant and non-mutant breast 
cancer. TP53 mutation status was obtained from TCGA 
whole-exome sequencing data, and the samples with or 
without TP53 mutation were matched with RNA-seq data. 
Welch’s t-test was applied to compare the three groups, 
as all groups have unequal variances and sample sizes.

Correlation between the gene expression of PDCD1 and 
PLR-hub genes

The correlation between PDCD1 and PLR-hub 
genes in BRCA-HER2⁺ samples was analyzed using 
TCGA breast cancer datasets in GEPIA (http://GEPIA.
cancer-pku.cn/) and TIMER2.0 (http://timer.cistrome.
org/). Spearman’s correlation and derived p-value from 
the strength of the association were exploited to estimate 
the level of correlation in both GEPIA and TIMER 2.0 
platforms. The ggplot2 package in R was used to generate 
scatter plots representing correlations.

Survival analysis 
PDCD1 and PLR-hub gene prognostic values were 

estimated by Kaplan-Meier Plotter (KMPlotter; https://
kmplot.com/analysis/), a tool for survival analysis based 
on databases such as GEO, EGA, TCGA, Metabric, 
Impact, and PubMed repositories. The selection criteria 
were HER2⁺/ER–/PR– breast cancer, and the observations 
are exhibited as hazard ratio (HR) and relapse-free 
survival (RFS). The significance level is calculated via the 
Log-Rank Test (Mantel-Cox test). The ggplot2 package 
in R generated a forest-style horizontal dot plot.

Genetic alteration analysis of PDCD1 and PLR-hub genes
PDCD1 and PLR-hub gene genetic alterations were 

investigated using cBioportal (https://www.cbioportal.
org/), depending on the PanCancer Atlas study for 
oncoprint, co-occurrence tendency, and mutual exclusivity 
analysis. TCGA breast invasive carcinoma and samples 
with mutations and Copy Number Alteration (CNA) 
were selected as criteria. For co-occurrence tendency, the 
two-sided Fisher Exact Test was applied to evaluate the 
significance level, and the Benjamini-Hochberg method 
(FDR correction procedure) was utilized for adjustment. 
Genetic alterations of PLR-hub genes were represented 
as a log-scale box and whisker plot.

Statistical analysis
Data analyses and visualizations were conducted using 

the R programming language version 4.3.3. A p-value 
threshold of less than 0.05 was considered statistically 
significant.

Results

Lapatinib-protein interaction network 
The lapatinib-protein interaction network shows 

strong interactions with the ErbB receptor family, 
including ErbB2 (HER2⁺) and EGFR (both with a score of 
0.999), followed by ERBB3 (0.976) and ERBB4 (0.967), 
underscoring its role as a dual HER2⁺/EGFR tyrosine 
kinase inhibitor (Figure 1A and 1B). Lapatinib is also 
associated with signaling molecules such as AKT1, a part 
of PI3K/AKT signaling. Furthermore, VEGFA, ABCC10, 
MCL1, ESR1, and the tumor suppressor TP53 may also 
be affected via lapatinib. The network also demonstrated 
a broad spectrum of protein-protein interactions, which 
may influence therapeutic response and resistance.

Data mining and identification of the PDCD1-lapatinib 
resistance regulatory network 

Following the filtration of genes based on p-value 
less than 0.05 and Spearman’s correlation values ≥0.4 
or ≤-0.4, the Firehose legacy and Cell 2015 TCGA 
Breast cancer datasets from cBioportal were merged. 
1083 PDCD1 co-expressed genes, 1071 with positive 
and 12 with negative correlations, were obtained. For 
lapatinib-resistant HER2⁺/ER–/PR– breast cancer, the 
GSE38376 dataset met the criteria and was selected. 
The GSE38376 dataset includes 18 samples of HER2⁺/
ER–/PR– SKBR3 and SKBR3-R breast cancer cells, 3 
RC, 6 RT, 3 SC, and 6 ST. Following the dataset analysis 
using GEO2R, the median expression intensities via 
boxplot indicated normalized comparable distribution 
profiles between the samples (Figure 1C). Uniform 
manifold approximation and projection (UMAP) plot 
for the 4 groups exhibited consistency and similarity in 
the characteristics within each group (Figure 1D). Genes 
were filtered based on adjusted p-value less than 0.05, and 
5,694 significant genes implicated in lapatinib-resistant 
breast cancer were selected. The intersection between 
1083 PDCD1 co-expressed genes and 5,694 lapatinib-
resistant breast cancer genes was determined using Venny 
2.1.0 (Figure 1E). From the resulting 187 PLR genes, 49 
PLR regulatory network genes with strong Spearman’s 
correlation values ≥0.6 or ≤-0.6 were picked. 

To build a heatmap for PLR genes based on microarray 
data, the GSE38376 dataset expression matrix file was 
checked for quality control, normalized, and screened 
using R packages based on the following criteria: log2-
fold change >1, FDR < 0.05, and adjusted p-value less 
than 0.05. Then, PDCD1 and 49 PLR gene expressions 
were visualized using a complex heatmap based on 
z-scores, showing a clear clustering between the samples 
of the 4 groups, thus underlining the robustness of the 
gene expression variations observed (Figure 1F). Of 
these, PDCD1 and 49 PLR regulatory network, 12 
genes were upregulated, while 38 were downregulated 
in the lapatinib-resistant groups (Table 1). These 
findings highlight the molecular differences between 
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Figure 1. Lapatinib Structure and Interactions, Data Processing, and Differential Expression Analysis of SC, ST, RC, 
and RT Breast Cancer Groups. (A) Lapatinib structure derived from the Drug Bank. The chemical formula of lapatinib 
is C29H26ClFN4O4S. (B) Lapatinib-protein interactions network constructed using the STITCH tool. Protein-protein 
interactions are represented in grey, and chemical-protein interactions in green. Lapatinib directly interrupts HER2/
neu and epidermal growth factor receptor (EGFR) pathways. (C) Intensity distribution boxplot of 18 samples of the 
GSE38376 dataset based on log2-transformed normalized expression values. Median-centered values of 18 samples 
indicate that the data are normalized and cross-comparable. (D) UMAP plot of 18 samples of the GSE38376 dataset. 
The UMAP plot exhibits that the 18 samples, SC, ST, RC, and RT, are clustered based on expression similarity. This 
supports the idea that resistant groups deviate from sensitive groups based on DEGs. (E) Venn diagram of lapatinib 
resistance DEGs and PDCD1 regulatory network, resulting in 187 genes that are considered genes involved in the 
PLR regulatory network. (F) Heatmap of the PDCD1 and 49 differentially expressed PLR regulatory network genes 
with strong Spearman's correlation values ≥0.6 or ≤-0.6 between SC, ST, RC, and RT groups.  

Upregulated PLR Genes Downregulated PLR Genes
B2M, CTSC, HLA-DMA, 
INPP5D, ITGB2, LILRB1, 
LPXN, LTA, LYZ, MS4A4A, 
SEL1L3, PDCD1.

AKNA, APOBEC3G, APOL6, C1orf162, CCL2, CCL5, CD7, CD79B, CORO1A, CSF2RA, 
CXCL10, GBP1, HLA-B, HLA-E, IL18BP, IL32, IRF1, ITGB7, KBTBD8, MAL, MAP4K1, 
MEI1, PIK3CD, PLAC8, PLCB2, PRKCQ, PSMB9, PTGER4, RAC2, RUNX3, STAT1, TAP1, 
TAP2, TNFSF14, WIPF1, GBP1P1, IDO2, TOX2.

Table 1. Upregulated and Downregulated PLR Genes in the Lapatinib-Resistant Groups
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lapatinib-sensitive and lapatinib-resistant breast cancers. 
The distinct up- and downregulation of specific genes 
proposes intricate molecular mechanisms playing a 
role in the evolution of breast cancer clones resistant to 
lapatinib. The selected PLR regulatory network genes 
present a promising basis for further investigations into 
the mechanisms underlying breast cancer resistance to 
lapatinib and potential therapeutic targets.

Gene ontology and KEGG pathway enrichment analysis
Gene ontology enrichment analysis shows PDCD1 

and PLR regulatory network genes’ relation to biological 
processes, cellular components, and molecular functions 
(Figure 2A). Gene Ontology enrichment analysis revealed 
significant immune-related biological processes, with the 
top 20 enriched terms dominated by adaptive immunity 
(GO:0002250, p = 7.34e-14), leukocyte adhesion 
(GO:0007159, p = 5.94e-11), and immune regulation 
(GO:0002683, p = 1.06e-7). These terms exhibited high 
enrichment ratios (up to 11.96) and stringent statistical 
significance (FDR < 1e-6), indicating association with 
immune activation and regulatory mechanisms. For 
example, genes including CCL5, HLA-E, PIK3CD, 
IRF1, and STAT1 recur across several gene ontology 

terms, underscoring their role as central hubs in 
immune regulation. The network plot demonstrated 
dense connectivity between clusters, 81 nodes and 341 
edges, and the highly connected nodes are positioned 
centrally (Figure 2B). For example, the network shows 
dense connectivity between adaptive immunity and cell 
adhesion clusters, sharing genes like HLA-E, ITGB2, 
and CCL5. The heatmap further delineated gene-term 
associations, revealing chemokines such as CCL5 as 
multifunctional molecules in cytokine signaling and cell 
migration (Figure 2C). CXCL10 and CCL2 dominate 
chemotaxis-associated terms. PDCD1 appears exclusively 
in adaptive immunity terms, reflecting its function as an 
immune checkpoint. The heatmap exhibits multifunctional 
genes such as IRF1 and STAT1 acting across interferon 
response and leukocyte activation. Furthermore, the 
heatmap emphasizes gene pleiotropy; for example, CCL5 
exists in both chemotaxis and cytokine production. The 
readouts illustrate a connected and regulated immune 
network with PDCD1-PLR genes, suggesting potential 
therapeutic targets for modulating immune responses 
in contexts such as PD-1-mediated lapatinib resistance.

KEGG pathway enrichment analysis of PDCD1 and 
PLR genes revealed 27 highly enriched pathways (Fold 

Figure 2. Gene Ontology Enrichment of PDCD1 and 49 PLR Regulatory Network in Homo Sapiens. (A) Gene 
ontology enrichment analysis of PDCD1 and 49 PLR genes with strong Spearman's correlation values ≥0.6 or ≤-0.6. 
This bar chart presents genes involved in biological processes, cellular components, and molecular functions. (B) 
Gene-Terms network for the significantly enriched gene ontology terms. This network helps to identify shared genes 
and core biological processes. (C) Term-gene association heatmap for the significantly enriched terms and shared 
genes. For the network and heatmap, the significant data with P < 0.05 were selected and presented.  
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Enrichment (FE) ≥ 5.0) that dominate the outcomes, 
indicating strong biological relevance. For example, 
herpes simplex virus 1 infection (FE = 15.2), antigen 
processing (FE = 17.1), type I diabetes (FE = 20.97), 
Epstein-Barr virus infection (FE = 11.3), viral myocarditis 
(FE = 16.5), and B cell receptor signaling (FE = 12.7). 
These 6 pathways exceed FE 10.0. KEGG pathway 
enrichment analysis revealed 34 moderately enriched 
pathways (FE ≥ 2.0), reflecting broad stimulation of 
immune and viral response mechanisms. All these 
pathways are biologically impactful, with viral infection 
and immune regulation pathways showing the strongest 
enrichment. Significant KEGG pathway enrichment is 
provided with p-value, gene count, and FE (Figure 3A). 
KEGG pathway enrichment analysis of PDCD1 and 
PLR genes generated 5 significant clusters (Figure 3B). 
Cluster 1 (Enrichment Score: 4.40) is associated with 
viral infection and immune response. The top significant 
key genes of cluster 1 are HLA-DMA, HLA-B, HLA-E, 
STAT1, CCL5, LTA, TAP1, B2M, and TAP2. Cluster 2 
(Enrichment Score: 1.97) is associated with B cell and Fc 
receptor signaling. The top significant key genes of cluster 
2 are INPP5D, RAC2, CD79B, and PIK3CD. Cluster 3 
(Enrichment Score: 1.70) is associated with cytokine/
chemokine signaling and inflammation. The top significant 
key genes of cluster 3 are CCL5, CCL2, STAT1, IRF1, 
PLCB2, CXCL10, and PIK3CD. Cluster 4 (Enrichment 
Score: 1.34) is associated with viral carcinogenesis and 
hormone signaling. The top significant key genes of cluster 
4 are STAT1, IRF1, HLA-B, HLA-E, and PIK3CD. Cluster 
5 (Enrichment Score: 0.88) is associated with metabolic 
signaling. The top significant key genes of cluster 5 are 
INPP5D, PIK3CD, IDO2, and PLCB2. These clusters 

could be involved in lapatinib resistance via several 
mechanisms, including immune evasion, oncogenic 
signaling activation, recruiting immunosuppressive cells 
via cytokine storm, and metabolic reprogramming.

Construction of protein-protein interaction network and 
selection of hub genes

The PPI network of PLR genes is constructed using 
the STRING database, and the criteria include medium 
FDR stringency < 0.05 and 0.4 confidence for the target 
interaction. The network nodes represent the proteins, 
while the edges reflect the PLR protein-protein interactions. 
The PLR regulatory network is densely connected, and 
its characteristics are 48 nodes, 129 edges, 5.38 average 
node degree, 0.517 average local clustering coefficient, 22 
expected number of edges, and < 1.0e-16 PPI enrichment 
p-value, implying a strong interconnectedness among 
the encoded proteins (Figure 4A). The interaction 
network generated in STRING incorporated multiple 
evidence types, including text-mining, experiments, 
databases, co-expression, neighborhood, gene fusion, 
and co-occurrence.  GBP1P1 is not involved in the PPI-
PLR network due to its classification as a pseudogene, 
specifically a pseudogene of the GBP1 gene. However, 
the GBP1P1 pseudogene is non-functional and, like 
other pseudogenes, it might still have regulatory roles, 
such as acting as a competing endogenous RNA or being 
transcribed into non-coding RNA, but not a protein-coding 
role as it lacks a valid open reading frame for translation 
into a functional protein. The PLR-hub gene selection is 
conducted using the CytoHubba plugin of Cytoscape, 
and the findings contain the top 10 PLR-hub regulatory 
network genes with the highest degree scores (Table 2). 

Figure 3. KEGG Pathway Enrichment Analysis of PDCD1 and 49 PLR Regulatory Network in Homo Sapiens. (A) 
The significantly enriched KEGG pathways. (B) The significantly enriched KEGG Functional Clusters. Data with a 
p-value < 0.05 were included and considered significant for KEGG pathways and clusters. Modified Fisher's exact test 
was used to analyze data, and Benjamini-Hochberg FDR was applied for multiple testing correction. 
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Figure 4. PPI Network and top 10 hub Genes of PLR and Their Correlation with Metabolites and Immune cell Infiltration 
in HER2+ Breast Cancer. (A) PPI network of the PLR genes from the STRING database. PLR genes are highly 
associated, indicating their involvement in lapatinib-resistant breast cancer. (B) Top 10 PLR-hub genes depending on 
degree score. (C) Gene-metabolite interaction network. This analysis was performed using the MetaboAnalyst tool. 
(D) Correlation analysis of gene expression of PDCD1 and the top 10 PLR-hub genes with immune cell infiltration 
in HER2+ breast cancer. Immune deconvolution analysis was performed using TIMER 2.0, and the corrplot package 
in R visualizes the correlation. (E) Immune deconvolution analysis of the differentially infiltrated immune cells in the 
GSE38376 lapatinib-resistant dataset. Spearman’s correlation and Wilcoxon signed-rank tests were utilized to analyze 
data; *P < 0.05. 

The PLR-hub regulatory network genes are STAT1, CCL5, 
PSMB9, CXCL10, B2M, ITGB2, IRF1, CCL2, HLA-B, and  
GBP1 (Figure 4B). The dense interconnectivity among the 
10 PLR-hub regulatory network proteins suggests they 
likely function in a coordinated rather than independent 
pattern. This potential shared or cooperative role supported 
the decision to retain all the genes for the next analyses.
Construction of gene-metabolite interaction network 

The gene-metabolite interaction network of PLR 
genes is constructed using the MetaboAnalyst tool. The 

outputs show that CCL2, ITGB2, STAT1, CCL5, CXCL10, 
IRF1, and PDCD1 genes are associated with many 
metabolites including, gefitinib, glycerol, leukotriene 
B4, all-trans-retinoic acid, superoxide, adenosine, 
prostaglandin E2, genistein, prostaglandin E1, estradiol, 
angiotensin II, 3,3’,4’5-tetrahydroxystilbene, ethanol, 
magnesium, guanosine monophosphate, serotonin, 
hydrogen peroxide, and ADP (Figure 4C). The PLR gene-
metabolite interaction network is highly connected, and 
its characteristics are 25 nodes, 49 edges, and 7 seeds. 
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These compounds are involved in lipid metabolism and 
signaling, energy metabolism, redox balance, nucleotide 
metabolism, amino acid metabolism, polyphenols, and 
pharmacological agents.

Immune dysfunction characterizes the lapatinib-resistant 
HER2⁺ TME

PLR-hub regulatory network genes are negatively 
associated with HER2⁺ breast tumor purity, implying that 
higher expression of these genes is correlated with lower 
tumor purity, and thus, more immune cell infiltration. 
Most PLR-hub regulatory network genes are positively 
associated with infiltration of B cells, CD4+, CD8+, 
Tregs, NK-activated cells, and mast-activated cells. On 
the other hand, M1 and M2 macrophages are positively 
associated with all PLR-hub regulatory network genes; 
thus, they are infiltrated into the TME. In addition, all 
PLR-hub genes are positively correlated with neutrophil 
infiltration. A weak positive correlation between the 
PLR-hub regulatory network and the myeloid dendritic 
resting cells is observed. On the other hand, upregulated 
PLR-hub genes are negatively correlated with the 
infiltration of myeloid-derived suppressor cells (MDSCs). 
Cancer-associated fibroblasts (CAFs) negatively correlate 
with high STAT1, IRF1, and  GBP1 expression in HER2⁺ 
breast tumors. Figure 4D shows the correlation between 
PLR-hub regulatory network genes and immune cell 
infiltration. The gene expression of PDCD1-PLR-hub 
genes in the lapatinib-resistant group shows that PDCD1, 
ITGB2, and B2M genes are upregulated compared 
to the rest of the PLR genes (STAT1, CCL5, PSMB9, 
CXCL10, IRF1, CCL2, HLA-B, and GBP1), which 
are downregulated. Thus, the immune signature and 
infiltration differ in the lapatinib-resistant conditions. 
Therefore, immune deconvolution analysis of the 
differentially infiltrated immune cells was performed on 
the GSE38376 lapatinib-resistant dataset (Figure 4E). The 
results show that naïve B cells, naïve M0 macrophages, 
activated dendritic cells, and T follicular helper cells are 
elevated in lapatinib-sensitive and -resistant samples. M2 
macrophages in resistant samples are more abundant than 
M1. Plasma cells are increased in lapatinib-sensitive and 
lapatinib-resistant samples, but with a higher increase 
in the sensitive group. The resting NK cells and CD4+ 
memory cells dominate over their active, inhibited forms. 

CD8+ T cells, monocytes, Tregs, and neutrophils are 
minimally or moderately infiltrated in resistant samples. 
This pattern predicts a HER2⁺ lapatinib-resistant breast 
cancer TME characterized by T cell exhaustion and 
reduced overall anti-tumor immune cell infiltration, and 
thus an immunosuppressive microenvironment. 

Gene expression of PLR-hub genes in breast cancer 
samples

The expression pattern of PDCD1-PLR genes in 
normal breast tissues and tumor breast tissues was 
explored via GEPIA. Most PDCD1-PLR genes are 
upregulated in tumor breast tissues, with STAT1, CCL5, 
CXCL10, and ITGB2 being significantly upregulated. 
However, CCL2 expression is slightly higher in normal 
breast tissues (Figure 5). No variation in  GBP1 gene 
expression is observed between normal and tumor breast 
tissues. Furthermore, the gene expression of most of the 
PLR regulatory network genes is upregulated in metastatic 
breast tissues compared to normal breast tissues (Figure 5). 
Nonetheless, PDCD1 gene expression is downregulated 
in metastatic breast tissues compared to normal breast 
tissues. This analysis is conducted using TNMplot.

The expression pattern of PDCD1-PLR genes in 
HER2+ breast cancer tissues compared to normal, luminal 
breast cancer, and triple negative breast cancer (TNBC) 
tissues was examined via UALCAN (Supplementary 
Figure 1). The expression pattern of PDCD1-PLR genes 
is similar to GEPIA; 9 genes are upregulated in HER2+ 
compared to normal breast tissues. B2M shows no 
statistically significant difference. 10 genes are highly 
upregulated in TNBC compared to normal and other 
subtypes. The PDCD1-PLR gene expression in HER2⁺ 
and HER2– breast cancer samples was analyzed using bc-
GenExMiner v5.2 (Supplementary Figure 2). The findings 
point out that all genes are upregulated significantly in 
HER2⁺ compared to HER2– breast cancer.

Eventually, the association between PDCD1-PLR gene 
expression and TP53 mutation status was assessed in breast 
cancer via UALCAN (Supplementary Figure 3). TP53 is a 
crucial tumor suppressor gene frequently mutated in breast 
cancer. This analysis illustrated that the group with the 
TP53 mutation had significantly higher expression levels 
of the PDCD1-PLR gene compared to the unmutated 
group. Gene expression data of lapatinib-resistant HER2⁺, 

No PLR network proteins Degree score
1 Signal Transducer and Activator of Transcription 1 (STAT1) 18
2 C-C Motif Chemokine Ligand 5 (CCL5) 16
3 Proteasome Subunit Beta 9 (PSMB9) 15
4 C-X-C Motif Chemokine Ligand 10 (CXCL10) 15
5 Beta-2-Microglobulin (B2M) 15
6 Integrin Subunit Beta 2 (ITGB2) 14
7 Interferon Regulatory Factor 1 (IRF1) 13
8 C-C Motif Chemokine Ligand 2 (CCL2) 13
9 Major Histocompatibility Complex, Class I, B (HLA-B) 13
10 Guanylate Binding Protein 1 (GBP1) 11

Table 2. The Top 10 Tumor-Intrinsic PLR Regulatory Network Genes Ranked Using the Degree Method
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Figure 5. Gene expression of PDCD1 and PLR-hub genes in normal breast tissues, tumor breast tissues, and metastatic 
breast tissues. GEPIA gene expression of PDCD1 and PLR-hub genes in normal breast tissues and tumor breast tissues, 
analyzed by a modified version of the Student's t-test. (A) PDCD1 gene expression. (B) STAT1 gene expression. (C) 
CCL5 gene expression. (D) PSMB9 gene expression. (E) CXCL10 gene expression. (F) B2M gene expression. (G) 
ITGB2 gene expression. (H) IRF1 gene expression. (I) CCL2 gene expression. (J) HLA-B gene expression. (K) GBP1 
gene expression. TNMplot gene expression of PDCD1 and PLR-hub genes in normal breast tissues, tumor breast 
tissues, and metastatic breast tissues, analyzed by Kruskal-Wallis Test. (L) PDCD1 gene expression. (M) STAT1 
gene expression. (N) CCL5 gene expression. (O) PSMB9 gene expression. (P) CXCL10 gene expression. (Q) B2M 
gene expression. (R) ITGB2 gene expression. (S) IRF1 gene expression. (T) CCL2 gene expression. (U) HLA-B gene 
expression. (V) GBP1 gene expression. 

derived from SKBR3 cells with mutant-TP53, shows 
that PDCD1, ITGB2, and B2M gene expression remains 
upregulated. These findings hypothesize a potential link 
between TP53 mutation and the upregulation of PDCD1, 
ITGB2, and B2M genes, highlighting the crosstalk 
between mutant-TP53 and the elevation of these genes 
in lapatinib-resistant HER2⁺ breast cancer.

 
Correlation between the gene expression of PDCD1 and 
PLR-hub genes

The correlation analyses between PDCD1 and the PLR 

gene regulatory network in HER2+ breast cancer cells are 
conducted via GEPIA and TIMER 2.0 (Supplementary 
Figure 4A and 4B). The outcomes between the two 
tools are similar, validating the readouts. All PLR genes 
are significantly positively correlated. CCL5, PSMB9, 
CXCL10, ITGB2, and IRF1 strongly correlated with 
PDCD1. Furthermore, STAT1 and B2M are moderately 
correlated. HLA-B and  GBP1 genes fluctuate between 
moderate and strong correlation in GEPIA and TIMER 
2.0. Nevertheless, CCL2 is moderately correlated in 
TIMER 2.0 and weakly correlated in GEPIA. The positive 
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correlation suggests potential co-regulation, shared 
pathway involvement, or common microenvironmental 
influences.

Survival analysis 
Survival analysis of the PLR gene regulatory network 

in HER2⁺/ER–/PR– breast cancer patients was conducted 
via KMPlotter depending on the prognostic value. The 
findings demonstrate that patients with elevated mRNA 
of STAT1, PSMB9, CXCL10, B2M, HLA-B, and  GBP1 
have better RFS than patients with reduced mRNA levels 
(Supplementary Figure 4C). However, in the HER2⁺/ER–/
PR– lapatinib resistance gene expression data, STAT1, 
PSMB9, CXCL10, HLA-B, and GBP1 are downregulated, 
which worsens the RFS. B2M is upregulated in the 
lapatinib resistance group; however, its upregulation 
alone does not correlate with improved survival outcomes. 
PDCD1 alone does not stratify survival here (HR ≈1.08 
(0.58 - 2.02), p = 0.81). That may reflect the complexity 
of PD-1 biology, as elevated PD-1 can show either active 
anti-tumor immunity or terminal exhaustion; thereby, it is 
not a straightforward prognostic marker.

Genetic alteration analysis of PDCD1 and PLR-hub genes
The genetic alteration analysis is performed for 

PDCD1-PLR-hub genes in breast cancer samples using 
the cBioportal, depending on the TCGA PanCancer 
atlas study. The oncoprint analysis of genetic alteration 
frequency in PDCD1-PLR genes shows that the percentage 
of alterations in breast cancer samples occurred in 0.7% 
to 2.3%, and most alterations are amplifications and deep 
deletions (Supplementary Figure 5). Moreover, the copy 
number alterations versus gene expression for PDCD1-
PLR-hub genes are presented. A monotonic dosage effect 
is observed; breast tumors with fewer copies (deep/
shallow deletions) have lower PDCD1-PLR expression, 
breast tumors with normal copies (diploid) sit at a baseline, 
and breast tumors with more copies (gains/amplifications) 
have higher PDCD1-PLR expression. These genomic 
alterations in breast tumors could up- or down regulate 
PDCD1-PLR gene expression, potentially reinforcing 
either an immune active or an immune cold state. Further 
mutual exclusivity analysis exhibited that five significant 
gene pairs co-occurred in mutation, PSMB9-HLA-B, 
CCL5-CCL2, PSMB9- GBP1, HLA-B- GBP1, and ITGB2-
HLA-B (Table 3).

Discussion

The evolution of lapatinib resistance in HER2⁺/ER–/
PR– breast cancer exemplifies the complex crosstalk 

between tumor-intrinsic oncogenic signaling rewiring 
and immune microenvironmental reprogramming [1]. 
This study determined the tumor-intrinsic PD-1-centered 
regulatory network (PDCD1-PLR regulatory network) 
that drives immunosuppressive microenvironment 
adaptation, permitting immune evasion and aggressive 
breast tumor behavior. Through diverse bioinformatics 
analyses, a mechanistic model was defined where lapatinib 
resistance is orchestrated not only by HER2⁺ pathway 
restoration but also by substantial immunomodulatory 
reprogramming (Supplementary Figure 6). These 
observations harmonize with evolving evidence that 
targeted therapies unexpectedly trigger the TME to favor 
resistance via cancer immunoediting mechanisms, a 
phenomenon that is progressively recognized in HER2+ 
breast tumors [13,14].

PD-1 is a checkpoint receptor that represses T cell 
effector functions via SHP-2-mediated dephosphorylation 
of TCR signaling components [5]. Gene expression 
findings of lapatinib resistance HER2⁺/ER–/PR– breast 
cancer indicate that the center of the network, tumor-
intrinsic PDCD1 (PD-1), is upregulated. While PD-1 
inhibitors have revolutionized cancer immunotherapy, 
the insights uncover HER2 a paradoxical impact of 
tumor-intrinsic PD-1 in HER2+ resistance, which has 
received much less attention than the typical PD-1 
expressed on immune cells. Recent findings demonstrate 
that tumor-intrinsic PD-1 triggers carcinogenesis in 
melanoma, hepatocellular carcinoma, pancreatic ductal 
adenocarcinoma, thyroid cancer, glioblastoma, and TNBC 
[9,15,16]. Thus, breast tumor cells can express PD-1 and 
engage ligand interactions in cis or trans, such as PD-L1 
and PD-L2, to stimulate oncogenic intracellular signaling, 
promoting progression and survival independent of 
adaptive immunity. PD-1/PD-L1 interactions within breast 
tumor cells have been shown to induce chemoresistance 
via activation of the PI3K/Akt, MAPK/ERK, and mTOR 
pathways and upregulation of drug‐efflux pumps [9,17]. 
A previous study has shown that Y-box binding protein 1 
(YB-1) is aberrantly upregulated in TNBC and promotes 
tumor-intrinsic PD-1/PD-L1 expression via translational 
stimulation, leading to TNBC progression. However, 
silencing YB-1 can inhibit tumorigenesis and metastatic 
potential, but these inhibitory effects are completely 
rescued by exogenous PD-1/PD-L1 expression [18].

In the tumor-intrinsic PDCD1-PLR regulatory 
network, IFN-responsive genes (STAT1, IRF1, CXCL10, 
CCL5) and antigen presentation machinery genes 
(PSMB9, HLA-B) are suppressed in lapatinib-resistant 
groups, generating a cold TME, distinguished by impaired 
T cell recruitment and deregulated antigen processing. 

Gene A Gene B Log2 Odds Ratio p-value q-value Tendency
PSMB9 HLA-B >3 <0.001 <0.001 Co-occurrence
CCL5 CCL2 >3 <0.001 <0.001 Co-occurrence
PSMB9 GBP1 >3 0.017 0.263 Co-occurrence
HLA-B GBP1 >3 0.023 0.263 Co-occurrence
ITGB2 HLA-B 2.886 0.041 0.416 Co-occurrence

Table 3. Mutual Exclusivity Analysis of the PLR Regulatory Network
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Preclinical data in murine HER2⁺ models demonstrate 
that lapatinib can enhance STAT1-dependent anti-tumor 
immunity by increasing IFNγ-secreting CD8⁺ T cells and 
chemokines such as CXCL10 [19]. The data state that 
STAT1 deficiency in lapatinib-resistant cells abrogates 
this effect and impairs T cell infiltration, proposing a 
tumor‐intrinsic rewiring that silences IFNγ signaling and 
chemokine biosynthesis to evade immune surveillance. 
IRF1, a central regulator of IFNγ-induced gene expression 
and pro-apoptotic signaling, is similarly inhibited in 
lapatinib-resistant HER2+ cells, shifting breast tumors 
towards progression and hindering the normal activation 
of antigen‐processing genes and immunogenic cell death 
pathways [20]. The lower level of STAT1 and IRF1 
suggests an adaptive resistance mechanism for immune 
escape.

On the other hand, a paradoxical upregulation 
of B2M and ITGB2 gene expression is observed in 
lapatinib-resistant cells, which reflects a dual role, 
preserving MHC-I complexes to prolong chronic antigen 
presentation, resulting in T cell exhaustion, while 
promoting leukocyte cell adhesion through ITGB2, driving 
the infiltration of M0 and M2 macrophages, MDSCs, 
and Tregs. Integrins also explain moderately infiltrated 
monocytes and neutrophils. B2M elevation may also show 
dysregulated MHC I turnover associated with immune 
escape. MDSCs secrete IL-10 and TGF-β to attenuate T 
cell responses, while CAFs generate extracellular matrix 
proteins that obstruct breast tumors from immune cell 
infiltration. Therefore, lapatinib-resistant breast cancer 
cells may depend on a feedback loop by hijacking PD-1 
signaling to stimulate stromal barriers while repressing 
chemokine-driven immune stimulation [21–23]. This is 
consistent with the outcomes of the study, illustrating that 
ITGB2 elevation in breast cancer may stimulate metastasis 
via immune-suppressive stromal interactions.

The immune infiltration analysis illustrates that most 
of the tumor-intrinsic PLR genes are positively correlated 
with anti-tumor immune cell infiltration in HER2+, 
highlighting the baseline immunogenicity of HER2+ 
breast cancer; thus, if these PLR genes are inhibited, this 
could lead to an overall decrease in anti-tumor immune cell 
infiltration and may also result in cold immunosuppressive 
TME by elevating MDSCs, Tregs, and CAFs, making 
breast cancer cells less responsive to targeted treatments 
and immunotherapy [13,24,25]. Interestingly, in the 
lapatinib-resistant groups, PDCD1, ITGB2, and B2M 
remained upregulated while other PLR genes (STAT1, 
CCL5, PSMB9, CXCL10, IRF1, CCL2, HLA-B, and  
GBP1) were reduced. PD-1/PD-L1 axis in lapatinib-
resistant breast tumors/CD8+ T cells transfers potent 
inhibitory signals via SHP2-mediated dephosphorylation 
of TCR signaling intermediates, exhausting T cells, and 
attenuating anti-tumor immune responses [26]. Previous 
studies discussed that CXCL10 is a central chemoattractant 
for CXCR3+ cytotoxic T cells and NK cells, and its loss 
has been associated with immune exclusion in melanoma 
and colorectal cancer. Furthermore, CCL5 recruits 
CCR5+ dendritic cells and T cells, and its inhibition in 
resistant cancer cells results in a myeloid dendritic cell 
quiescent state [27–29]. Despite elevated dendritic cells 

in lapatinib-resistant samples, STAT1/IRF1 and CXCL10/
CCL5 are repressed, implying possible impaired function 
or inefficient antigen presentation, resulting in immune 
evasion. The elevated infiltrated dendritic cells could be 
exploited via an ex vivo-generated dendritic cell-based 
vaccine loaded with tumor antigens to enhance antitumor 
immunity [30]. Furthermore, the broad suppression 
of interferon signaling, chemokine-mediated immune 
recruitment, and the persistent PD-1 expression may reflect 
dysfunctional or ineffective T cell responses, potentially 
contributing to immune evasion and therapeutic resistance. 
These data indicate that immune exhaustion is a key 
characteristic of lapatinib resistance and suggest that PD-1 
inhibition or IFN pathway reactivation may help reverse 
the immunosuppressive state, enhance T-cell infiltration, 
and overcome resistance [31].

Gene ontology analysis supports the immune 
involvement, and KEGG pathway analysis strengthens 
this model, revealing immune-metabolic interplay as a 
resistance driver. Clusters 1-3, viral infection and cytokine 
signaling pathways, highlight the tumor’s mimicry of 
chronic inflammatory states that lead to persistent antigen 
exposure and thus T cell exhaustion. This oncogenic 
mechanism is recognized in hepatitis B-associated 
hepatocellular carcinoma. On the other hand, clusters 
4-5, metabolic and hormonal signaling, indicate lipid 
metabolism rewiring involvement in lapatinib resistance 
HER2+ breast cancer cells. The gene-metabolites 
analysis also validated these results, indicating that the 
PLR regulatory network is involved in lipid metabolic 
reprogramming and oncogenic signaling. Thus, resistant 
HER2+ breast tumors shift metabolism to synthesize 
cholesterol that stimulates PI3K/AKT signaling, an axis 
implicated in HER2+ breast cancer resistance, while 
nurturing an immunosuppressive lipid raft environment 
that sequesters TCR signaling components [32]. The 
data also demonstrate potential immune evasion via the 
androgen receptor signaling, disrupting normal MHC-I 
expression and promoting T cell exclusion [33].

Survival and genetic alteration analyses present a 
translational relevance of the PLR regulatory network 
findings. The correlation between the elevated expression 
of STAT1, PSMB9, and HLA-B and the enhanced prognosis 
in HER2⁺/ER–/PR– breast cancer aligns with their roles in 
antigen presentation and IFNγ responsiveness. However, 
these genes are downregulated in lapatinib-resistant cells, 
and the elevated B2M represents the duality of immune 
biomarkers, due to its role in antigen presentation and 
T cell exhaustion. On the other hand, genetic alteration 
analysis explains that genomic instability is not the 
primary resistance driver. Comparative gene expression 
profiling demonstrates that most PLR-hub genes are 
overexpressed in baseline breast tumors compared to 
normal breast tissue, with the highest expression in 
metastatic and TP53 mutant backgrounds; however, in 
lapatinib-resistant cells, the expression pattern differs. 
The focal copy number gains/amplifications in PDCD1, 
ITGB2, and B2M can generate high gene expression in 
a small subset of breast tumors; however, such gains/
amplifications occur in fewer than 2% of breast cancer 
cases and cannot elucidate the uniform upregulation 
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of these genes observed in lapatinib resistant breast 
cancer cells, implicating lapatinib induced epigenetic or 
transcriptional modulations instead of genomic alteration 
alone [34,35]. The low frequency of PDCD1 alterations 
(1.2%) further implicates transcriptional regulation via 
NFATc1 or AP-1, factors stimulated by HER2/EGFR 
signaling. Moreover, the consistent downregulation 
of IFN-responsive and antigen presentation genes 
(STAT1, CCL5, PSMB9, CXCL10, IRF1, CCL2, HLA-B, 
and  GBP1) indicates widespread suppression of IFNγ 
signaling and chemokine expression beyond copy number 
alterations.

These findings recommend several therapeutic 
approaches to tackle lapatinib resistance in breast cancer 
by addressing both tumor-intrinsic signaling and extrinsic 
immune dysfunction. Combining PD-1 inhibitors with 
agents that restore IFNγ signaling, such as stimulator 
of interferon genes (STING) agonists, or intratumoral 
IFNγ that could reverse chemokine inhibition and restore 
MHC-I normal function. Previous experiments on TNBC 
show that STING agonists synergize with anti-PD-1 
therapy to promote CD8+ T cell infiltration and dendritic 
cell maturation [31]. A prior study exhibited that lapatinib 
combination with the TLR7 agonist SZU-101 maintains 
immunostimulatory activity and promotes tumor 
clearance, making it a promising candidate for combined 
immunotherapy/targeted therapy. Other tyrosine kinase 
inhibitors, such as sunitinib, dasatinib, and sorafenib 
may interfere with immune activation and should be 
selected with caution in such combination protocols 
[36]. The data hypothesize that epigenetic modifiers, 
including DNA methyltransferase or histone deacetylase 
inhibitors (HDAC) inhibitors, could restore STAT1 and 
CCL5 expression. Further evidence has illustrated that 
promoting immunoproteasome function through cytokine 
therapy or small molecule agonists could raise PSMB9 
expression and enhance proteasome function, resulting 
in better survival in several cancer types [37].  Metabolic 
interventions targeting lipid synthesis, such as fatty acid 
synthase (FASN) inhibitors, or cholesterol trafficking, such 
as statins, can also disrupt immunosuppressive signaling. 
Statins also enhance innate immunity in breast cancer 
by suppressing mutant-TP53 [38,39]. A prior study has 
demonstrated that high membrane cholesterol preserves 
HER2+ at the cell surface by elevating membrane 
rigidity. Thus, decreasing cholesterol via lovastatin 
enhances internalization and degradation of HER2+, 
which promotes the efficacy of lapatinib. Experiments 
on mouse models have shown that combining lovastatin 
with lapatinib significantly mitigated breast tumor 
growth [40]. A prior experiment showed that combining 
MRTX849 with lapatinib significantly enhanced treatment 
efficacy in mice having KRASG12C-mutant head and 
neck cancer. Immune analysis exhibited upregulation 
of PD-L1 and changes in TME composition, including 
CD8⁺ T cell dynamics. However, depletion of CD8⁺ T 
cells decreased therapy effectiveness, while adding anti-
PD-1 (αPD-1) therapy improved anti-tumor responses, 
especially in resistant tumors. These findings suggest that 
targeting bypass pathways and modulating the immune 
microenvironment are essential approaches to tackle 

resistant KRASG12C-mutant head and neck cancer 
[41]. These observations are promising and recommend 
applying this protocol to tackle lapatinib resistance in 
HER2+ breast cancer. 

PANACEA phase 1b-2 trial has demonstrated that 
the combination of pembrolizumab (a PD-1 inhibitor) 
and trastuzumab in patients with advanced, HER2+ 
trastuzumab-resistant breast cancer is safe and potentially 
beneficial in PD-L1-positive cases, highlighting the role 
of immune mechanisms in resistance. Another approach 
is adoptive cell therapies, such as engineered chimeric 
antigen receptor (CAR) T cells or tumor‐infiltrating 
lymphocyte infusions, that reversed exhausted T cells 
via blocking PD-1 and promoting chemokine‐mediated 
trafficking. Previous evidence exhibits that third-
generation anti-HER2 CAR-T cells effectively target 
trastuzumab-resistant HER2+ breast cancer cells in vitro 
and in vivo. Therefore, combining CAR-T cells with 
PD-1 blockade further improved their cytotoxicity and 
tumor inhibition, showing a potential approach to tackle 
HER2+ breast cancer resistance [42]. These approaches 
and studies present insights into the mechanisms of 
lapatinib resistance. Comprehending these approaches is 
significant for the development of effective strategies to 
tackle lapatinib resistance and enhance patient outcomes. 

In conclusion, this integrative bioinformatic and 
transcriptomic analyses identify the tumor-intrinsic PLR 
regulatory network implicated in lapatinib resistance 
through dynamically reprogramming the HER2⁺/ER–/
PR– breast cancer TME. Lapatinib-resistant breast 
cancer cells can evade the immune system via multiple 
mechanisms, including amplifying immunosuppressive 
signals, silencing interferon responses, and impairing 
efficient antigen presentation. These insights argue for a 
paradigm shift in HER2+ breast cancer targeted therapy 
by introducing combinatorial regimens that co-target 
immune and metabolic pathways implicated in resistance. 
This study was based on computational analyses of 
GEO data. The relatively small sample size may affect 
statistical power, and gene expression changes do not 
always correspond to protein-level alterations due to post-
transcriptional regulation. Experimental validation will be 
required to confirm and extend these outcomes. Future 
research should focus on validating the tumor-intrinsic 
PLR regulatory network in patient-derived organoids to 
map stromal-immune interactions in resistant niches and 
revolutionize personalized immuno-oncology approaches 
for HER2+ breast cancer.
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