Image Enhancement Using Bidimensional Empirical Mode Decomposition and Morphological Operations for Brain Tumor Detection and Classification

Document Type : Research Articles

Authors

1 Department of Physics and Computer Science, Faculty of Physics & Engineering Physics, University of Science, Ho Chi Minh City, Vietnam.

2 Department of General Education, Cao Thang Technical College, Ho Chi Minh City, Vietnam.

3 Viet Nam National University, Ho Chi Minh City, Vietnam.

Abstract

Objective: The three steps of brain image processing – preprocessing, segmentation, and classification are becoming increasingly important in patient care. The aim of this article is to present a proposed method in the mentioned three-steps, with emphasis on the preprocessing step, which includes noise removal and contrast enhancement. Methods: The fast and adaptive bidimensional empirical mode decomposition and the anisotropic diffusion equation as well as the modified combination of top-hat and bottom-hat transforms are used for noise reduction and contrast enhancement. Fast C-means clustering with enhanced image is used to detect tumors and the tumor cluster corresponds to the maximum centroid. Finally, Ensemble learning is used for classification. Result: The Figshare brain tumor dataset contains magnetic resonance images used for data selection. The optimal parameters for both noise reduction and contrast enhancement are investigated using a tumor contaminated with Gaussian noise. The results are evaluated against state-of-the-art results and qualitative performance metrics to demonstrate the dominance of the proposed approach. The fast C-means algorithm is applied to detect tumors using twelve enhanced images. The detected tumors were compared to the ground truth and showed an accuracy and specificity of 99% each, and a sensitivity and precision of 90% each. Six statistical features are retrieved from 150 enhanced images using wavelet packet coefficients at level 4 of the Daubechies 4 wavelet function. These features are used to develop the classifier model using ensemble learning to create a model with training and testing accuracy of 96.7% and 76.7%, respectively. When this model is applied to classify twelve detected tumor images, the accuracy is 75%; there are three misclassified images, all of which belong to the pituitary disease group. Conclusion: Based on the research, it appears that the proposed approach could lead to the development of computer-aided diagnosis (CADx) software that physicians can use as a reference for the treatment of rain tumor.

Keywords

Main Subjects