Document Type : Research Articles
Authors
1
Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Urmia University of Medical Sciences, Urmia, Iran.
2
Department of Toxicology, Faculty of Pharmacy, Islamic Azad University, Shahreza, Iran.
3
Department of Clinical Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran.
4
Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran.
5
Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran.
Abstract
Objective: Breast cancer is one of the most prevalent malignancies and leading causes of females’ mortality worldwide. Because of resistance to various treatment options, new treatments based on molecular targeting has introduced as noticeable strategies in cancer treatment. In this regard, heat shock protein 90 (Hsp90) inhibitors are proposed as effective anticancer drugs. The goal of the study was to utilize a combination of the doxorubicin (DOX) and NVP-AUY 922 on the MCF-7 breast cancer model to investigate the possible cytotoxic mechanisms. Methods: MCF-7 breast cancer cell line was prepared and treated with various concentrations of DOX and NVP-AUY922 in single-drug treatments. We investigated the growth-inhibitory pattern by MTT assay after continuous exposure to NVP-AUY922 and DOX in order to determine dose-response. Then the combinatorial effects were evaluated in concentrations of 0.5 × IC50, 0.2 × IC50, 1 × IC50 and, 2 × IC50 of each drugs. Based on MTT results of double combinations, low effective doses were selected for Real-time PCR [caspase3 and vascular endothelial growth factor(VEGF)] and caspase 3 enzyme activity. Results: A dose-dependent inhibitory effects were presented with increasing the doses of both drugs in single treatments. The upregulation of caspase 3 and downregulation of VEGF mRNA were observed in double combinations of NVP-AUY922 and DOX versus single treatments. Also, in these combinations in low doses of examined drugs (0.5 × IC50, 0.2 × IC50), higher caspase 3 activity were presented in comparison to single treatments (p<0.05). Conclusions: Our findings indicate an effective action of NVP-AUY922 in combined with DOX in this cell line. These results can predict the treatment outcome in this model.
Keywords
Main Subjects