Document Type : Research Articles
Authors
1
Molecular Biotechnology program, Faculty of Science, Helwan University, Cairo, Egypt.
2
Chemistry Department, Faculty of Science, Helwan University, Cairo, Egypt.
3
Clinical Pathology Department, National Cancer Institute, Cairo University, Egypt.
4
Medical Oncology Department, National cancer institute, Cairo University, Egypt.
5
Tumor Biology Department, National Cancer Institute, Cairo University, Egypt.
Abstract
Background: Multiple myeloma (MM) is a hematological bone marrow malignancy that can be treated but is usually fatal. Medication resistance is the major cause of relapses due to cancer stem cells (CSCs). As a result, this study aimed to identify multiple myeloma cancer stem cells (MMCSCs) in the bone marrow of twelve MM patients with pathological complete response (pCR) after chemotherapy and to investigate the potential effect of Curcumin/Piperine (C/P) extract as an anti-MMCSCs treatment in twenty newly diagnosed patients. Methods: This study included twenty bone marrow (BM) samples from newly diagnosed MM patients and twelve BM samples from pCR patients after a year of treatment. The MTT test was performed to assess the treatment’s effective dosage. A flow cytometer was used to identify MMCSCs, cell cycle profile, extract’s apoptotic activity, and proliferation marker in the selected samples. Also, a colony formation test and stemness protein were investigated. Results: In newly diagnosed MM patients, the C/P extract suppressed MMCSCs by 64.71% for CD138-/CD19- and 38.31% for CD38++. In MM patients’ samples obtained after one year of treatment, the MMCSCs inhibition percentage reached 44.71% (P < 0.008) for CD138-/CD19- and 36.94% (P < 0.221) for CD38++. According to cell cycle analyses, the number of cells treated with C/P extract was significantly reduced in the S and G0/G1 phases (87.38%: 35.15%, and 4.83%: 2.17% respectively), with a rapid increase in the G2/M phases (1.1%: 2.2%.). MMCSCs apoptosis was identified using a flow cytometer and Annexin-V. Multiple myeloma stem cell (MMCSC) proliferation was inhibited. Clonogenicity was suppressed by 60%, and stemness protein expression was reduced by 70%. Conclusion: MMCSCs in the bone marrow of MM-pCR patients can be utilized as a prognostic tool to predict recurrent multiple myeloma incidence. Also, the therapeutic potential of C/P extract as a prospective anti-MM drug targeting MMCSCs.
Keywords
Main Subjects