Methodology

A structured survey of research articles and review of the literature was done in the electronic databases of Google Scholar, PubMed, Springer, Elsevier, and Google Scholar from January 1995 until April 2024 using the keywords "cancer in Jammu and Kashmir", "genotyping of cancer in Jammu", "genotyping of cancer in Kashmir", "association study of cancer in Jammu and Kashmir", Breast cancer in J&K population", "gene polymorphism *OR* gene variant and risk of cancer, gene association with cancer", "environmental factors and cancer risk in J&K", "Epigenetics and cancer association in J&K population" etc. The review focused exclusively on primary research articles published in English, utilizing linguistic filters for publication selection. Secondary research, incomplete data, and non-English publications were excluded to ensure data integrity.

Furthermore, we used to String database (STRING: functional protein association networks (string-db.org) to create protein-protein interaction (PPI) for associated genes with different cancers after utilizing a specific setting (high confidence: 0.70). The interactions were then visualized and analyzed using Cytoscape V3.9.1 (Cytoscape: An Open Source Platform for Complex Network Analysis and Visualization). In addition, Network of enriched terms: colored by cluster ID, where nodes that share the same cluster ID are typically close to each other were creted using <u>Metascape</u>.

Table 1: Top 20 clusters with their representative enriched terms (one per cluster). "Count" is the number of genes in the user-provided lists with membership in the given ontology term. "%" is the percentage of all of the user-provided genes that are found in the given ontology term (only input genes with at least one ontology term annotation are included in the calculation). "Log10(P)" is the p-value in log base 10. "Log10 (q)" is the multi-test adjusted p-value in log base 10.

Category	Description	Count	%	Log10(P)	Log10(q)
hsa01524	KEGG Pathway - Platinum drug resistance	12	22.64	-20.44	-16.09
WP4673	WikiPathways - Male infertility	12	22.64	-16.69	-12.64
GO:0009410	GO Biological Processes - response to xenobiotic stimulus	15	28.30	-15.27	-11.40
GO:0006289	GO Biological Processes - nucleotide-excision repair	7	13.21	-11.14	-7.70
GO:0048732	GO Biological Processes - gland development	10	18.87	-8.51	-5.64
GO:0006302	GO Biological Processes - double-strand break repair	8	15.09	-8.39	-5.55
GO:1901987	GO Biological Processes - regulation of cell cycle phase transition	10	18.87	-8.24	-5.44
GO:0010225	GO Biological Processes - response to UV-C	4	7.55	-8.23	-5.44
WP254	WikiPathways - Apoptosis	6	11.32	-7.98	-5.22
GO:0006979	GO Biological Processes - response to oxidative stress	9	16.98	-7.86	-5.11
GO:0070198	GO Biological Processes - protein localization to chromosome, telomeric region	4	7.55	-7.71	-4.98
GO:0007548	GO Biological Processes - sex differentiation	8	15.09	-7.51	-4.82
M256	Canonical Pathways - PID TAP63 PATHWAY	5	9.43	-7.40	-4.73
WP3891	WikiPathways - Benzene metabolism	3	5.66	-7.00	-4.42
WP176	WikiPathways - Folate metabolism	5	9.43	-6.86	-4.32
WP1601	WikiPathways - Fluoropyrimidine activity	4	7.55	-6.43	-4.00
GO:0048147	GO Biological Processes - negative regulation of fibroblast proliferation	4	7.55	-6.38	-3.97
GO:0033144	GO Biological Processes - negative regulation of intracellular steroid hormone receptor signaling	4	7.55	-6.28	-3.91
	pathway				
GO:0035239	GO Biological Processes - tube morphogenesis	9	16.98	-5.59	-3.32
R-HSA-3700989	Reactome Gene Sets - Transcriptional Regulation by TP53	7	13.21	-5.50	-3.26

Table 2: Details of the studies included in the present study

S.No	References	Year of Pub.	Gene	Variant	Cancer Type	Studied Region	Study Conclusion				
1	Nagpal et al., 2020	2020	OGG1	rs1052133	BC	Jammu	Overall, the hOGG1-Ser326Cys polymorphism may be associated with an increased risk of breast cancer in the J&K population.				
2	Verma et al., 2020	2020	DNAH11	rs2285947	BC	Jammu	The data suggest that the DNAH11 gene variant rs2285947 is a potential risk factor ovarian and breast cancers in the studied population.				
3	Bakshi et	2020	TCF21	rs12190287	BC	Jammu	This is the first study providing preliminary data for the J&K population, highlighting				
	al., 2020		SLC19A1	rs1051266	BC		the role of 15 variants in breast cancer development. Notably, four variants—				
			ERCC1	rs2298881	BC		rs1051266, rs12190287, rs2229080, and rs2298881—showed significant associations				
			SLC19A1	rs1051266	BC		with breast cancer.				
			PALB2	rs249954	BC						
			ATM	rs664677	BC						
			FGFR2	rs2981582	BC						
			SLC4A7	rs4973768	BC						
			ANKLE1	rs2363956	BC						
			CYP19A1	rs10046	BC						
			TERT	rs2736100	BC						
			TERT	rs2735940	BC	-					
		-	TERF1	rs2975843	BC						
			BRIP1	rs4986764	BC						
			REV1	rs3792152	BC						
4	Mir et al.,	2008	MTHFR	rs1801133	BC	Kashmir	This pilot study suggests that the MTHFR 677T-variant allele, in combination with				
	2008		FOLH1	rs61886492	BC		MTRR 66G-variant or GCP II 1561 T-variant alleles, may reduce breast cancer				
			MTRR	rs1801394	BC		susceptibility. Additionally, we note a potentially protective effect of the GCPII variant				
5	Syeed et al., 2010	2010	TP53	rs1800372	BC	Kashmir	Our findings suggest that the TP53 R72P polymorphism is a risk factor for breast cancer. Specifically, the Pro72 allele and the PP genotype are associated with a higher risk of developing breast cancer.				
6	Iqbal et al.,	2016	NME1	NG	BC	Kashmir	The study showed a strong association between the NME1 heterozygous genotype				
	2016		MKK4	NG	BC		and breast cancer when classified by lymph node involvement.				
7	Sharma et al., 2018	2018	MTHFR	rs1801133	BC	Jammu	The study concludes MTHFR gene to be a potential candidate for breast tumorigenesis				
8	Rasool et al., 2018	2018	Survivin/BIRC5	rs9904341	BC	Kashmir	The results suggest the association of -31G/C survivin polymorphism at a genotypic and allelic level in breast cancer.				

9	Ayub et al., 2014	2014	BRCA2	rs1799943	BC	Kashmir	These variations, along with other low-penetrance genes, may contribute to breast cancer susceptibility in this population cohort with sporadic types of breast cancer				
10	Khan et al., 2014	2014	MDM2	NG	BC	Kashmir	Our data suggest that polymorphisms in the MDM2 gene may act synergistically to increase the risk of breast cancer.				
11	Verma et al., 2020	2020	LRFN2	rs2494938	BC	Jammu	Not associated with the risk of BC in Jammu population				
12	Verma et al., 2023	2023	TP63	rs10937405	BC	Jammu	Our results indicate that the TP63 gene variant rs10937405 does not increase the risk of breast and ovarian cancer in the J&K population.				
13	Sheikh et al., 2016	2016	MnSOD	rs4880	BC	Kashmir	In conclusion, the MnSOD Ala-9Val polymorphism may modify the risk of developing breast cancer, particularly in individuals over 45 years old, those using oral contraceptives, and those with an urban lifestyle.				
14	Sharma et al., 2017	2017	GSTT1	I/D	BC	Jammu	The present study supports the lack of association between the null GSTM1 genotype and breast cancer risk in the population of Jammu.				
15	Bhat et al., 2019	2019	TERT	rs2853677	Leukemia	Jammu	This study suggests that rs2853677 of TERT is associated with multiple cancers could serve as a potential marker for diagnosing non-small cell lung cancer a leukemia.				
16	Bhat et al.,	2019	ARID5B	rs10740055	Leukemia	Jammu	The variants rs10740055 of ARID5B and rs6964823 of IKZF1 were found to act				
	2019		IKZF1	rs6964823	Leukemia	Jammu	individually and additively as risk factors for leukemia in the populations of Jammu and Kashmir, Northern India.				
17	Bhat et al., 2021	2021	TP63	rs10937405	Leukemia	Jammu	The study concludes that the rs10937405 variant is a risk factor for leukemia in the Jammu and Kashmir population of North India.				
18	Shapoo et	2022	CYP2D6	rs35742686	Leukemia	Kashmir	The study concluded that the rs35742686 and rs3892097 SNPs are significantly				
	al., 2022			rs3892097	Leukemia	Kashmir	associated with increased risk of ALL in Kashmiri children.				
19	Bhat et al.,	2021	REV1	rs3792152	Leukemia	Jammu	Our study is the first to provide preliminary data on the association of these variants				
	2021		TERT	rs2736100	Leukemia		with leukemia in the Jammu and Kashmir region of North India. While both genetic				
				rs2735940	Leukemia		and environmental factors contribute to leukemia risk, genetic factors have been				
			TERF1	rs2975843	Leukemia		underexplored in this population. Our findings suggest these genes could be potential				
			TERT	rs10069690	Leukemia		biomarkers for evaluating leukemia outcomes, as they are involved in apoptosis, cell growth, proliferation, DNA repair, and chromatin remodeling. Although this study is a				
			FGFR2	rs2981582	Leukemia		significant step, functional studies are needed to clarify the biological roles of these				
			GSTP1	rs1695	Leukemia		genes in leukemia, and larger cohort studies are necessary for validation.				
			AKT1	rs2494752	Leukemia						
			TERF2	rs251796	Leukemia						
			BCL2	rs1801018	Leukemia						
			TCF21	rs12190287	Leukemia						
			TNKS	rs6990097	Leukemia						
			BRIP1	rs4986764	Leukemia						

			PSCA	rs2976392	Leukemia							
			CYP19A1	rs10046	Leukemia							
			ERCC5	rs751402	Leukemia							
			ERCC1	rs229881	Leukemia							
20	Devi et al.,	2023	MTHFR	rs1801133	Leukemia	Jammu	In conclusion, rs1801133 of MTHFR, rs4646903 of CYP1A1, and the GSTT1-null					
	2023		CYP1A1	rs4646903	Leukemia	Jammu	mutation increase disease susceptibility in the Jammu region of North India, unlike t					
			GSTT1	I/D	Leukemia	Jammu	GSTM1-null mutation.					
			GSTM1	I/D	Leukemia	Jammu						
21	Bhat et al., 2020	2020	HOXA7	rs2301721	Leukemia	Jammu	The present study concludes that the variant rs2301721 in the HOXA7 gene serves as a risk factor in the development of leukemia in the population of the Jammu region.					
22	Shaffi et al.,	2009	CYP1A1	rs4646903	LC	Kashmir	Our findings support the conclusion that CYP1A1m1 and m2 polymorphisms are					
	2009			rs1048943	LC		associated with an increased risk of smoking-related lung cancer in the Kashmiri population.					
23	Bhat et al., 2019	2019	TERT	rs2853677	LC	Kashmir	This study suggests that rs2853677 of TERT is associated with multiple cancers and could serve as a potential marker for diagnosing non-small cell lung cancer and leukemia.					
24	Bhat et al., 2020	2020	LRFN2	rs2494938	LC	Kashmir	These results suggest that rs2494938 polymorphism of the LRFN2 gene is a risk factor in the North Indian populations to develop NSCLC					
25	Jamwal et	2021	REV3L	rs1002481	LC	Jammu	Our data supports a strong association between variants rs1002481, rs462779,					
	al., 2021			rs462779	LC		rs465646, and NSCLC, suggesting a potential role of these REV3L variants in increasing					
				rs465646	LC		the risk of developing NSCLC.					
				rs11153292	LC							
26	Bhat et al.,	2021	TCF21	rs12190287	LC	Jammu	Among these six variants, TCF21 (rs12190287), ERCC1 (rs2298881, rs11615), ERCC5					
	2021		ERCC1	rs11615	LC		(rs751402), ARNTL (rs4757151), and BRIP1 (rs4986764) demonstrated a significant					
			ERCC5	rs751402	LC		association with NSCLC risk ($p \le 0.003$) in the Jammu and Kashmir population.					
			ARNTL/ BMAL1	rs4757151	LC							
			BRIP1	rs4986764	LC							
27	Bhat et al., 2019	2019	TP63	rs10937405	LC	Jammu	Our data support that the rs10937405 variant is also significantly associated with the NSCLC and is a risk factor.					
28	Bhat et al.,	2023	TERT	rs10069690	LC	Jammu	Our findings suggest that variants in the TERT and POT1 genes, along with telomere					
	2023			rs2242652	LC		length, may serve as potential biomarkers and therapeutic targets for NSCLC in this					
			POT1	rs10228682	LC		population.					
			TERF2	rs251796	LC							
				rs2975843	LC							
29	Verma et	2019	hOGG1	rs1052133	OC	Jammu	Our results indicate that the G allele of rs1052133 imparts protection to the					

	al., 2019		XRCC1	rs25487	OC		population whereas variant rs25487 was not associated with OC.					
30	Verma et	2020	PIK3CA	rs2699887	OC	Jammu	The interactive analysis also reveals that variants of PIK3CA, GSTP1, and ERCC1 carry a					
	al., 2020		GSTP1	rs1695	OC		relatively high risk of ovarian cancer.					
			CYP19A1	rs10046	OC							
			FGFR2	rs2981582	OC							
			ERCC5	rs751404	OC							
			ERCC1	rs2298881	OC							
31	Verma et	2020	DNAH11	rs2285947	OC	Jammu	The collected data proposed that the variant rs2285947 of DNAH11 gene is a potential					
	al., 2020		of LRFN2	rs2494938			risk factor for ovarian and breast cancers in the studied population.					
32	Verma et	2023	TP63	rs10937405	OC	Jammu	Our results indicate that the TP63 gene variant rs10937405 does not increase the risk					
	al., 2023						of breast and ovarian cancer in the J&K population.					
33	Sharma et	2024	ADGRG4	rs5930932	OC	Jammu	According to the findings of the current investigation, the ADGRG4 gene variant					
	al., 2024						rs5930932 increases the risk of OC					
34	Sharma et	2021	ARID5B	rs10740055	CRC	Jammu	Our results indicate that the A allele of rs10740055 imparts risk to the population and					
	al., 2021	2024	11/754	6064022	606		also that a larger sample size is needed for further statistical validation.					
35	Sharma et al., 2021	2021	IKZF1	rs6964823	CRC	Jammu	It was found that the variant rs6964823 of the IKZF1 gene is associated with a higher risk of CRC within the population of J&K					
36	Sharma et	2021	WT1	rs2234593	CRC	Jammu	This study is the first to link genetic variants to colorectal cancer in the studied					
30	al., 2021	2021	BRCA1	rs1799966	CRC	Janninu	population using high-throughput MassARRAY [™] technology. Further evaluation of					
	, ====	-	DCC	rs2229080	CRC		these variants in other populations is needed to understand genetic complexity and					
			НҮКК	rs8034191	CRC		address missing heritability					
			TP53	rs1042522	CRC							
			MTHFR	rs1801133	CRC							
			CYP19A1	Rs10046	CRC							
37	Sameer et	2010	TP53	rs1800371	CRC	Kashmir	We conclude that Arg72Pro SNP is associated with susceptibility to developing CRC in					
57	al., 2010-a	2010	1700	rs1042522	CRC	Kashmir	this ethnic Kashmiri population.					
38	Banday &	2019	TIMP2	rs1042522 rs8179090	CRC	Kashmir Kashmir	The present study demonstrates that there is a strong and highly significant					
50	Sameer,	2019	TIMP2	rs9619311	CRC	KdSfiffilf	association between the TIMP2-418G/C and TIMP3-1296T/C promoter SNPs and the					
	2019		TIMP3	129019311	CRC		risk of developing CRC in ethnic Kashmiri population					
39	Sameer et	2012	GSTP1	Null	CRC	Kashmir	There was no significant association between GSTP1 I105V genotypes and the disease.					
	al., 2012	_		_								
40	Sameer et	2011	CYP2E1	rs2031920	CRC	Kashmir	We suggest that CYP2E1 polymorphisms are involved in the susceptibility to					
	al., 2011			I/D	CRC	1	developing CRC in the ethnic Kashmiri population.					
41	Nissar et 20	2016	GSTT1	I/D	CRC	Kashmir	ir Our results suggest that GSTM1 and GSTT1 gene deletion/null gene polymorphisms are not a key modulators of the risk of developing CRC in Kashmiri population					
	al., 2016-a		GSTM1	I/D	CRC	1						

42	Banday et	2017	IL-10	rs1800872	CRC	Kashmir	This study has shown that there is a significant association between the IL-10 –592C/A						
	al., 2017-a		IL-10	rs1800896	CRC		promoter SNP and a decreased risk of CRC in an ethnic Kashmiri population, but the						
							association between IL-10 –1082A/G SNP and the risk of CRC in the population under						
							study is not significant.						
43	Banday, &	2021	LTA	rs909253	CRC	Kashmir	This study demonstrated a significant association between the LT- α +252A/G SNP and						
	Aga, 2021						CRC risk in the ethnic Kashmiri population						
44	Nissar et	2019	GSTP1	I105V	CRC	Kashmir	The homozygous Val/Val genotype was associated with a modestly elevated risk for						
	al., 2019						CRC but not reach at significance						
45	Banday et	2017	IL-6	rs1800795	CRC	Kashmir	This study demonstrates that there is a strong and highly significant association						
	al., 2017-b						between the IL-6 -174G/C promoter single nucleotide polymorphism and a decreased						
							risk of colorectal cancer in ethnic Kashmiri population						
46	Sameer et	2012	OGG1	rs1052133	CRC	Kashmir	This study suggests that the OGG1 polymorphism is not associated with the risk of						
	al., 2012	2015	¥2004				development of CRC in the Kashmiri population						
47	Nissar et	2015	XRCC1	Arg194Trp	CRC	Kashmir	Our results suggest that the XRCC1 Arg194Trp polymorphism increases CRC risk,						
	al., 2015						indicating that the BER repair pathway influences colorectal cancer development in						
		2014	VDCC2	TI 24484	60.0		the Kashmiri population.						
48	Nissar et	2014	XRCC3	Thr241Met	CRC	Kashmir	This study found that individuals with the XRCC3 Thr/Met and Met/Met genotypes						
	al., 2014-b						have a significantly elevated CRC risk, about 2.5 times higher than those with the						
49	Nissar et	2014		G135C	CRC	Kashmir	Thr/Thr genotype. Our results suggest that the G135C polymorphism of the RAD51 gene is associated						
49	al., 2014-a	2014	RAD51	GISSC	CRC	Kashinii	with an increased risk of CRC in our population.						
50	Nissar et	2013	XRCC1	Arg399Gln	CRC	Kashmir	This study suggests that the XRCC1 polymorphism is associated with an increased risk						
50	al., 2013	2015	Ancei	Aigooolii	Che	Kasiiiiii	of CRC.						
51	Rasool et	2013	VDR	Apal	CRC	Kashmir	Bsml was found to be significantly associated with the risk of CRC in contrast to Apal						
_	al., 2013 &			Fok I	CRC	Kashmir	and Fok I						
	14			Bsm I	CRC	Kashmir							
52	Sameer et	2012	NQ01	Pro189Ser	CRC	Kashmir	Not significantly associated with the risk of CRC in Kashmiri ethnic group						
	al., 2012	2012	ngo1	110105000	ene	Rustini							
53	Nissar et	2017	II-1B	-31C/T & -	CRC	Kashmir	This study has demonstrated that the association between the IL1β-31C/T and IL1β-						
	al., 2017			511T/C			511T/C promoter SNPs and risk of CRC in ethnic Kashmiri population is not significant						
54	Khan et al.,	2013	XRCC1	Arg399Gln	CRC	Kashmir	No significant result						
	2013			_									
55	Shah et al.,	2020	TCF21	rs12190287	EC	Jammu	We explored 12 SNPs that were found to be associated with multiple cancers in						
	2020		CYP19A1	rs10046	EC		literature with esophageal cancer within the population of J&K. This is the first study						
			TERT	rs2735940	EC	1	to find the relation of these SNPs with ESCC within the studied population. This study						
				rs10069690	EC	1	explores the relation of genetic and environmental factors with the ESCC						

			ERCC5	rs751402	EC		susceptibility.
		-	PIK3CA	rs2699887	EC		
		-	REV1	rs3792152	EC		
		-	FGFR2	rs2981582	EC		
		-	GSTP1	rs1695	EC		
		-	TERF2	rs251796	EC		
		-	DCC	rs2229080	EC		
		-	BCL2	rs1801018	EC		
56	Malik et al.,	2010	GSTP	rs1695	EC	Kashmir	In conclusion, GSTP1val/val and CYP2E1c1c2 genotypes/c2 allele increased the risk of
	2010	-	GSTM1	Null			ESCC and EADC, respectively, in the Kashmiri population; whereas GSTM3AB genotype
			CYP2E1	rs2031920			imparted lower risk for both ESCC and EADC.
			GSTT1	Null			
			GSTM3	rs1799735			
		-	CYP1A1	rs4646903			
57	Malik et al.,	2011	CASP8	rs3834129	EC	Kashmir	Polymorphism in CASP8 -652 6N ins/del polymorphism modulates the risk of EC and
	2011-b						GC in Kashmir valley.
58	Malik et al.,	2013	DCC	rs714	EC	Kashmir	In conclusion, genetic variations in DCC rs714 (A>G) modulate risk of EC and GC in
	2013	2045	00714	N. 11			high-risk Kashmir population.
59	Makhdoomi	2015	GSTM1	Null	EC	Kashmir	We found a significant interaction between the GSTT1 and GSTM1 genotypes with regard to ESCC risk
60	et al., 2015	2010	GSTT1	Null	EC	Kashmir	
61	Shah et al., 2018	2018	CYPA1	rs762551	EC	Kashmir	The study indicates that CYP1A2*1F polymorphism is associated with ESCC risk and the risk is modified in salt drinkers.
62	Malik et al.,	2014	PLCE1	rs2274223	EC	Kashmir	Genetic variations in PLCE1 modulate risk of EC in the high risk Kashmiri population
	2014			rs3765524	EC		
				rs7922612	EC		
63	Qasim et	2015	VGEF	rs2010963	EC	Kashmir	From the results of the present study a significant association of +936C>T and
	al., 2015			rs3025039	EC		+405C>G polymorphisms with increased esophageal cancer risk exists in the Kashmiri population
64	Malik et al.,	2009	NAT2	rs1799929	EC	Kashmir	NAT2 slow acetylator genotype may increase susceptibility to ESCC, and NAT2
	2009			rs1799930	EC		haplotypes (C(481)A(590)G(857) and T(481)A(590)G(857)) may predict susceptibility to
				rs1799931	EC		EC and GC in the Kashmir Valley.
65	Shah et al.,	2020	LRFN2	rs2494938	EC	Kashmir	The study highlights LRFN2 as a candidate gene for esophageal cancer susceptibility in
	2020						the population of J&K and calls for a detailed study with a large sample size and involving more ethnic groups of India.
66	Malik et al.,	2011	NQ01	rs1800566	EC	Kashmir	The NQO1 609C>T TT genotype and T allele were significantly associated with

	2011		NQO2	rs2070999	EC		increased risk for GC, whereas NQO2 -3423G>A polymorphism did not show 67any association with GC. Also, NQO1 609C>T TT genotype showed significant association with gastric adenocarcinoma.		
67	Bashir et al., 2015	2015	XRCC3	rs861539	GC	Kashmir	These findings suggest that polymorphisms of XRCC3 Thr241Met may not play a role in the etiology of gastric cancer.		
68	Malik et al.,	2009	NAT2	rs1799929	GC	Kashmir	NAT2 slow acetylator genotype may increase susceptibility to ESCC, and NAT2		
	2009			rs1799930	GC		haplotypes (C(481)A(590)G(857) and T(481)A(590)G(857)) may predict susceptibility to		
				rs1799931	GC		EC and GC in the Kashmir Valley.		
69	Malik et al., 2011-b	2011	CASP8	rs3834129	GC	Kashmir	Polymorphism in CASP8 -652 6N ins/del polymorphism modulates the risk of EC and GC in Kashmir valley.		
70	Malik et al., 2013	2013	DCC	rs714	GC	Kashmir	In conclusion, genetic variations in DCC rs714 (A>G) modulate risk of EC and GC in high-risk Kashmir population.		
71	Malik et al., 2011-a	2011	MMP-7	rs11568818	GC	Kashmir	In conclusion, results from present study suggest that a common MMP-7 (181A>G) genetic polymorphism may contribute to squamous cell gastric cancer susceptibility in the Kashmir valley.		
72	Qadir et al.,	2021	VDR	rs1544410	GC	Kashmir	In conclusion, our study suggests that VDR BsmI SNP has a significant association with		
	2021			rs7975232	GC		increased risk of GC		
73	Malik et al., 2011	2011	NQ01	rs1800566	GC	Kashmir	The NQO1 609C>T TT genotype and T allele were significantly associated with increased risk for GC, whereas NQO2 -3423G>A polymorphism did not show any		
			NQO2	rs2070999	GC		association with GC.		
74	Ashraf et	2015	2015	2015	ERCC2	rs13181	GC	Kashmir	The magnitude and statistical significance of Asp312Asn polymorphism was smaller
	al., 2015			rs1799793	GC		and weaker than the Lys751Gln polymorphism studied in the present study of GC cases vs controls.		
75	Qadri et al.,	2014	TLR4	rs4986790	GC	Kashmir	No correlation was found between the appearance of disease and HP infection or the		
	2014			rs4986791	GC	Kashmir	presence of TLR4 and IL-8 gene polymorphisms and HP infection.		
			IL-8/ CXCL8	251 T>A	GC	Kashmir			
76	Malik et al.,	2009	GSTM1	I/D (null)	GC	Kashmir	In conclusion, GSTM1null and CYP2E1c1c2 genotype/c2 allele alter the risk for GC in		
	2009		GSTT1	I/D (null)			the Kashmir population whereas GSTM3AB genotype seems to confer lower risk for GC		
			GSTP1	rs1695					
			GSTM3	rs1799753					
			CYP1A16	rs4646903					
			CYP2E1	rs2031920					
77	Nissar ett	2018	XRCC1	Arg399Gln	GC	Kashmir	Polymorphic variants of XRCC1 Arg399Gln and XPD Lys751Gln are not associated with		
	al., 2018		XPD	Lys751Gln			the risk of gastric cancer in the Kashmiri population.		
78	Khan et al., 2015	-		rs1799939 rs1800861	THY THY	Kashmir Kashmir	In conclusion, RET gene G691S/S904S polymorphisms were over-represented and L769L polymorphism was under-represented in PTC and FTC patients.		
	-919			131000001	1111	Nasiiiiii			

rs1800863 THY Kash

Table 3: Description of studies finding the epigenetic and risk of different form of cancer in J&K population

S.No	Author Name	Year	Gene	Type of	Region	Conclusion
				cancer		
1	Asiaf et al., 2014	2014	CDH1	BC	Kashmir	Our preliminary findings suggest that abnormal CDH1 methylation occurs in high frequencies in infiltrating breast cancers associated with a decrease in E-cadherin expression.
2	Akhter et al., 2014	2014	P21	BC	Kashmir	we show for the first time that the significant association of p21 mutation and hypermethylation leads to the complete inactivation of p21 gene in Indian female breast cancer patients.
3	Asiaf et al., 2019	2011	DAPK1	BC	Kashmir	we consider DAPK1 inactivation by promoter hypermethylation likely plays a role in the development and progression of breast cancer.
4	Perveez&Ajaz, 2015	2015	KLOTHO	CRC	Kashmir	We conclude that KLOTHO promoter hypermethylation is an epigenetic inactivation in colorectal cancer, indicating its potential as a prognostic predictor in our population.
5	Afshan et al., 2021	2021	VDR	CRC	Kashmir	Our study, the first of its kind from Kashmir, indicates that VDR exhibits an aberrant methylation pattern in CRC, leading to a loss of expression.
6	Wani et al., 2019 &13	2019	P16 & MGMT	CRC	Kashmir	We also found a significant correlation between P16 and MGMT promoter hypermethylation and loss of protein expression in CRC.
7	Dar et al., 2013	2013	HMLH1	CRC	Kashmir	The results suggest that hMLH1 aberrant promoter methylation in the Kashmiri population contributes to colorectal cancer carcinogenesis and is one of the most common epigenetic changes in its development.
8	Maqbool et al., 2021	2021	LATS 1 & LATS 2	CRC	Kashmir	LATS1/2 hypermethylation is a key step in the development of colorectal cancer
9	Guroo et al., 2018	2018	UNC5C	CRC	Kashmir	We conclude that UNC5C hypermethylation is implicated in CRC which plays a role in its tumorigenesis and may predict the late stage disease.
10	Sameer et al., 2011	2011	APC	CRC	Kashmir	Although the number of mutations in the APC and β-catenin genes in our CRC cases was very low, the study confirms the role of epigenetic gene silencing of the pivotal molecular gladiator, APC, of the Wnt pathway in the development of CRC in the Kashmiri population.
11	Hussain et al., 2011	2011	SOCS-1	EC	Kashmir	Transcriptional inactivation of the SOCS-1 gene, primarily due to promoter hypermethylation and possibly HPV infection, may play an important role in esophageal carcinogenesis in Kashmir.
12	Yousuf et al., 2014	2014	MGMT	EC	Kashmir	MGMT promoter hypermethylation and concomitant loss of MGMT protein expression may play an important role in the development of gastric cancer
13	Bhat et al., 2012	2012	HMLH1,RASSF1A	EC	Kashmir	It was found that the frequency of promoter region hypermethylation of the mismatch repair gene hMLH1 was 56% in esophageal cancer cases and in histopathologically confirmed normals

14	Bhat et al., 2016	2016		EC	Kashmir	These findings indicate that promoter hypermethylation at CpG island may be responsible for reduction of expression at protein level which may be an initial event in carcinogenesis and the
						progression of GC.
15	Salam et al., 2009	2009	P16	EC	Kashmir	Analysis of patients dietary habits revealed a strong association between promoter
					methylation and high consumption of hot salted tea (P < 0.05) which is a most f	
						commonly consumed by Kashmiri people.
16	Rah et al., 2021	2021	p16;/CDKN2A,	PC	Kashmir	Methylation of the p16 gene could also modulate transcription of genes thereby increasing the
			HMLH1,RASSF1A			predisposition and susceptibility towards PC.
17	Nissar et al., 2021	2021	XRCC1	EC	Kashmir	The present study indicates that XRCC1 undergoes aberrant promoter hypermethylation with
						subsequent loss of protein expression in gastric cancer.
18	Baba et al., 2017	2017	P15	Leukemia	Kashmir	Complete methylation and loss of p15 gene expression causes susceptibility to relapse and
						decreased survival in APL patients.
19	Nikbakht et al.,	2017	CASP8, TMS1,	Leukemia	Kashmir	The present study indicated the impact of hypermethylation-mediated inactivation of CASP8,
	2017		and DAPK			TMS1 and DAPK genes, which is associated with risk of childhood ALL.

Table 4: Ovarian Cancerand associated genes and their associated variants

S.NO	Gene	Chr	Protein	Variant	Nucleotide	Variant	Studied	Case/	Res	References
					Change	type	Region	Control		
1	hOGG1	3p25.3	8-Oxoguanine DNA Glycosylase	rs1052133	C>G	MV	Jammu	130/150	Р	Verma et al. [37]
2	XRCC1	19q13.31	X-ray repair cross-complementing 1	rs25487	A>G	MV			х	
3	РІКЗСА	3q26.32	Phosphatidylinositol-4,5-Bisphosphate 3- Kinase Catalytic Subunit Alpha	rs2699887	C>T	UTV	Jammu	200/400	~	Verma et al. [38]
4	GSTP1	11q13.2	Glutathione S-Transferase Pi 1	rs1695	A>G	MV			v	
5	CYP19A1	15q21.2	Cytochrome P450 Family 19 Subfamily A	rs10046	A>G	IV			х	
			Member 1							
6	FGFR2	10q26.13	fibroblast growth factor receptor 2	rs2981582	T>C	IV			Х	
7	ERCC5	13q33.1	ERCC Excision Repair 5, Endonuclease	rs751404	A>G	5UTRV			Х	
8	ERCC1	19q13.32	ERCC Excision Repair 1, Endonuclease Non-	rs2298881	C>A/T	UTV			Р	
9	DNAH11	7p15.3	Catalytic Subunit Dynein Axonemal Heavy Chain 11	rs2285947	G>A	IV	Jammu	219/330	v	Verma et al. [22]
10	LRFN2	6p21.2-	Leucine Rich Repeat And Fibronectin Type	rs2494938	G>A	IV			Х	
		p21.1	III Domain Containing 2							
11	TP63	3q28	Tumor Protein P63	rs10937405	C>T	IV	Jammu	150/210	х	Verma et al. [120]
12	ADGRG4	Xq26.3	Adhesion G protein-coupled receptor G4	rs5930932	T>A/C	MV	Jammu	115/120	~	Sharma et al. [129]

P: Positive Association, X: Non-significant Association, V: Significant Association, MV: Missense Variant, UTV: Upstream Transcript Variant, IV: Intronic Variant, S'UTRV: 5'-Untranslated Region Variant

Table 5: CRC and associated genes and their associated variants

S.NO	Gene	Chr	Protein	Variant	Nucleotide Change	VT	Studied Region	Case/ Control	Res	References
1	ARID5B	10q21.2	AT-Rich Interaction Domain 5B	rs10740055	C>A	IV	Jammu	180/ 390	~	Sharma et al. [130]
2	IKZF1	7p12.2	IKAROS Family Zinc Finger 1	rs6964823	G>A	3' UTR	Jammu	182/396	~	Sharma et al. [131]
						V				
3	WT1	11p13	WT1 Transcription Factor	rs2234593	G>T	IV	Jammu	100/392	~	Sharma et al. [132]
4	BRCA1	17q21.31	BRCA1 DNA Repair Associated	rs1799966	T>A	MV			~	
5	DCC	18q21.2	DCC Netrin 1 Receptor	rs2229080	C>A	MV			~	
6	НҮКК	15q25.1	Hydroxylysine Kinase	rs8034191	T>C	IV			~	
7	TP53	17p13.1	Tumor Protein P53	rs1042522	G>C	MV			~	
8	MTHFR	1p36.22	Methylenetetrahydrofolate Reductase	rs1801133	C>T	MV			х	
9	CYP19A1	15q21.2	Cytochrome P450 Family 19 Subfamily A	rs10046	G>A	3'UTR			Х	
			Member 1							
10	TP53	17p13.1	Tumor Protein P53	rs1800371	C>T	MV	Kashmir	86/160	~	Sameer et al. [39]
				rs1042522	C>G	MV	Kashmir	86/160	~	
11	TIMP2	17q25.3	TIMP Metallopeptidase Inhibitor 2	rs8179090	G>C	UTV	Kashmir	142/184	~	Banday & Sameer, [133]
12	TIMP3	22q12.3	TIMP Metallopeptidase Inhibitor 3	rs9619311	T>C	UTV			~	
13	GSTP1	11q13.2	Glutathione S-Transferase Pi 1	Null	A>G		Kashmir	86/160	Х	Sameer et al. [134]
14	CYP2E1	10q26.3	Cytochrome P450 Family 2 Subfamily E Member	rs2031920	C>T	UTV	Kashmir	86/160	~	Sameer et al. [41]
			1	I/D	I/D	I/D			~	
15	GSTT1	22q11.23	Glutathione S-Transferase Theta 1	I/D	I/D	I/D	Kashmir	160/200	Х	Nissar et al. [135]
16	GSTM1	1p13.3	Glutathione S-Transferase Mu 1	I/D	I/D	I/D			Х	
17	IL-10	1q32.1	Interleukin 10	rs1800872	T>G	IV	Kashmir	142/184	Р	Banday et al. [136]
18	IL-10	1q32.1	Interleukin 10	rs1800896	A>G	-			Х	
19	LTA	6p21.33	Lymphotoxin Alpha	rs909253	A>G	IV	Kashmir	141/184	~	Banday and Aga, [51]
20	GSTP1	11q13.2	Glutathione S-Transferase Pi 1	I105V			Kashmir	160/200	Х	Nissar et al. [137]
21	IL-6	7p15.3	Interleukin 6	rs1800795	G>C	UTV	Kashmir	142/184	Р	Banday et al. [138]
22	OGG1	3p25.3	8-Oxoguanine DNA Glycosylase	rs1052133	C>G	MV	Kashmir	114/200	Х	Sameer et al. [42]
23	NQO1	16q22.1	NAD(P)H:quinone Oxidoreductase 1	Pro189Ser	C>T	MV	Kashmir	86/160	Х	Sameer et al. [134]
24	XRCC1	19q13.31	X-Ray Repair Cross Complementing 1	rs1799782	C>T	MV	Kashmir	100/100	~	Nissar et al. [48]
25	XRCC3	14q32.33	X-Ray Repair Cross Complementing 3	rs861539	C>T	MV	Kashmir	120/150	~	Nissar et al. [47]
26	RAD51	15q15.1	RAD51 recombinase	rs1801320	G>C	3'UTR	Kashmir	100/120	~	Nissar et al. [46]
27	XRCC1	19q13.31	X-Ray Repair Cross Complementing 1	rs25487	T>C	MV	Kashmir	130/150	~	Nissar et al. [45]

28	VDR	12q13.11	Vitamin D Receptor	Apal		Kashmir	180/188	Х	Rasool et al. [44]
				Bsm I				~	
29	VDR	12q13.11	Vitamin D Receptor	Fok I		Kashmir	312/305	Х	Rasool et al. [43]
30	XRCC1	19q13.31	X-Ray Repair Cross Complementing 1	Arg399Gln	G>A	Kashmir	120/146	Х	Khan et al. [50]
31	IL-1B	2q14.1	Interleukin-1Beta	-31C/T	C>T	Kashmir	142/184	Х	Banday et al. [139]
				-511T/C	T>C	Kashmir		Х	

S.NO	Gene	Chr	Protein	Variant	Nucleotide	Variant	Studied	Case/	Res	References
1	TCF21	6q23.2	Transcription Factor 21	rs12190287	Change C>G/T	type 3' UTR V	Region Jammu	Control 166/592	~	Shah et al. [60]
					G>A	3' UTR V	Janninu	100/392	-	Shah et al. [00]
2	CYP19A1	15q21.2	Cytochrome P450 Family 19 Subfamily A Member 1	rs10046	G>A	3 UIR V			~	
3	TERT	5p15.33	Telomerase Reverse Transcriptase	rs2735940	A>G	UTV	-		Х	
				rs10069690	C>T	IV	-		Х	
4	ERCC5	13q33.1	ERCC Excision Repair 5, Endonuclease	rs751402	A>G	5UTR-V	_		Х	
5	РІКЗСА	3q26.32	Phosphatidylinositol-4,5-Bisphosphate 3- Kinase Catalytic Subunit Alpha	rs2699887	C>T	UTV	-		Х	
6	REV1	2q11.2	REV1 DNA Directed Polymerase	rs3792152	A>G	IV			Х	
8	FGFR2	10q26.13	Fibroblast Growth Factor Receptor 2	rs2981582	A>G	UTV			Х	
9	GSTP1	11q13.2	Glutathione S-Transferase Pi 1	rs1695	A>G	MV			Х	
10	TERF2	16q22.1	Telomeric Repeat Binding Factor 2	rs251796	A>G	IV			Х	
11	DCC	18q21.2	DCC Netrin 1 Receptor	rs2229080	C>A/G	MV			Х	
12	BCL2	18q21.33	BCL2 Apoptosis Regulator	rs1801018	T>C	SV			х	
13	GSTP1	11q13.2	Glutathione S-Transferase Pi 1	rs1695	A>G	MV	Kashmir	135/195	~	Malik et al. [53]
15	GSTM1	1p13.3	Glutathione S-Transferase Mu 1	Null	I/D	I/D			Х	
16	GSTT1	22q11.23	Glutathione S-Transferase Theta 1	Null	I/D	I/D			Х	
17	GSTM3	1p13.3	Glutathione S-Transferase Mu 3	rs1799735	I/D	I/D			Х	
18	CYP1A1	5q24.1	Cytochrome P450 Family 1 Subfamily A Member 1	rs4646903	T>C	DTV			Х	
19	CYP2E1	10q26.3	Cytochrome P450 Family 2 Subfamily E Member 1	rs2031920	C>T	TV			~	
20	CASP8	2q33.1	Caspase 8	rs3834129	AGTAAG	UTV	Kashmir	135/195	~	Malik et al. [55]
21	DCC	18q21.2	DCC Netrin 1 Receptor	rs714	A>G	IV	Kashmir	135/195	~	Malik et al. [56]
22	GSTM1	1p13.3	Glutathione S-Transferase Mu 1	Null	I/D	I/D	Kashmir	492/492	~	Makhdoomi et al. [57]
23	GSTT1	22q11.23	Glutathione S-Transferase Theta 1	Null	I/D	I/D			~	
24	CYPA1	15q24.1	Cytochrome P450 Family 1 Subfamily A Member 1	rs762551	C>A	IV	Kashmir	404/404	V	Shah et al. [59]
25	PLCE1	10q23.33	Phospholipase C Epsilon 1	rs2274223	A>G	MV	Kashmir	195/195	~	Malik et al. [140]

Table 6: Esophageal Cancer and associated genes and their associated variants

				rs3765524	C>T	MV			~	
				rs7922612	C>T	IV			~	
26	VGEF	6p21.1	Vascular Endothelial Growth Factor A	rs2010963	C>G	UTV	Kashmir	150/150	~	Qasim et al. [58]
				rs3025039	C>T	3' UTR V			~	
27	NAT2	8p22	N-Acetyltransferase 2	rs1799929	C>T	SV	Kashmir	182/123	~	Malik et al. [141]
				rs1799930	G>A	MV			~	
				rs1799931	G>A	MV			~	
28	LRFN2	6p21.2- p21.1	Leucine Rich Repeat And Fibronectin Type III Domain Containing 2	rs2494938	G>A	IV	Kashmir		~	Shah et al. [61]
29	NQO1	16q22.1	NAD(P)H Quinone Dehydrogenase 1	rs1800566	C>T	MV	Kashmir	108/195	~	Malik et al. [63]
30	NQO2	6p25.2	N-Ribosyldihydronicotinamide:Quinone Dehydrogenase 2	rs2070999	G>A	UTV			Х	

Table 7: Gastric Cancerand associated genes and their associated variants

S.NO	Gene	Chr	Protein	Variant	Nucleotide	Variant	Studied	Case/	Res	References
					Change	type	Region	Control		
1	XRCC3	14q32.33	X-Ray Repair Cross Complementing 3	rs861539	G>A	MV	Kashmir	80/70	Х	Bashir et al. [64]
2	GSTM1	GSTM1	Glutathione S-Transferase Mu 1	Null	I/D	I/D	Kashmir	108/195	>	Malik et al. [141]
3	CYP2E1	10q26.3	Cytochrome P450 Family 2 Subfamily E Member 1	rs2031920	C>T	UTV			>	
4	GSTM3	1p13.3	Glutathione S-Transferase Mu 3	rs1799735	del/AGG	I/D			>	
5	GSTT1	22q11.23	Glutathione S-Transferase Theta 1	Null	I/D	I/D			Х	
6	CYP1A1	5q24.1	Cytochrome P450 Family 1 Subfamily A Member 1	rs4646903	T>C				Х	
7	NAT2	8p22	N-Acetyltransferase 2	rs1799929	C>T	SV	Kashmir	182/123	~	Malik et al. [54]
				rs1799930	G>A	MV			~	
				rs1799931	G>A	MV			~	
8	CASP8	2q33.1	Caspase 8	rs3834129	AGTAAG	UTV	Kashmir	108/195	~	Malik et al. [55]
9	DCC	18q21.2	DCC Netrin 1 Receptor	rs714	A>G	IV	Kashmir	108/195	~	Malik et al. [56]
10	MMP-7	11q22.2	Matrix Metallopeptidase 7	rs11568818	A>G	UTV	Kashmir	108/195	~	Malik et al. [63]
11	VDR	12q13.11	Vitamin D Receptor	rs1544410	G>A	IV	Kashmir	143/150	~	Qadir et al. [65]
				rs7975232	G>T	IV			Х	
12	NQO1	16q22.1	NAD(P)H Quinone Dehydrogenase 1	rs1800566	C>T	MV	Kashmir	108/195	~	Malik et al. [55]
13	NQO2			rs2070999	G>A	UTV			Х	
	ERCC2	19q13.32	ERCC Excision Repair 2	rs13181	A>C	MV	Kashmir	100/100	~	Ashraf et al. [142]
14				rs1799793	C>A/T	MV			~	
	TLR4	9q33.1	Toll Like Receptor 4	rs4986790	A>G	MV	Kashmir	120/100	Х	Qadri et al. [143]
15				rs4986791	C>T	MV			Х	
16	IL-8/ CXCL8	4q13.3	C-X-C Motif Chemokine Ligand 8	251 T>A	T>A	-			Х	
17	XRCC1	19q13.31	X-Ray Repair Cross Complementing 1	Arg399Gln		MV	Kashmir	180/200	Х	Nissar et al. [49]
18	XP/ ERCC2	19q13.32	ERCC Excision Repair 2, TFIIH Core Complex Helicase Subunit	rs13181	A>C	MV			Х	

Table 8: Thyroid Cancer

S.NO	Gene	Chr	Protein	Variant	Nucleotide Change	Variant type	Studied Region	Case/ Control	Res	References
1	RET	10q11.21	Ret proto-oncogene	rs1799939	G>A	MV	Kashmir	140/180	<	Khan et al. [144]
				rs1800861	T>G	SV	Kashmir	140/180	~	
				rs1800863	C>G	SV	Kashmir	140/180	~	