Effect of Sodium Butyrate on p16INK4a, p14ARF, p15INK4b, Class I HDACs (HDACs 1, 2, 3) Class II HDACs (HDACs 4, 5, 6), Cell Growth Inhibition and Apoptosis Induction in Pancreatic Cancer AsPC-1 and Colon Cancer HCT-116 Cell Lines

Document Type : Research Articles

Authors

Research Center for Non-Communicable Diseases, Jahrom University of Medical Sciences, Jahrom, Iran.

Abstract

Background: In higher eukaryotes, cell-cycle transitions are regulated by different cyclin-dependent kinases (Cdks) and Cdk inhibitors (CKIs). CKIs include two groups, the Ink4 (p16INK4a, p15INK4b, p18INK4c, and p19INK4d) and the Cip/Kip (p21Cip1, p27Kip1, and p57Kip2) families. The hyperactivity of histone deacetylases (HDACs) is associated with cancer induction. Histone deacetylase inhibitors (HDACIs) such as sodium butyrate (NaBT) can inhibit HDAC activity resulting in apoptosis induction. The present study was designed to investigate the effect of sodium butyrate on p16INK4a, p14ARF, p15INK4b, class I HDACs (HDACs 1, 2, 3), and class II HDACs (HDACs 4, 5, 6), cell growth inhibition, and apoptosis induction in pancreatic cancer AsPC-1 and colon cancer HCT-116 cell lines. In fact, we want to know whether sodium butyrate can reactivate Ink4 and Cip/Kip families by HDACs inhibition. Materials and Methods: The AsPC-1 and HCT-116 cells were treated with sodium butyrate at different periods. Then, the MTT assay, cell apoptosis assay, and qRT-PCR were done to determine viability, apoptosis, and the relative expression level of the genes respectively. Results: The sodium butyrate increased p16INK4a, p14ARF, and p15INK4b and decreased class I and II HDACs significantly. Besides, HCT-116 cell was more sensitive to sodium butyrate in comparison to AsPC-1 cell. Conclusion: The sodium butyrate can reactivate the p16INK4a, p14ARF, and p15INK4b through inhibition of HDACs in AsPC-1 and HCT-116 cell lines.

Keywords

Main Subjects