Human Saliva as a Substitute Diagnostic Medium for the Detection of Oral Lesions Using the Stokes Shift Spectroscopy: Discrimination among the Groups by Multivariate Analysis Methods

Document Type : Research Articles

Authors

1 Department of BSH, Faculty of Engineering and Technology (FEAT), Datta Meghe Institute of Higher Education and Research (DMIHER), DU, Sawangi - 442001, India.

2 Department of Physics, Indian Institute of Technology (IIT) Kanpur, Kanpur-208016, India.

Abstract

Objective: Our objective in the present study in to detect oral mucosal lesions non-invasively by probing two solutions with reference to diagnostic technique and non-invasive media. In the diagnostic technique, Stokes shift (SS) spectroscopy (SSS) has been utilized for the detection of oral lesions. In the diagnostic media, human oral tissue and saliva are included. Methods: SS measurements are carried out on oral squamous cell carcinoma (OSCC), dysplastic (precancer), and normal/control tissue and saliva samples. Measurements are performed on 86 tissue and 86 saliva samples using the commercially available spectrofluorometer. Offset wavelength of 120 nm, which is the Stoke shift of nicotinamide adenine dinucleotide (NADH) has been selected over the other offsets (i.e., 20, 40, 70 and 90 nm). Result: Presence of tryptophan, collagen, NADH, and flavin adenine dinucleotide (FAD) bands were noticed in the SS spectra of tissue. Like the tissue spectra, presence of these bands was also found in the SS spectra of saliva except the collagen band. Classification among the samples accomplished by the make use of multivariate analysis methods. In the multivariate analysis methods, principal component analysis (PCA) is applied first on SS data of tissue and saliva and then Mahalanobis distance (MD) model and receiver operating characteristic (ROC) analysis employed successively. Overall accuracy values of 94.91 %, 84.61 %, and 85.24 % were obtained among OSCC to normal, dysplasia to normal, and OSCC to dysplasia for tissue samples and 88.46 %, 90.16 % and 94.91 % accuracy values were obtained for saliva using the SS spectroscopy. Conclusion: Obtained results of human saliva are equivalent to human oral tissue using the SS spectroscopy. It indicates that saliva may be utilized as a substitute diagnostic medium and SS spectroscopy as a diagnostic technique for non-invasive detection of oral lesions at the primarily stage.

Keywords

Main Subjects