Conjugation of Cetuximab – Puromycin and Its Target-Specific Effect on Triple Negative Breast Cancer Cell Lines

Document Type : Research Articles


1 Master’s Programme in Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, 10430, Indonesia.

2 Department of Biochemistry and Molecular Biology, Faculty of Medicine, Universitas Indonesia, 10430, Indonesia.


Cancer is life-threatening disease and being global health problems. Chemotherapy is one of the most used therapy for cancer since many years ago. Chemotherapy is also toxic for normal cell, not specific to the target cells. Consequently, chemotherapy has various side effects. Monoclonal antibody (MAb) has been developed for specific therapy which only has killing effect in cancer cells, but the survival rate of most MAbs around 20%. Therefore, in clinical practice, MAbs administration should combine with chemotherapeutic agents. For effectiveness of therapy and to minimalize adverse effects, anticancer agent with selective cytotoxic effect on target cells is needed, the immunotoxin. Objective: This study introduces a novel approach to conjugate monoclonal antibody (Cetuximab) and toxin (Puromycin), in order to selectively inhibit proliferation of triple negative breast cancer (TNBC) and to enhance the efficacy of MAb in target cells killing. Methods: Cetuximab was conjugated with Puromycin using a linker, i.e SATP (Succinimidyl-acetylthiopropionate) and tested on triple negative breast cancer cell lines (MDA-MB-231) which expressed EGFR (epidermal growth factor receptor). Cetuximab is MAb which targets EGFR. MCF-7 was used as control cells since it has low or no EGFR expression. Cell counting were conducted as viability assay at 24 hours, 48 hours, and 72 hours after treatment. Results: The results showed significant reduction of live cells number in Conjugate 20 µg/mL cultured in MDA-MB-231 compared to MCF-7 after 24 hours, 48 hours, and 72 hours incubation. In all time period of incubation, significant reduction of MDA-MB-231 live cells number was also observed in Conjugate 20 µg/mL compared to Cetuximab 20 µg/mL. Conclusion: Synthesized conjugate showed its target-specific effect in TNBC and improved the efficacy of Cetuximab on TNBC. In the future, this conjugate can be a potential anticancer therapy in treating triple-negative breast cancer.


Main Subjects