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Supplementary Information
Materials and Methods
Reagents and kits
All reagents utilized in this study were of the highest quality available. Lymphocytes were isolated employing HiSep™ (HiMedia Laboratories, Mumbai, MH, India) along with 1xPBS from Cell Signaling Technology, Danvers, MA, USA. Whole-cell DNA was extracted using the PureLink Genomic DNA Mini Kit from Invitrogen, a Life Technologies-Thermo Fisher Scientific, USA subsidiary. The isolation of total RNA was performed using the TRIzol® Reagent from Life Technologies - Thermo Fisher Scientific, Waltham, MA, USA. The CellROX® Deep Red Flow Cytometry assay kit from Thermo Fisher Scientific, Waltham, MA, USA, was employed to measure oxidative stress. Mitochondrial fission and fusion, signaling, and survival genes were quantified using the Luna® Universal One-Step RT-qPCR Kit from New England Biolabs (Ipswich, MA, USA) via RT-qPCR. The Luna® Universal qPCR Master Mix from New England Biolabs (Ipswich, MA, USA) was utilized to assess mtDNA methylation and DNMT1 levels and the relative expression of mitomiRs and their target genes. Polyadenylation was performed using the Poly-A tailing kit (Invitrogen–Thermofisher Scientific, Greenville, NC, USA). For the evaluation of mitochondrial gene expression through conventional PCR, Taq 2X Master Mix from New England Biolabs, Ipswich, MA, USA, was employed. The examination of mtDNA methylation was performed utilizing BamHI restriction enzymes sourced from Takara Bio Inc., located in Shiga, Japan, alongside the EpiJET Bisulfite Conversion Kit provided by Thermo Fisher Scientific in Waltham, MA, USA. Furthermore, the profiling of mitomiRs was done using the Poly(A) Tailing kit and the PureLink miRNA isolation kit from Invitrogen-Thermo Fisher Scientific, which is also based in Waltham, MA, USA. For gel electrophoresis, SeaKem® LE Agarose from Lonza in Basel, Switzerland, was employed, in conjunction with 50× TAE and 6X gel loading buffer from HiMedia Laboratories in Mumbai, Maharashtra, India. Additionally, SYBR® Safe DNA gel stain from Invitrogen-Thermo Fisher Scientific in Waltham, MA, USA, as well as 100 bp and 50 bp DNA ladders from HiMedia Laboratories Pvt. Ltd. in Mumbai, India, and Promega Corporation in Madison, WI, USA, respectively, were utilized.
Exposure assessment
This study focused on indoor residential concentrations of particulate matter, specifically PM2.5 and black carbon. The annual average PM2.5 was measured in the individual’s residential city [1]. Low-cost air quality monitors were deployed in selected homes, providing data on PM2.5 and black carbon levels for estimation. Alongside air quality monitoring, we collected participants' health data, detailed in Table 1. Moreover, Pearson correlation has been done with respect to PM, age, and total exposure. In our study, we harnessed the power of R to explore the relationships between age, PM2.5 concentration in selected cities, and total exposure. We calculated total exposure by considering PM2.5 concentration, length of exposure, and age. The data from our rigorous analysis served as the foundation for our subsequent exploration. Leveraging the Pearson correlation coefficients using R's cor() function, we examined the strength and direction of these key variables between age (AG), particulate matter (PM) levels, and total exposure (TE) of the women exposed to the household air pollution [10].
Analysis of oxidative DNA damage
Oxidative damage was assessed by analyzing oxidized purine bases, especially deoxyguanosine, using the formamidopyrimidine glycosylase (FPG) digestion technique. Increased oxidized purine nucleotides indicated oxidative damage in mtDNA. Additionally, intracellular oxygen radicals, specifically reactive oxygen species (ROS), were measured by fluorescence levels of 20,70-dichlorofluorescin (DCF) through CM-H2DCFDA labeling, evaluated with quantitative RT-qPCR (Insta Q-96™, HiMedia Laboratories, Mumbai, MH, India) [2]. 
 Mitochondrial epigenetic alterations in breast cancer
DNA, RNA, miRNA, and protein were extracted to investigate mitochondrial dysfunction. Expression of mitochondrial fission/fusion genes (Drp1, Fis1, Mff, MFN1, MFN2, OPA1), ISR-related genes (DELE1, HRI, OMA1), and repair genes (POLG, OGG, APE) was analyzed. mtDNA methylation in the D-loop, 12S, cytochrome B, and 16S rRNA regions was assessed via real-time PCR. Ct values were recorded, and fold changes calculated using the 2^−ΔΔCt method with an internal control. [3]. 
 Evaluation of inflammatory cytokine and BC biomarker levels
To examine the inflammatory response, IL-6, TNF-α, and IFN-γ levels were measured according to the protocol. Readings were recorded using a Spark® multimode microplate reader. Human G-CSF, alpha-fetoprotein, and CEA biomarkers were detected. Biotinylated antibody solutions (100 µl) were added to each well, sealed, incubated at 37°C for 60 minutes, and rinsed with Wash Buffer. Streptavidin-HRP conjugate (100 µl) and TMB substrate (100 µl) were added, incubated for 10 minutes at 37°C, and then stopped with 100 µl of stop solution. The wells changed from blue to yellow, and absorbance was measured at 450 nm within 10-15 minutes [4]
miRNA expression profiling
miRNA expression was analyzed using real-time qPCR following an in-house protocol. Isolated miRNA was pooled age-wise and poly-adenylated using poly A polymerase and ATP at 37°C for 1 h to extend fragments to 100–120 bp. cDNA synthesis was carried out with oligo-dT primers and reverse transcriptase at 30°C (10 min), 42°C (60 min), 70°C (15 min), and 4°C (hold). qPCR was performed for miR-7a, miR-21, and miR-7b, with U6 as an internal control. Ct values were recorded, group means calculated, and fold change determined to evaluate expression differences [5]. 
Target genes and lncRNA analysis
The expression analysis was conducted using a PCR-based method. Isolated RNAs were categorized by age and converted into cDNA using the PrimeScript™ 1st Strand cDNA Synthesis Kit. The thermal cycling conditions were set as follows: 30°C for 10 minutes, 42°C for 60 minutes, 70°C for 15 minutes, and then held at 4°C. The synthesized cDNA was then mixed with qPCR Master Mix and specific primers for long non-coding RNAs (lncRNAs) such as Gas-5, H19, and PVT, as well as mRNAs including PTEN, PDCD4, FOXO3, APAF1, CDK2, MYC, PIK3CA, BCL2, E2F2, and CCND1, with GAPDH used as an internal control. Ct values were recorded, and the mean values and fold changes for the pooled groups were calculated. [6,7].
Quantification of RNA methylation
The RNA samples were added to the ELISA wells and the binding solution and incubated for 90 minutes. A particular capture (m6A) and detection antibody were added in the next step, followed by washing and incubation for 1 hour and 30 minutes. The enhancer and developer solution were added and incubated, and the absorbance was measured at 450 nm using a Spark® multimode microplate reader (TECAN, Seestrasse 103, Mannedorf, Switzerland) [8,9].
Expression of Telomerase Reverse Transcriptase (TERT) 
The expression levels of the TERT gene were analysed by amplification using a real-time PCR approach. Then, Ct values were recorded, and the fold change was calculated using the 2− ΔΔCt method [7-9].
Correlation analysis
In this study, we employed the R programming language to analyze correlations among age, methylation, and biomarkers with other parameters. We focused on uncovering insights with potential implications for biological and clinical contexts. The results from rigorous analysis were used as the dataset that formed the foundation for our subsequent analysis. Using Pearson correlation coefficients calculated with R's cor(x) function, we explored the strength and direction of relationships between these key variables. The resulting correlation matrix and scatterplot matrix visually show the associations. While acknowledging the limitations and assumptions inherent in correlation analyses, our study adhered to rigorous scientific standards. The correlation coefficient, often denoted as (r), measures the strength and direction of a linear relationship between two variables [10]. The formula for the sample correlation coefficient (r) between variables (X) and (Y) is given by:

Where:
(xi) and (yi) are individual data points for variables (x) and (y),
(x̄) and (ȳ) are the means of variables (x) and (y), respectively.

Multivariate correlation analysis and BC risk prediction model
Expanding on our earlier work in applying advanced machine learning methods for disease prediction the present study aims to develop an AI based risk prediction model for BC. This model leverages clinical and molecular biomarker data to support early detection and risk stratification efforts.
The model development process consists of several critical stages, beginning with data collection and preprocessing. The dataset, sourced from clinical records, includes key features such as age, mitochondrial DNA methylation levels, G-CSF levels, and TERT levels, with the target variable indicating BC risk classification. Data cleaning is essential to ensure quality, address missing values, and standardize the features for uniformity. Following preprocessing, various machine learning algorithms are selected for model training, including Logistic Regression, Random Forest, Support Vector Machine (SVM), K-Nearest Neighbors (KNN), and Gradient Boosting. The dataset is then split into training (80%) and testing (20%) sets, utilizing Stratified K-Fold cross-validation to assess model performance and ensure generalization without overfitting [9]. Performance metrics such as accuracy, precision, recall, F1-score, and confusion matrices are calculated to evaluate each model's effectiveness. Additionally, Receiver Operating Characteristic (ROC) and Precision-Recall curves provide further insight into model discrimination capabilities. After a thorough evaluation, Logistic Regression emerges as the top-performing model due to its balance of interpretability and high accuracy, achieving an average cross-validation score of 90.7%. Once validated, the model is saved using Pickle for future predictions, enabling its integration into clinical decision support systems to predict BC risk for individuals based on biomarker levels. This structured approach highlights the importance of AI in enhancing early BC detection and emphasizes the potential for personalized patient care through data-driven insights.
a) Reason for model selection
Cross-Validation Score: This is a good measure of how well the model generalizes to unseen data. Although all models have high accuracy on the test set, Random Forest has a slightly lower average cross-validation accuracy (0.8914) compared to others like Logistic Regression, SVM, KNN, and Gradient Boosting (~0.9018–0.9070).
Overfitting: Models like KNN and Random Forest can sometimes overfit, especially with smaller datasets. Even though they produce perfect accuracy on the test set, overfitting might be a concern. Logistic Regression is less likely to overfit, especially on smaller datasets, because it is a linear model. It’s highly interpretable, allowing easy understanding of the relationship between input features and the outcome. The coefficients in Logistic Regression provide direct insights into the direction of influence (positive or negative) on the prediction. The Logistic Regression model was selected due to its high interpretability and strong performance across the training and test sets. While other models like Random Forest and Gradient Boosting exhibited similarly high accuracy, Logistic Regression stands out for its simplicity and transparency, which are critical when understanding the influence of individual features on the predictions. The model's coefficients directly reflect the relationship between input variables and the target, making it easier to interpret the direction and magnitude of each feature’s impact. Additionally, with a 100% accuracy score on the test set and a competitive cross-validation average (0.9018), Logistic Regression provides a robust yet interpretable solution, aligning well with the need to balance performance and clarity in model behavior. This makes it especially suitable for applications where clear decision-making insights are essential [11, 12].
Statistical analysis
Data were analyzed for statistical significance using an unpaired t-test with Welch's correction and two-way ANOVA with multiple comparison tests using GraphPad-Prism version 8 (GraphPad Software, CA, USA). 
















Figures
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Figure S1. Geographic locations of the sample collection site in Madhya Pradesh, India. Biological samples were collected from six districts: Morena (26.4942° N, 78.0010° E), Sagar (23.8388° N, 78.7378° E), Chhindwara (22.0574° N, 78.9382° E), Gwalior (26.2183° N, 78.1828° E), Dhar (22.6013° N, 75.3020° E), and Betul (21.9120° N, 77.9017° E). These coordinates provide spatial context for the study, enhancing reproducibility and providing environmental context for interpreting biological variability and associated health risks, particularly in relation to household air pollution exposure.
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Figure S2. The graph showcases the correlations between chronological age (AG), annual PM2.5 concentration (PM), and TE to air pollution. Using Pearson correlation coefficients (r), the visualizations provide insights into the relationships among these factors. AG vs PM: The heatmap shows a very weak negative correlation (-0.04) between age and particulate matter, meaning age minimally impacts PM exposure. AG vs TE: A positive correlation (0.53) between age and total exposure exists. This indicates that total exposure increases as age increases, though not strongly. PM vs TE: A strong positive correlation (0.66) between particulate matter levels and total exposure is observed. Higher PM levels are associated with increased total exposure. The scatter plot shows a clear upward trend, illustrating the positive correlation between particulate matter levels, total exposure, and age. Total exposure fluctuates more significantly than age and particulate matter, indicating greater variability.
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Figure S3. Correlation analysis of cytokine concentrations with age and their interrelationships in the context of immune response and BC risk. a) Scatter plot with age on the x-axis and IL-6 concentration on the y-axis, depicting the positive correlation that illustrates the increase in IL-6 levels with advancing age. b) Scatter plot with TNF-α on the x-axis and IL-6 on the y-axis, showing the strong correlation between these pro-inflammatory cytokines. c) Scatter plot with age on the x-axis and IL-10 concentration on the y-axis, illustrating the positive correlation that suggests an adaptive mechanism to counteract increased inflammation. d) Scatter plot with age on the x-axis and IL-4 levels on the y-axis, highlighting the aging-associated complex immune responses. e) Scatter plot with TNF-α on the x-axis and IL-10 on the y-axis, emphasizing the interplay between pro-inflammatory and anti-inflammatory signals. These correlations reveal significant immunological changes associated with aging and their implications for increased BC risk.















[image: A group of graphs with numbers

AI-generated content may be incorrect.]
Figure S4. Scatter plots depicting the correlations between variables such as a) Oxidative damage b) Repair gene c) ISR gene d) FF (fission and fusion genes) e) mtDNA methylation and f) TFAM concerning age. Each plot includes a line of best fit, with r2 values ranging from 0.81 to 0.97, indicating strong correlations, and p-values of 0.000, demonstrating statistical significance. The plots are arranged with each row comparing different variables against a common variable on the Y-axis.
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Figure S5. The graph illustrates the percentage of RNA methylation between two groups of females exposed to HAP, with potential relevance to BC risk. Group A, represented by the orange bar, shows lower RNA methylation levels than Group B, represented by the blue bar. The y-axis indicates the percentage of RNA methylation, ranging from 0.00% to 0.06%. A significant difference between the two groups is evident, with a p-value of 0.0267, suggesting females in Group B, with higher RNA methylation levels, may have an increased susceptibility to BC. The error bars show the variability of methylation levels within each group.
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[bookmark: _Hlk181710962]Figure S6. a) Figure showing the change in fold expression of miRNAs in Group A and B females exposed to HAP. The fold change was calculated as 2−ΔΔCT by identifying (dCt) as the difference between the internal control and its respective control and test values. b) Graphical representation of the fold change in lncRNA expression among Group A and B women exposed to biomass fuels. The fold change was calculated as 2− ΔΔCT by identifying (dCt) as the difference between the internal control and its respective control and test values. c) Graph showing the mRNA expression profile among the females exposed to biomass fuels. The fold change was calculated as 2−ΔΔCT by identifying (dCt) as the difference between the internal control and its respective control and test values.








Tables:
Table S1. This table presents demographic data for women aged 18 to 70 (n=205) from rural areas of Morena (26.4942° N, 78.0010° E), Sagar (23.8388° N, 78.7378° E), Chhindwara (22.0574° N, 78.9382° E), Gwalior (26.2183° N, 78.1828° E), Dhar (22.6013° N, 75.3020° E), and Betul (21.9120° N, 77.9017° E) in Madhya Pradesh, India, who are regularly exposed to biomass smoke. Participants were divided into two groups: 23 individuals in Group A (ages 18-25) and 182 in Group B (ages above 25) to assess differences in expression biomarkers.
	Variables 
	Less susceptible (Group A)
	More susceptible (Group B) 

	Number
	23
	182

	Age (years) (Mean ± SD)
	25 ± 4.8
	25-70 

	Marital status
	Unmarried and married
	Married

	Literacy status
	Basic
	Basic

	Occupation
	Homemaker
	Homemaker

	Family income (INR)
	≤ 2,50,000/-
	≤ 2,50,000/-

	Cooking hours
	1.98 ± 0.38
	2.5 ± 0.26

	Type of exposure
	Indoor
	Indoor

	Fuel type used
	LPG/Electric
	Biomass/Solid fuel

	House type
	Concrete
	Mud wood

	Smokers
	None
	None

	Co-morbidity
	None
	None



Abbreviations
AG: Age
APE: Apurinic/Apyrimidinic Endonuclease 1
CEA: Carcinoembryonic antigen
DCF: 20,70-dichlorofluorescin
DELE: DNA Damage-Response Element 1
DNMT1: DNA Methyltransferase 1
DRP1: Dynamin-Related Protein 1
ELISA:  Enzyme Linked Immunosorbent Assay
FIS1: Mitochondrial Fission 1 Protein
FPG: Formamidopyrimidine glycosylase
G-CSF: Granulocyte-Colony Stimulating Factor
HRI: Heme-Regulated Inhibitor
IFN-γ: Interferon‐Gamma
IL: Interleukin
KNN: K-Nearest Neighbors
lncRNAs: long non-coding RNAs
m6A: N6-methyladenosine
MFF: Mitochondrial Fission Factor
MFN1: Mitofusin 1
MFN2: Mitofusin 2
NF-κB: Nuclear Factor kappa B
OGG: 8-Oxoguanine DNA Glycosylase
OMA1: Zinc Metallopeptidase
OPA1: Optic Atrophy 1
PINK1: PTEN-Induced Putative Kinase 1
PM: Particulate matter
POLG: DNA Polymerase Subunit gamma
ROC: Receiver Operating Characteristic
ROS: Reactive oxygen species
SVM: Support Vector Machine
TE: Total exposure
TERT: Telomerase Reverse Transcriptase
TMB: 3,3′,5,5′-tetramethylbenzidine
TNF-α: Mitochondrial Transcription Factor A
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