Investigations of Ni(II)Cysteine-Tyrosine Dithiocarbamate Complex: Synthesis, Characterization, Molecular Docking, Molecular Dynamic, and Anticancer Activity on MCF-7 Breast Cancer Cell Line

Document Type : Research Articles

Authors

1 Department of Chemistry, Faculty of Mathematics and Natural Science, Hasanuddin University, Makassar 90245, Indonesia.

2 Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Negeri Makassar, Makassar, Jalan Daeng Tata Raya Makassar, 90244, Indonesia.

3 Department of Chemistry, Faculty of Science and Technology, Universitas Airlangga, Komplek Kampus C UNAIR, Jl. Mulyorejo-60115, Surabaya, Indonesia.

4 Research Center for Computing, Research Organization for Electronics and Informatics, National Research and Innovation Agency (BRIN), Cibinong Science Center, Jl. Raya Jakarta- Bogor KM 46, Cibinong 16911, West Java, Indonesia.

5 Department of Chemistry, Faculty of Mathematics and Natural Science, Gadjah Mada University, Yogyakarta 55281, Indonesia.

6 Master Pogram, Graduate School of Bioagricultural Sciences, Department of Applied Biosciences, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8601, Japan.

7 Bioinformatics Research Center, Indonesian Institute of Bioinformatics (INBIO), Malang 65162, Indonesia.

Abstract

Objective: Breast cancer ranks second in terms of the highest number of cancer deaths for women worldwide and is one of the leading causes of death from cancer in women. The drug that is often used for chemotherapy is cisplatin. However, cisplatin drugs have a number of problems, including lack of selectivity, unwanted side effects, resistance, and toxicity in the body. In this work, we investigated Ni(II) cysteine-tyrosine dithiocarbamate complex against breast cancer. Methods: Research on the new complex compound Ni(II) cysteine-tyrosine dithiocarbamate have several stages including synthesis, characterization, in-silico and in-vitro testing of MCF-7 cells for anticancer drugs. The synthesis involved reacting cysteine, CS2, KOH and tyrosine with Mn metal. The new complex compound Ni(II) cysteine-tyrosine dithiocarbamate has been synthesized, characterized, and tested in vitro MCF-7 cells for anticancer drugs. Characterization tests such as melting point, conductivity, SEM-EDS, UV Vis, XRD, and FT-IR spectroscopy have been carried out. Result: The synthesis yielded a 60,16%, conversion with a melting point of 216-218 oC and a conductivity value of 0.4 mS/cm. In vitro test results showed morphological changes (apoptosis) in MCF-7 cancer cells starting at a sample concentration of 250 µg/mL and an IC50 value of 618.40 µg/mL. Molecular docking study of Ni(II) cysteine-tyrosine dithiocarbamate complex identified with 4,4’,4’’-[(2R)-butane-1,1,2-triyl]triphenol - Estrogen α showing active site with acidic residue amino E323, M388, L387, G390 and I389. Hydrophobic and hydrophobic bonds are seen in Ni(II) cysteine-tyrosine dithiocarbamate - Estrogen α has a binding energy of -80.9429 kJ /mol. Conclusion: there were 5 residues responsible for maintaining the ligand binding stable. The compound had significant Hbond contact intensity, however, it was not strong enough to make a significant anticancer effect. Though the synthesized compound shows low bioactivity, this research is expected to give valuable insight into the effect of molecular structure on anticancer activity.

Keywords

Main Subjects